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Abstract

Which of m and o1 is a real letter? If you know, then their printing is not symmetric.
Interesting physical models often imply symmetries, and experiments often have
symmetrical designs. Theoretical models are imperfect, and engineering is not infinitely
precise; both cases demand practical methods which challenge symmetries by inspecting
data. Critically, such methods must handle filtered data, which commonly arises
from inefficiencies, blind-spots or deliberate selections, and might give the illusion
of asymmetry if mistreated. We construct such a method in this paper, which uses
generic machine learning algorithms to train models which predict which is real between
observed data and symmetrically transformed clones. If they predict accurately in
independent tests, then the symmetry is violated. We use examples to demonstrate
how the method works and how the models’ predictions can be interpreted.

1 Introduction
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Figure 1: (left) Training data are shown on a gappy cylindrical detector; the smaller
panels filter 90% of data in their space; gaps detect no data. (middle) A learned
function predicts that data in yellow areas as more likely to be real than versions in
the dark purple regions; it finds a missing patch and an offset which varies with angle.
(right) Positive @Q refutes rotational symmetry; the histogram shows contributions to
this evidence from circumferences along the length.

What If nature refutes a symmetry, then all models which imply that symmetry are
wrong. Common contexts do imply symmetries, perhaps from theoretical hypothesis
or hardware design, and we aim to challenge those symmetries in a general way by
testing them in data.



Real data are messy. Not only do data take complicated shapes, they are usually
subject to lossy effects in collection and processing. However, inefficiencies are often
well understood, and select subsets of the data can have cleaner connections to their
idealized modelling; to work in practice, it is critical that our method works seamlessly
in the presence of such filtering or selections of the data.

How If a symmetry is respected, then each data point has symmetrically equivalent
fake cousins which, given all other observed information, cannot be distinguished.
Between pairs of these symmetrically equivalent data, one real and one fake, one
cannot know ‘which is real?’, but can at best assign equal probability to each. This
statement is key to our method.

For our purposes, a model is a rule which assigns probabilities. Symmetry is a
model because it assigns equal probabilities. Asymmetry is not a model because it is
ambiguous; there are innumerably many asymmetric models, so we can only explore
examples.

Where an asymmetric model consistently succeeds in identifying real data from
transformed fakes, the symmetry must be violated. We attempt this refutation by
using general-purpose machine learning algorithms to train promising asymmetric
models, then testing those models’ predictions.

The method requires numerical data, a way to transform them under the candidate
symmetry subject to filtering, and an appropriate learning algorithm to assign the
asymmetric model.

With finite data the results are not certain, but testing on independent datasets
does give cleanly interpretable results which can usefully guide further investigations.

Context This is an example of self-supervised learning, in which models are trained
via auxilliary tasks to understand structures in the data without external lablling,
such that other objectives are learned more efficiently . Our emphasis is not on
the training, however, but on the models’ perfrormance with the self-supervised task
itself.

Active research pursues ways to build symmetries into machine learning algorithms
10], with scientific applications including high energy physics [11H13] and astronomy
. These are useful ways to encode domain-specific prior information, which
improves performance by leaving less to learn from data. In contrast, we seek to
challenge those priors in contexts where they may or may not hold.

The methods constructed here are a probabilistic recasting of those developed
in our sister paper at Reference . We informally discuss various mathematical
properties of symmetries which are formalized in another sibling at Reference [16].

Layout Before fully introducing the ‘which is real?’ method, we use Section 2| to
describe a simpler ‘is it real?”” method which does not quite meet our needs; ‘is it real?’
uses a standard classification setup in which models predict labels in a mixed dataset,
but it struggles to handle filtered data and has some inelegance in how to construct its
mixed data. How ‘which is real?’ works to resolve these issues is described in Section [3l
We then study examples, beginning with the cylindrical detector from Figure [1] in
Section 4| and a map with less trivial symmetry in Section |5



2 Is it real?

For ‘is it real?’, a dataset is prepared with the two classes: real and fake; the fakes
are transformed clones of real data which would be symmetrically equivalent if the
symmetry were respected.

Transitions For symmetries with many equivalent states it is impractical to make
all possible fakes. But there is no need to; examples can be sufficient. To be general,
we sample fakes with a probability distribution dr(z’| z) which takes a data entry
x to hypothetically equivalent states 2. We are interested in symmetries of data
distributions themselves, so this should apply prior to any filtering, which is discussed
below. For now, the transition distribution dr (2’| z) is relatively unconstrained; it
may not support all equivalent states and could even map each x to a deterministic
output 2’ = t(x). The choice of transitions determines which opportunities there are
to find asymmetry, and may be influenced by practical considerations.

For the methods discussed here, transition distributions are the mechanism by
which the target symmetries are encoded.

Data preparation To apply the ‘is it real?” method, a mixed dataset should be
prepared with equal proportions of real and fake data shuffled together. To finish
describing the remainder of this method, we briefly defer discussion of how the data,
transition distribution and filter can combine to achieve this preparation.

With a mixed dataset prepared, standard machine learning practice can be applied:
train an asymmetric classification model to predict the real-fake label of one part of
the dataset, and test its predictions on another. We want to compare this candidate
asymmetric model against the symmetric model which, since the real and fake data
distributions are constructed to be symmetrically equivalent, can only assign probability
1/2 to each class.

Quality Data contributes to model comparison through likelihoods, which are the
probabilities assigned to the data by the models. Our likelihood is a product over the
independent predictions, but to have a quantity which converges a fixed value as the
number of data n increases, we define a quality function as the mean log likelihood
ratio

1o 1
Q({t}, {z},p) = glogp(& | ;) —log 5 (1)
for labels ¢; € {real,fake} and label probabilities p(¢; | x;) assigned by the learned
model. This may be recognised as a difference of binary cross-entropies, and is invertible
to the likelihood if n is known. This @ has a maximum value of log(2) ~ 0.69 for
perfect predictions, but is not bounded from below.

Since a model is fixed when predicting elements of the test set, the terms of this sum
are independent and standard estimation methods can be applied assign reasonable
uncertainties to its limiting value, which is the expectation value of the log likelihood
ratio.

If @ is significantly greater than zero, then the model is predicting more accurately
than symmetry would allow, which indicates that the symmetry is violated. If symmetry
is preserved, then @ is expected to be less than zero since learning algorithms are
unlikely to find the exact p = 1/2 solution.



Filtering and other problems We now return to the mixed dataset. It is unusual
for all possible data to be recorded, due to the holes, imperfections or selections which
can be though of as filtering the data before observation. We describe these effects
with a filter function L(z) which assigns a probability that a data point x is received,;
for an unreliable sensor it might be L(z) = 0.1, and for hard removal it would be zero.

We are interested in symmetries of data distributions and not of filters. Fakes
should therefore be sampled as if pure data were collected, resampled from dr(z’| x),
and then filtered by L(z). However, real data have already been filtered, and so
the pre-filtering data distribution is related through division by the filter function.
Applying these relations, the distribution of fakes can be written

dp(x’ | fake) — / [i((“;g dr(2'| x)] dp(x | real). )

When dp(z | real) is approximated by an ensemble of real data, this means that
each data entry is weighted by a ratio of filters. Although L(x) cannot be zero for
observed data, we do have a problem when L(z) < L(z'); such data which pass tight
filtering require many faked copies, which in extreme cases could come to dominate
the estimated fake distribution, giving an unappealing imbalance.

Weights on real data also mean that the frequency with which each entry should is
chosen to transform to a fake depends upon all other data, and may change drastically
as highly-weighted data are observed. In fact, this problem exists without weights;
the strategy of mixing all transformed data together raises questions about how the
fake examples should be constructed.

Which data should be used to approximate dp(z | real) when generating fakes?
If only the training set is used, then a sufficiently advanced model could memorize
those examples and recognise different test data as real. If both training and testing
sets are used, then testing information leaks into training and the label prediction
again reduces to memory. If testing examples are incrementally included after their
labels are predicted, then the testing scores depend upon which were previously seen,
breaking the independence which is so useful to their interpretation.

With large data sets for which only batched analysis is practical due to limited
computer memory, the dependence on a large ensemble of examples to generate fakes
becomes a problem in itself.

None of these issues kills ‘is it real?’ the method outright (especially if allowing a
reasonable degree of approximation) but they do make it inelegant; ‘is it real?’ can
work, but we would prefer a method which does not require division by the filter
function, and in which the entries are treated with independence.

Although weights due to filtering and dependence are problems, there is also
opportunity in the freedom to choose transition distributions d7(z’| z). The ‘which is
real?” method avoids these problems while restricting that freedom.

3 Which is real?

The ‘which is real?” method tests symmetries by attempting to discriminate each
data entry from an augmented clone of itself; since each data entry is treated alone,
the independence issue is resolved immediately. With filtering, data weights are also
avoided by not attempting undo the filter, but by applying it a second time when
sampling each fake.

Again, a transition distribution dr (2’| z) is used to sample fakes, and in doing
so defines the candidate symmetry. Given an x—2’ pair, we have two class labels



corresponding to its two orderings: real-fake (z is real and was transformed to z/
a’ + z) and fake-real (2’ is real and was transformed to z; x + ).

The classification problem is now to predict which of fake-real and real-fake labels
is correct, and it could be naively approached by learning a label probability on the
joint z—z' space. However, that would mean working with an input space twice as large
as the original data, and this incurs costs in learning performance and interpretability
when inspecting outputs. Thankfully, this problem is avoidable; classification can be
reduced to learning a function on the original data space, with the difference of its
values at both x and 2’ used to assign probabilities.

Classification To explain, we need a little theory. Binary classification can be
expressed as estimating an odds ratio between distributions, which is conveniently
handled as its logarithm:

dp(z’ + x) ~ log dr (2’| z)dp(x)
dp(z + ) dr(z | ))dp(x))’

¢(z,2) =log (3)
in which the rightmost expression factors the input construction into the steps of real
data being received, then fakes being sampled by transitioning from them.

This log odds simplifies if we require that the transition distribution is symmetrical
under exchange of its arguments: dr (2’| ) = d7(z | 2') for all accessible z—z’ pairs.
Then the transition terms cancel and ¢(z, ) a becomes a difference of two terms:

dp(x
L~ o) = ¢la), 0
where ((z) is suitable for learning since it is unbounded and real-valued. Learning
¢(x) does not correspond exactly to learning the data distribution, but only a relative
density with respect to an unspecified measure u(x), since ((z) = log (dp/du)(z) is a
solution for any p which supports p.

From these objects, label probabilities are related through the logistic function:

1 1
1+ eo@2) 14 e K@@ (5)

é(x,2') = log

p(real-fake | z,z') =

Properties Not only does this separation halve the size of the input space, the
construction as a difference ensures that ¢(x,2’) is correctly antisymmetric under
exchange of its arguments. This means there is no difference between z—zx’ labelled
real-fake and z"z labelled fake—real, and there is no need to shuffle the ordering, as
would be needed to learn a naive ¢(x,2'). We can choose to always order the data
real-fake.

Symmetrical transitions mean that space is partitioned into one or more disjoint
sets of data within which all data are connected through dr(a’| ). We call these sets
orbits. Within each orbit, the assigned probabilities are unaffected by additive shifts
in {(x), and such shifts can vary arbitrarily between orbits; this freedom is granted to
the learning algorithm, and means that some care is required when interpreting the
modelled ((z).

Transitions and filtering Although transition symmetry is a stronger constraint
than was required for ‘is it real?’, the constraint is not too stringent; it is generally
satisfied by setting dr (2’| z) to the probability distribution which is invariant under
the action of the symmetry!!| Some symmetries have no such probability distribution,

IThe transition from z to itself may be excluded to avoid wasted comparisons.



however. For example, translation invariance on the real line would require a uniform-
everywhere distribution which cannot be normalized.

In practice, such distributions must be normalizable after filtering since real data
are measured and recorded with finite instruments. We can therefore safely assume
that a satisfactory transition distribution by is made scaling the symmetry-invariant
measure by the filter function.

With a filter function L(z) applied to both real and fake data, then all four of its
instances cancel from the log odds and leave it unchanged;

L(z)dr(a'| x)L(z)dp(x) dp(z)

P ) =108 T bt | ) L) dp(a) — % dple) ©

The same ((z) construction can be applied, and successful learning algorithms should
approach the unfiltered result wherever they receive enough data.

Wrap-up Symmetry testing for ‘which is real?” works as for ‘is it real?’: train with
one portion of the data and test on another by evaluating ) according to Equation [1|

Each data entry is now compared to a faked version of itself, which should be
sampled according to the product of a symmetric transition distribution and any filter
function through which the data have already passed.

Training learns a function ((z), from which differences assign real-fake log odds
which translate to label probabilities through the logistic function. The product of
those probabilities gives a differentiable likelihood function for use in training.

Extensions The basic method described here is open to some extensions. While
it was described with only one fake per data entry, more can be used by averaging
their log probabilities in the sum for ). Multiple repeats may help or hinder training,
but can be implemented efficiently since {(x) need only be evaluated once for the real
entry and once for each fake.

We have made minimal references to the learning algorithms’ details since they
are irrelevant to the method itself. In any application, it is the task of a user to find
and apply a practical approach.

The following examples exercise all parts of the ‘which is real?” method while
attempt to include much of the complexity of real data. With their relatively sim-
ple data, standard machine learning tools are found to perform well with minimal
parameter tuning.

4 Example 1: Cylindrical detector

The broken ring shown in Figure |1 illustrates an imaginary detector which is used to
measure point data on its surface. These data could for example represent estimates
of where energetic particles interacted with its surface, but the application is free.
The leftmost plot of this figure shows the training set of five thousand data at their
measured locations.

To demonstrate data filtering, the smaller panels are imagined to be made from
thin materials which miss 90% of possible data, and the illustrated gaps between (and
in) those sensitive detectors do not record anything. The filter function is therefore
L(z) = 1 for z in a large panel, L(z) = 0.1 for x in a small panel, and L(z) = 0
otherwise.

The candidate symmetry is of rotation about the axis of the cylinder. Each data
point is specified by its longitudinal position z and its angle ¢, so the transformation
distribution d7 (2’| ) is uniform for ¢ between 0 and 2.
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Figure 2: Modifications to the gappy cylindrical detector from Figure 1. (a) The hole
in the back panel is included in filter function, weakening the observed asymmetry. (b)
The sinusoidal offset is removed and fresh data are sampled. The asymmetric model
does worse than the symmetric model because it assigns non-1/2 probabilities to data
from a symmetric distribution. Since the ); bins are summed totals, the negative
spikes show where data are denser; the dashed orange line shows the mean in each bin
times 100, demonstrating that the model does not perform worse on average in those
spikes. More details are given in the text of Section

For a model training, we use Light GBM as a fast and robust algorithm which
works with minimal tuning. Like other boosted decision tree models , its output
¢(x) is a weighted sum of step functions acting on a tree of inequalities on the data
features; these step functions’ locations and weights are learned from the first two
derivatives of a loss function with respect to the model outputs. Our loss is the
negative sum of the log likelihoods from Equation 5, whose derivatives with respect to
¢(x) and ((z') are readily computed.

A ((z) function learned by LightGBMﬂ is displayed in the middle plot of Figure
its colour map is clipped to the range from —2 (black) to +2 (bright yellow). A large
purple hole has appeared where training data are lacking; the model knows that any
data seen there are probably fake, having been rotated in from other angles. The
circular stripes of high density are matched with purple and yellow fringes which swap
sides between the two large panels; these correspond to an offset in z which varies
sinusoidally with ¢.

In the small panels, where data are sparse due to filtering, {(z) is somewhat
smoother but shows similar structures to the main panels. Despite filtering, the
algorithm is still learning towards the same underlying log odds, but does so with less

2This model uses default Light GBM 3.2.1 parameters through its scikit-learn interface ,
except for subsample=0.5, subsample_freq=1, and the custom ‘which is real?’ objective. Without
subsampling the z coordinates, which are exactly repeated between data and fakes, appear to hinder
training.



precision because it has fewer data.

The rightmost section of Figure [1| reports results from testing on five thousand
independent data with one fake each. The histogram shows contributions to the @
sum, given in Equation |1, from bins along the z axis which accumulates contributions
from orbits in ¢. Positive bins on the edges of dense rings show that these locations
have many data and that their fakes identify themselves due to the angular variation of
ring offsets. The total @ = 0.19 4 0.01 is a strong indication that rotational symmetry
is violated in these data (the quoted uncertainty is the standard deviation of the log
likelihood sample divided by /n). Whether this asymmetry arises from the underlying
physical process or experimental miscalibration is a matter for further investigation.

What happens when those asymmetric quirks are removed? Such changes are
shown in Figure [2l Perhaps it is realized that the patch with no data in the back
left panel is a gap in experimental hardware, much like the one on the front panel.
Including that patch in the filter function with the same data results in the plots
displayed in Figure |2a, This change correctly reduces the observed asymmetry, but
otherwise has little effect on the {(x) surface.

Next, we remove the sinusoidally varying offset and sample new data from their
new distribution. The result in Figure [2b| shows no sign of asymmetry. In fact the
true data distribution is symmetrical here, but the asymmetric model has not fully
learned that from the finite training data; it therefore does worse than the symmetric
model and receives a negative (). The histogram on the right of this figure shows
negative @); spikes at the dense rings; this is because those rings are dense, so have
more data to add up. The average contribution in these regions is in fact closer to
zero than elsewhere, as shown by the overlaid histogram.

5 Example 2: Height map

For circular symmetry and many others, symmetric transformations reduce to simply
re-sampling one or more basic coordinates of x. This is not always the case; symmetries
and their orbits may be non-trivial. To demonstrate this, we propose a symmetry
around contours of constant height on a blocky topographical map, which is specified
by the brightness of blobs in Figure 4l This symmetry states that the data density it
translationally invariant within each connected region of constant colour on that map.
The transition distribution from each data point is therefore uniform within its local
blob.

Plausibly because observations are more sparse towards the edges of the map, The
filter function removes 90% of data in a narrow bordering region, which is visible in
the scatter plots of Figure|3. This figure contains examples with two different datasets,
of which one obeys the symmetry and the other is augmented with waves which violate
it. Again, LightGBM models®| are used with five thousand training data and five
thousand testing data with one fake each. These waves show up in the learned ((z)
function. Again the method successfully gives a significantly positive @) value only
where the data are asymmetric, and the largest contributions to @) are attributable to
orbits with many data and large asymmetry.

3These models use default Light GBM 3.2.1 parameters except for max_depth=2 (to reduce over-
fitting) and the custom objective.
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Figure 3: Applications of the ‘which is real?” method with a candidate height map
symmetry specified in Figure 4. Data in the visible bordering band pass the filter with
probability 0.1. (a) Data density increases with map brightness and the symmetry is
obeyed. For these symmetric data, @ = —0.003 & 0.001. (b) The data distribution is
altered by waves with large amplitude. The model has learned these waves in its {(x)
function, and contours which span these waves and have many data make the largest
contributions to ). For these asymmetric data, = 0.060 & 0.004. More details are
given in the text of Section

6 Conclusion

We propose the method of asking ‘which is real?’” between real and augmented data, and
answering that question with probabilities assigned by flexible machine learning tools.
This forms a general and practical method for challenging symmetries in data, which
crucially works in the presence of selections and inefficiencies, collectively described as
filtering. If the trained models answer successfully on independent data, then their
probability assignments reveal where they have found asymmetry and indicate its scale.
Success on non-trivial examples demonstrates that the method is ready to be exercised
in real applications to test theoretically or experimentally proposed symmetries.
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Figure 4: Symmetrical contours: the height map symmetry asserts that data density
is uniform within each contiguous blob of constant brightness. That is, the terrain
comprises discrete jumps and flat planes, as if it were made of stacked foam boards
or voxels in a computer game. Data displayed in Figure |3| are sampled with density
which increases with brightness.
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