
This notebook explores some simple one - dimensional examples cases of the general procedure
described in: https://arxiv.org/abs/2111.05442

First we create some models (our name for toy MCs)
which either do or don' t generate data which is
translation invariant on the torus. Histograms of data
produced with these models will shortly be displayed.
In[45]:= unifModel[] := RandomReal[]

In[46]:= lowModel[] := RandomReal[]^1.3

In[48]:= sineModel[] := Module[{x = RandomReal[], δ = 0.1},
(While[RandomReal[] > (δ Cos[3 × 2 π x] + 1) / (1 + δ), x = RandomReal[]];
x)

]

In[49]:= genUnfilteredDatum[model_] := model[]

Create some filters (inefficiencies in the detector, etc)

In[50]:= testFilter[x_] :=
Which[x > 0.2 && x < 0.4, 0 / 10, x > 0.8 && x < 0.9, 2 / 10, True, 1]

In[51]:= nullFilter[x_] := 1

In[52]:= genFilteredDatum[model_, fil_] := Module[{x = genUnfilteredDatum[model]},
(While[

RandomReal[] > fil[x],
x = genUnfilteredDatum[model]

]; x)
]

In[53]:= (* Here is a function that randomly
transforms an object in a way such that p(a→b) =

p(b→a) and that would leave the uniform distibution on [0,1] invariant *)

wideTransform[x_] := Mod[x + RandomReal[], 1];
narrowTransform[x_] := Mod[x + RandomReal[{-1 / 4, 1 / 4}], 1];
veryNarrowTransform[x_] := Mod[x + RandomReal[{-1 / 100, 1 / 100}], 1];

Some infrastructure ...

In[56]:= genData[n_, model_, fil_] := Table[genFilteredDatum[model, fil], {i, 1, n}]

In[57]:= genFilteredDatumPair[model_, fil_, tfm_] :=
Module[{x = genFilteredDatum[model, fil], y},
(y = tfm[x];
While[
RandomReal[] > fil[y],
(x = genFilteredDatum[model, fil] ; y = tfm[x])

]; {x, y})
]

In[58]:= genFilteredDatumPairs[n_, model_, fil_, tfm_] :=
Table[genFilteredDatumPair[model, fil, tfm], {i, 1, n}]

Finally: here is some data generated from the "uniform" model :

In[59]:= Histogram[genData[10 000, unifModel, nullFilter]]

Out[59]=

Here is some data generated from a non-uniform model called the
“lowModel” (because it is biased low) :

In[60]:= Histogram[genData[10 000, lowModel, nullFilter]]

Out[60]=

2 20220131a-TestingRupertSymm-00.nb

Here is some data generated from a non-uniform model called the
“sineModel” (because it has a sine or cos-like variation) :

In[61]:= Histogram[genData[100000, sineModel, nullFilter], 50]

Out[61]=

Here is some data generated from the "uniform" model but taking our filter
into account:

In[62]:= Histogram[genData[10 000, unifModel, testFilter]]

Out[62]=

20220131a-TestingRupertSymm-00.nb 3

Here is some data generated from the "lowModel” taking our filter into
account:

In[63]:= Histogram[genData[10 000, lowModel, testFilter]]

Out[63]=

Here is some data generated from the "sineModel” taking our filter into
account:

In[64]:= Histogram[genData[10 000, sineModel, testFilter]]

Out[64]=

 "filtered datum pairs" are what you get by generating a
data point x, filtering it, then transforming x to y, then
applying the filter to the transformed point y . Here we
throw the entire pair (x,y) away if the transformed event
“y” fails the filter . In a more nuanced approach the
event - pair could be retained but weighted according to
the filter probability. Note that “y” is called “ x’ ” in the
paper.

4 20220131a-TestingRupertSymm-00.nb

 "filtered datum pairs" are what you get by generating a
data point x, filtering it, then transforming x to y, then
applying the filter to the transformed point y . Here we
throw the entire pair (x,y) away if the transformed event
“y” fails the filter . In a more nuanced approach the
event - pair could be retained but weighted according to
the filter probability. Note that “y” is called “ x’ ” in the
paper.

Check that uniform model’s filtered (x) and filtered-transformed-filtered (y)
distributions are THE SAME AS EACH OTHER (which is the sign of symmetry
preservation in the original) when we use (say) the narrow transform:

In[65]:= Histogram[(genFilteredDatumPairs[100000,
unifModel, testFilter, narrowTransform] // Transpose), 50]

Out[65]=

Check that uniform model’s x and y distributions are also THE SAME AS EACH
OTHER (which is the sign of symmetry preservation in the original) when we
use (say) the wide transform:

In[66]:= Histogram[(genFilteredDatumPairs[100000,
unifModel, testFilter, wideTransform] // Transpose), 50]

Out[66]=

20220131a-TestingRupertSymm-00.nb 5

Check that low model x and y distributions are DIFFERENT TO EACH OTHER
(which is the sign of symmetry violation in the original) when we use (say)
the wide transform:

In[67]:= Histogram[(genFilteredDatumPairs[100000,
lowModel, testFilter, wideTransform] // Transpose), 50]

Out[67]=

Let' s take the (log of the) ratio of the yellow histogram above to the blue
histogram above and call it "betterZetaForLowWide" . This is only something
we are generating for illustrative purposes in this notebook. In reality, no
histogram ratio needs to be taken. Instead a neural net (or similar) would
learn a good zeta for any given problem. Here we are sidestepping those Net
shenanigans by creating a function that makes good zetas for us from some
histograms of the data:

In[68]:= (

removeZeroData[x_] := {x〚1〛, x〚2〛 /. {0 → 1}};

extractGoodZeta[filteredDatumPairs_, bins_] :=
Module[{n = Length[filteredDatumPairs], l1 =

removeZeroData[HistogramList[(filteredDatumPairs // Transpose)〚1〛, bins]],
l2 = removeZeroData[HistogramList[

(filteredDatumPairs // Transpose)〚2〛, bins]]
},
Interpolation[{

Table[(l1〚1〛〚i〛 + l1〚1〛〚i + 1〛) / 2 , {i, 1, bins}],
Log[l1〚2〛 / l2〚2〛]

} // Transpose]
]

)

6 20220131a-TestingRupertSymm-00.nb

In[69]:= betterZetaForLowWide = extractGoodZeta[
genFilteredDatumPairs[100000, lowModel, testFilter, wideTransform], 50];

Plot[betterZetaForLowWide[x], {x, 0, 1}]

InterpolatingFunction: Input value {0.0000204286} lies outside the range of data in the interpolating
function. Extrapolation will be used.

Out[69]=

0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4

0.6

Check that sine model x and x’ distributions are DIFFERENT TO EACH OTHER
(which is the sign of symmetry violation in the original) when we use (say)
the wide transform:

In[70]:= Histogram[(genFilteredDatumPairs[100000,
sineModel, testFilter, wideTransform] // Transpose), 50]

Out[70]=

20220131a-TestingRupertSymm-00.nb 7

In[71]:= betterZetaForSineWide = extractGoodZeta[
genFilteredDatumPairs[1 000000, sineModel, testFilter, wideTransform], 50];

Plot[betterZetaForSineWide[x], {x, 0, 1}]

InterpolatingFunction: Input value {0.0000204286} lies outside the range of data in the interpolating
function. Extrapolation will be used.

Out[71]= 0.2 0.4 0.6 0.8 1.0

-0.10

-0.05

0.05

0.10

Check that low model x and x’ distributions are DIFFERENT TO EACH OTHER
(which is the sign of symmetry violation in the original) when we use (say)
the narrow transform:

In[72]:= Histogram[(genFilteredDatumPairs[100000,
lowModel, testFilter, narrowTransform] // Transpose), 50]

Out[72]=

8 20220131a-TestingRupertSymm-00.nb

Check that low model x and x’ distributions are DIFFERENT TO EACH OTHER
(which is the sign of symmetry violation in the original) when we use (say)
the very narrow transform:

In[73]:= Histogram[(genFilteredDatumPairs[100000,
lowModel, testFilter, veryNarrowTransform] // Transpose), 50]

Out[73]=

Could compare histograms, but that requires binning, etc . Better to work on
the pairs themselves

In[86]:= controlZeta[event_] := 1

In[74]:= dumbZeta[event_] := If[event < 0.3, 1, -1]
(* In reality one should get a neural net (or similar) to optimise Zeta

to make it super-terrific at testing for symmetry violatioin. The
example here is not trained at all but (by eye) has some hope ... *)

In[75]:= whichIsRealForOneEventPair[eventPair_, zeta_] :=
zeta[eventPair〚1〛] - zeta[eventPair〚2〛]

In[76]:= whichIsRealForEventPairs[eventPairs_, zeta_] := Table[
whichIsRealForOneEventPair[eventPairs〚i〛, zeta], {i, 1, Length[eventPairs]}]

In[77]:= stats[x_] := Module[{m = Mean[x], s = StandardDeviation[x], n = Length[x]},
{

{"Standard Deviation", s},
{"Mean", m},
{"Mean uncertainty", s / Sqrt[n]},
{"Sigmas mean is from zero", m / (s / Sqrt[n])}

}

]

20220131a-TestingRupertSymm-00.nb 9

Check mean of zeta is NOT significantly different from zero when underlying
model is UNIFORM:

In[78]:= whichIsRealForEventPairs[genFilteredDatumPairs[100000, unifModel,
testFilter, wideTransform], dumbZeta] // stats // N // TableForm

Out[78]//TableForm=

Standard Deviation 1.26919
Mean -0.00306
Mean uncertainty 0.00401354
Sigmas mean is from zero -0.76242

Repeating same check for a different zeta is NOT significantly different from
zero when underlying model is UNIFORM:

In[79]:= whichIsRealForEventPairs[genFilteredDatumPairs[100000, unifModel, testFilter,
wideTransform], betterZetaForLowWide] // stats // N // TableForm

InterpolatingFunction: Input value {0.00324314} lies outside the range of data in the interpolating function.
Extrapolation will be used.

InterpolatingFunction: Input value {0.00971032} lies outside the range of data in the interpolating function.
Extrapolation will be used.

InterpolatingFunction: Input value {0.00537926} lies outside the range of data in the interpolating function.
Extrapolation will be used.

General : Further output of InterpolatingFunction::dmval will be suppressed during this calculation.

Out[79]//TableForm=

Standard Deviation 0.377376
Mean -0.00100147
Mean uncertainty 0.00119337
Sigmas mean is from zero -0.839193

10 20220131a-TestingRupertSymm-00.nb

Check mean of zeta IS significantly different from zero when underlying
model is NON-UNIFORM : (Note that as zeta is not properly trained, the real
evidence for symm violation should be even greater)

In[80]:= whichIsRealForEventPairs[genFilteredDatumPairs[100000, lowModel, testFilter,
wideTransform], betterZetaForLowWide] // stats // N // TableForm

InterpolatingFunction: Input value {0.00739024} lies outside the range of data in the interpolating function.
Extrapolation will be used.

InterpolatingFunction: Input value {0.997438} lies outside the range of data in the interpolating function.
Extrapolation will be used.

InterpolatingFunction: Input value {0.00492533} lies outside the range of data in the interpolating function.
Extrapolation will be used.

General : Further output of InterpolatingFunction::dmval will be suppressed during this calculation.

Out[80]//TableForm=

Standard Deviation 0.433209
Mean 0.0899533
Mean uncertainty 0.00136993
Sigmas mean is from zero 65.6627

Check mean of zeta IS significantly different from zero when underlying
model is NON-UNIFORM : (Note that as testZeta is not properly trained --
zeta here is cruder than previous guessr)

In[81]:= whichIsRealForEventPairs[genFilteredDatumPairs[100000, lowModel,
testFilter, wideTransform], dumbZeta] // stats // N // TableForm

Out[81]//TableForm=

Standard Deviation 1.32621
Mean 0.24662
Mean uncertainty 0.00419385
Sigmas mean is from zero 58.8052

Similar check to above, but using the narrow transform rather than the wide
transform. Note that the evidence for symmetry violation is smaller:

In[82]:= whichIsRealForEventPairs[genFilteredDatumPairs[100000, lowModel,
testFilter, narrowTransform], dumbZeta] // stats // N // TableForm

Out[82]//TableForm=

Standard Deviation 0.886931
Mean 0.1241
Mean uncertainty 0.00280472
Sigmas mean is from zero 44.2468

20220131a-TestingRupertSymm-00.nb 11

And for a VERY narrow transform the evidence is smaller still

In[83]:= whichIsRealForEventPairs[genFilteredDatumPairs[100000, lowModel,
testFilter, veryNarrowTransform], dumbZeta] // stats // N // TableForm

Out[83]//TableForm=

Standard Deviation 0.235164
Mean 0.01728
Mean uncertainty 0.000743653
Sigmas mean is from zero 23.2366

... so wide transforms are good .

Can we see non - uniformity in the Sine model?

Control: should see nothing at all using the control zeta:

In[87]:= whichIsRealForEventPairs[genFilteredDatumPairs[100000, sineModel,
testFilter, wideTransform], controlZeta] // stats // N // TableForm

Power: Infinite expression
1

0
encountered.

Infinity : Indeterminate expression 0 ComplexInfinity encountered.

Out[87]//TableForm=

Standard Deviation 0.
Mean 0.
Mean uncertainty 0.
Sigmas mean is from zero Indeterminate

Evidence is very weak using the dumb zeta: (this is expected)

In[84]:= whichIsRealForEventPairs[genFilteredDatumPairs[100000, sineModel,
testFilter, wideTransform], dumbZeta] // stats // N // TableForm

Out[84]//TableForm=

Standard Deviation 1.26287
Mean -0.00772
Mean uncertainty 0.00399354
Sigmas mean is from zero -1.93312

12 20220131a-TestingRupertSymm-00.nb

But (as expected) evidence is much stronger using a better trained zeta
(albeit here created by cheat rather than by Neural Net or actual training
process):

In[85]:= whichIsRealForEventPairs[genFilteredDatumPairs[100000, sineModel, testFilter,
wideTransform], betterZetaForSineWide] // stats // N // TableForm

InterpolatingFunction: Input value {0.994032} lies outside the range of data in the interpolating function.
Extrapolation will be used.

InterpolatingFunction: Input value {0.992071} lies outside the range of data in the interpolating function.
Extrapolation will be used.

InterpolatingFunction: Input value {0.990863} lies outside the range of data in the interpolating function.
Extrapolation will be used.

General : Further output of InterpolatingFunction::dmval will be suppressed during this calculation.

Out[85]//TableForm=

Standard Deviation 0.100113
Mean 0.00470969
Mean uncertainty 0.000316586
Sigmas mean is from zero 14.8765

20220131a-TestingRupertSymm-00.nb 13

