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Abstract

‘A rediscovery of the Central Limit Theorem for Markov Chains’

1 Setting the scene
We are working with a Markov chain on a basis of B-states that may be assumed to be bins of a
histogram. Within such a framework, define

pNbsr

to be the probability of scoring s in bin b with r being the last bin visited, given that there have
been N draws from the Markov chain. I.e.

pNbsr = p(s, r|N, b).

Define also
pNbs

to be the probability of scoring s in bin b irresepctive of which bin was last visited, given again
that there have been N draws from the Markov chain.

pNbs = p(s|N, b).

Clearly the two are related:

pNbs =

B∑
r=1

pNbsr (1)

if there are B bins. Since there is some score in bin b we can also see that it must be the case that

1 =

N∑
s=0

pNbs =

N∑
s=0

B∑
r=1

pNbsr .

Furthermore, we use pij to indicate the Markov chain transition matrix element p(i|j) which
indicates the probability with which the chain will move to state i from position j. Note that the
matrix P whose elements are (P )ij = pij is left-stochastic and so:

B∑
i=1

pij = 1 (2)

We take ~π to be the B-vector containing the limiting distribution of the Markov chain. As this is
a vector of probabilities we take it to be normalised such that

B∑
i=1

πi = 1. (3)
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As it is the limiting distribution of the chain, ~π will satisfy

P~π = ~π, (4)

which is
B∑
j=1

pijπj = πi

in component form. Defining U to be a B × B matrix composed entirely of ones, and ~1 to be a
column B-vector composed entirely of ones:

(U)ij = 1 and (~1)i = 1

we would see from (3) that

U~π = ~1. (5)

Furthermore, (4) implies that

(1− P )~π = 0 (6)

which implies

(1− P )~π +~1 = ~1 (7)

which by (5) implies

(1− P )~π + U~π = ~1 (8)

=⇒ (1− P + U)~π = ~1 (9)

and so

~π = (1− P + U)
−1 ·~1 (10)

and so

P∞ = lim
N→∞

PN (11)

=
(
~π ~π · · · ~π

)
(12)

= ~π ·~1T (13)

= (1− P + U)
−1 ·~1 ·~1T (14)

= (1− P + U)
−1 · U. (15)

Note that above we have assumed that 1 − P + U is non singular, and therefore that its inverse
exists. Allegedly Resnick (1992) ‘Adventures in Stochastic Processes’, Proposition 2.14.1, will
prove that this is so in the cases which will matter to us. READ BEFORE INCLUDING

Note also that product in (15) does depend on the order of multiplication, since the other way
round one has U · (1− P + U)

−1
= 1

BU as demonstrated by the following argument:

U = UP (by the left-stochastic nature of P seen in (2)) (16)
=⇒ 0 = U − UP (17)
=⇒ BU = U − UP +BU (18)

=⇒ BU = U − UP + U2 (19)
=⇒ BU = U (1− P + U) (20)

=⇒ BU (1− P + U)
−1

= U (21)

=⇒ U (1− P + U)
−1

=
1

B
U. (22)
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1.1 Connection to an application: histogramming
The nature of the process by which the Markov chain generates scores may be described in the
following recurrence relation:

pN+1,b
s+1,r =

B∑
k=1

(
δrbp

Nb
sk + (1− δrb)pNbs+1,k

)
prk (23)

which says, in words, that the probability for getting a particular score s+ 1 (at a particular time
N + 1, in a given bin b, when the last visited bin was r) can be broken down into a sum of the
probabilites for reaching that state from the previous timestep. More specifically, it records that
if the previous bin r was not the scoring bin b, the then the previous score was the same as the
current score, while in other cases it must have been one lower. The boundary conditions for this
recurence relation are:

p0bsr =

{
πr if s = 0,
0 otherwise

(24)

= δs0πr (25)

Note that the above boundary conditions state, in effect, that the starting point of the chain is
‘typical’. One could choose alternative starting conditions (e.g. conditions that would fix the chain
at a particular start point, rather than a typical one). This may be something interesting to pursue
in the future.

It might also be nice to try to see if the above recurrence relation (23) is solvable for all indices
N , b, s and r. I do not know whether it is solvable in a nice closed form way – I have not tried.
However what I did next was convert (23) into a recurrence relation for expectations of s and
s2 as I will shortly describe. Note that I calculated the expectations for s and s2 separately. I
have wondered whether I could have done both at once using an appropriately chosen moment
generating function. Trying to do so probably should be investigated.

2 Expectations

2.1 Proper expectations
Using 〈sb〉N to denote the expected score s in a bin b at time N , we have from the very definition
of an expectation that:

〈sb〉N =

N∑
s=0

s · pNbs (26)

and more generally, for m ≥ 1, that

〈smb 〉N =

N∑
s=0

sm · pNbs . (27)

2.2 Pseudo-expectations
Later we will abuse the ‘expectation’ notation by making use of a quantity defined (again for
m ≥ 1) as follows:

〈smb 〉Nr =
N∑
s=0

sm · pNbsr (28)

which, on account of (1), satisfies:

B∑
r=1

〈smb 〉Nr = 〈s
m
b 〉N . (29)
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3 A useful identity
For m ≥ 1 we can put (28) together with the recurrence relation (23) as follows:

〈smb 〉N+1,r =

N+1∑
s=0

sm · pN+1,b
sr (30)

=

N+1∑
s=1

sm · pN+1,b
sr (since the first term is zero) (31)

=

N∑
j=0

(j + 1)m · pN+1,b
j+1,r (replacing s with j + 1) (32)

=

N∑
s=0

(s+ 1)m · pN+1,b
s+1,r (replacing j with s) (33)

=

N∑
s=0

(s+ 1)m
B∑
k=1

(
δrbp

Nb
sk + (1− δrb)pNbs+1,k

)
prk (using recurrence (23)) (34)

= δrb

N∑
s=0

(s+ 1)m
B∑
k=1

pNbsk prk + (1− δrb)
N∑
s=0

(s+ 1)m
B∑
k=1

pNbs+1,kprk (splitting) (35)

= δrb

N∑
s=0

(s+ 1)m
B∑
k=1

pNbsk prk + (1− δrb)
N−1∑
s=0

(s+ 1)m
B∑
k=1

pNbs+1,kprk (since pNbN+1,b = 0 )

(36)

= δrb

N∑
s=0

(s+ 1)m
B∑
k=1

pNbsk prk + (1− δrb)
N∑
s=1

sm
B∑
k=1

pNbsk prk (relabelling s+ 1→ s in second product )

(37)

= δrb

N∑
s=0

(s+ 1)m
B∑
k=1

pNbsk prk + (1− δrb)
N∑
s=0

sm
B∑
k=1

pNbsk prk (since s = 0 contributes nothing)

(38)

= δrb

N∑
s=0

((s+ 1)m − sm)

B∑
k=1

pNbsk prk +

N∑
s=1

sm
B∑
k=0

pNbsk prk (collecting terms) (39)

= δrb

N∑
s=0

((s+ 1)m − sm)

B∑
k=1

pNbsk prk +

B∑
k=1

prk

N∑
s=0

sm · pNbsk (re-ordering) (40)

= δrb

N∑
s=0

((s+ 1)m − sm)

B∑
k=1

pNbsk prk +

B∑
k=1

prk 〈smb 〉Nk (by definition) (41)

= δrb

N∑
s=0

((s+ 1)m − sm)

B∑
k=1

pNbsk pbk +

B∑
k=1

prk 〈smb 〉Nk (using the properties of δrb).

(42)

The result just proved is very useful, so we re-state it in a single line:

〈smb 〉N+1,r = δrb

N∑
s=0

((s+ 1)m − sm)

B∑
k=1

pNbsk pbk +

B∑
k=1

prk 〈smb 〉Nk . (43)
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4 Results deriving from (43)

4.1 Moment expectation recurrence relations
By summing (43) over r we can generate a recurrence relation for the m-th moment of the score s
in any bin b:

〈smb 〉N+1 =

B∑
r=1

〈smb 〉N+1,r (by the sum rule (29)) (44)

=

B∑
r=1

δrb

N∑
s=0

((s+ 1)m − sm)

B∑
k=1

pNbsk pbk +

B∑
r=1

B∑
k=1

prk 〈smb 〉Nk (by (43)) (45)

=

N∑
s=0

((s+ 1)m − sm)

B∑
k=1

pNbsk pbk +

B∑
k=1

〈smb 〉Nk (summing over r and using (2) )

(46)

=

N∑
s=0

((s+ 1)m − sm)

B∑
k=1

pNbsk pbk + 〈smb 〉N (by the sum rule (29)). (47)

Two special cases of (47) will be very useful to us. These are the m = 1 and m = 2 cases. We will
consider m = 1 first, returning to the m = 2 case later in (70).

4.2 Results concerning the first moment
When m = 1 equation (47) reads:

〈sb〉N+1 − 〈sb〉N =

N∑
s=0

((s+ 1)1 − s1)
B∑
k=1

pNbsk pbk =

N∑
s=0

B∑
k=1

pNbsk pbk. (48)

We have a second means of calculating the LHS of (48) since we know that it is always the case
that

〈sb〉N = Nπb. (49)

(Should probably have noted that earlier!) Equation (48) is thus telling us that

N∑
s=0

B∑
k=1

pNbsk pbk = 〈sb〉N+1 − 〈sb〉N (50)

= (N + 1)πb −Nπb (by (49)) (51)
= πb (52)

which we will make use of later.

4.3 Pseudo-expectation recurrence relations
By setting m to the value 1 in (43) we obtain an identity realating pseudo-expectations:

〈sb〉N+1,r = δrb

N∑
s=0

((s+ 1)− s)
B∑
k=1

pNbsk pbk +

B∑
k=1

prk 〈sb〉Nk (53)

= δrb

N∑
s=0

B∑
k=1

pNbsk pbk +

B∑
k=1

prk 〈sb〉Nk (54)

= δrbπb +

B∑
k=1

prk 〈sb〉Nk (by (52)) (55)
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or equivalently

〈sb〉Nr = δrbπb +

B∑
k=1

prk 〈sb〉N−1,k (56)

which in vector form looks like:

~sN(b) = ~t(b) + P · ~sN−1(b) (57)

if we define ~sN(b) to be the B-vector whose r-th component is 〈sb〉Nr and the define ~t(b) to be the
B-vector whose r-th component is δrbπb: (

~t(b)
)
r
= δrbπb. (58)

Note that, for any B ×B matrix A:

(
A · ~t(b)

)
b
=

B∑
r=1

(A)br
(
~t(b)
)
r

(59)

=

B∑
r=1

(A)br δbrπb (by definion (58)) (60)

= (A)bb πb. (61)

The advantage of the vectorial form of (57) is that it allows us to solve this recurrence relation
in pesudo expectations. In particular, we can see from (57) that

~s1(b) = ~t(b) + P~s0(b) (62)

and so

~s2(b) = ~t(b) + P~t(b) + P 2~s0(b) (63)

and in general

~sN(b) =
(
1+ P + P 2 + · · ·+ PN−1

)
~t(b) + PN~s0(b). (64)

To simplify the above we note that ~s0(b) = ~0 since(
~s0(b)

)
r
= 〈sb〉0r (from the notation) (65)

=

N∑
s=0

s · p0bsr (by definition (28)) (66)

=

N∑
s=0

s · δs0 · πr (from the bounary condition (25)) (67)

= 0. (68)

Although we used the specific boundary condition (25) to show ~s0(b) =
~0, note that the only part

of (25) that mattered was the δs0 part. This is the part which enforces the notion that: at time
N = 0 it is impossible to have a score that is greater than zero in any bin. We can safely say,
therefore, that ~s0(b) = ~0 is zero for all possible legitimate boundary conditions – not only the specific
set proposed in (25). In full generality, therefore, we can say that:

~sN(b) =
(
1+ P + P 2 + · · ·+ PN−1

)
~t(b). (69)
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4.4 Results concerning the second moment
The m = 2 case of (47) tells us

〈
s2b
〉
N+1
−
〈
s2b
〉
N

=

N∑
s=0

((s+ 1)2 − s2) ·
B∑
k=1

pNbsk pbk (70)

=

N∑
s=0

(1 + 2s) ·
B∑
k=1

pNbsk pbk (71)

=

N∑
s=0

B∑
k=1

pNbsk pbk +

N∑
s=0

B∑
k=1

2s · pNbsk pbk (72)

=

N∑
s=0

B∑
k=1

pNbsk pbk +

N∑
s=0

B∑
k=1

2s · pNbsk pbk (73)

= πb +

N∑
s=0

B∑
k=1

2s · pNbsk pbk (using (52) as promised) (74)

= πb + 2

B∑
k=1

pbk

N∑
s=0

s · pNbsk (re-ordering) (75)

= πb + 2

B∑
k=1

pbk 〈sb〉Nk (by definition (28)) (76)

= πb + 2
(
P
(
1+ P + P 2 + · · ·+ PN−1

)
~t(b)
)
b

(by (69)) (77)

= πb + 2
((
P + P 2 + P 3 + · · ·+ PN

)
~t(b)
)
b

(78)

= πb + 2
(
P + P 2 + P 3 + · · ·+ PN

)
bb
πb (by (61)) (79)

= πb + 2 (XN )bb πb (80)

if we define

XN = P + P 2 + P 3 + · · ·+ PN . (81)

Given that all boundary conditions imply that
〈
s2b
〉
0
= 0 we therefore have〈

s2b
〉
1
= 1πb, (82)〈

s2b
〉
2
= 2πb + 2(X1)bbπb, (83)〈

s2b
〉
3
= 3πb + 2(X1 +X2)bbπb, (84)

· · · (85)〈
s2b
〉
N

= Nπb + 2(X1 +X2 + · · ·+XN−1)bbπb (86)

which, using (81), gives〈
s2b
〉
N

= Nπb + 2
(
(N − 1)P + (N − 2)P 2 + · · ·+ 2PN−2 + 1PN−1

)
bb
πb. (87)

Having defined

Var[sb]N =
〈
s2b
〉
N
− 〈sb〉2N (88)

we can put (87) together with (49) to conclude that

Var[sb]N =
〈
s2b
〉
N
− (Nπb)

2 (89)

= Nπb + 2
(
(N − 1)P + (N − 2)P 2 + · · ·+ 2PN−2 + 1PN−1

)
bb
πb −N2π2

b . (90)

5 Functions of P
We know that P has ~π as an eigenvector with unit eigenvalue. And we know that all other
eigenvectors ~v2, . . . , ~vB have ei genvalues λ2, . . . , λB each of whose magnitudes are less than one.
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There is therefore a matrix

S =


...

...
...

~π ~v2 · · · ~vB
...

...
...


and a diagonal matrix

D = Diag[1, λ2, · · · , λB ]

which diagonalises P such that P · S = S ·D. Assuming S is invertible CHECK we then can say
that for any polynomial f(x):

f(P ) = f(S ·D · S−1) (91)

= S · f(D) · S−1 (92)

= S ·Diag[f(1), f(λ2), · · · , f(λB)] · S−1 (93)

= S ·Diag[f(1), 0, · · · , 0] · S−1 + S ·Diag[0, f(λ2), · · · , f(λB)] · S−1. (94)

So far, so good. But to make further progress with (94) we need to work with a concrete f(P ).
From (90) it is clear that to compute Var[sb]N we have interest in

f(P ) = (N − 1)P + (N − 2)P 2 + · · ·+ 2PN−2 + 1PN−1 (95)

and thus in
f(x) = (N − 1)x+ (N − 2)x2 + · · ·+ 2xN−2 + 1xN−1.

If x = 1 it is readily apparent that

f(1) =
1

2
N(N − 1). (96)

For values of x 6= 1 we can instead say:

f(x) = (N − 1)x+ (N − 2)x2 + · · ·+ xN−1 (97)

= x+ x2 + · · ·+ xN−2 + xN−1+

x+ x2 + · · ·+ xN−2+

· · ·
x+ x2+

x (98)

=
x(1− xN−1) + x(1− xN−2) + · · ·+ x(1− x2) + x(1− x)

1− x
(99)

=
(N − 1)x− (x2 + x3 + · · ·+ xN )

1− x
(100)

=
(N − 1)x

1− x
− x2(1− xN−1)

(1− x)2
(101)

=
(N − 1)x

1− x
− x2 − xN+1

(1− x)2
(102)

= N
x

1− x
− x

1− x
− x2 − xN+1

(1− x)2
(103)

= N
x

1− x
− x− x2

(1− x)2
− x2 − xN+1

(1− x)2
(104)

= N
x

1− x
− x− xN+1

(1− x)2
(105)

which is well conditioned for all N ≥ 0 even when x = 0.
With the above in mind, define

g(x) =
1

2
N(N − 1)x, (106)
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and

h(x) =

{
Nx
1−x −

x−xN+1

(1−x)2 when x 6= 1

undefined otherwise.
(107)

Note that on account of the trailing x in (106) which is not present in (96), the function g(x) is
not, in general, the same as f(x), though they will co-incide when x = 1. Note also that h(x) is
not the same as f(x), since f(x) is well defined at x = 1 whereas h(x) is not. Nonetheless, with
those definitions: g(0) = h(0) = 0, g(1) = f(1) and f(x) = h(x) when x 6= 1, and so

f(P ) = S ·Diag[f(1), 0, · · · , 0] · S−1 + S ·Diag[0, f(λ2), · · · , f(λB)] · S−1 (from (94)) (108)

= S ·Diag[g(1), g(0), · · · , g(0)] · S−1 + S ·Diag[h(0), h(λ2), · · · , h(λB)] · S−1 (109)

= S · g(Diag[1, 0, · · · , 0]) · S−1 + S · h(Diag[0, λ2, · · · , λB ]) · S−1 (CHECK OK NOW h IS NOT POLYNOMIAL!)
(110)

= g(S ·Diag[1, 0, · · · , 0] · S−1) + h(S ·Diag[0, λ2, · · · , λB ] · S−1) (CHECK OK NOW h IS NOT POLYNOMIAL!)
(111)

= g(G) + h(H) (112)

provided that G and H are matrices which share the same eigenvalues {~π,~v2, · · · , ~vB} as P , and so
are simultaneously diagonalisable with P , but which have eigenvalues {1, 0, 0, · · · , 0} (for G) and
{0, λ2, · · · , λB} (for H).

It is trivial to show that the matrix Pn has the same eigenvectors as P but has eigenvalues
{1, λn2 , · · · , λnB}. Since {λ2, · · · , λB} all have modulus less than one, it is trivial therefore to identify

G = P∞.

We can also see that
H = P − P∞

since

H~π = (P − P∞)~π (113)
= P~π − P∞~π (114)
= ~π − ~π (115)
= 0 (116)

and

H~vb = (P − P∞)~vb (117)
= P~vb − P∞~vb (118)
= λb~vb − 0~vb (119)
= λb~vb. (120)

Therefore, renaming H as Q, we conclude that

f(P ) = g(P∞) + h(Q) (121)

=
1

2
N(N − 1)P∞ +

NQ

1−Q
− Q−QN+1

(1−Q)2
(122)

if
Q = P − P∞.

5.0.1 A cautionary aside

Note that
P = P∞ + (P − P∞) = G+H

and
f(P ) = g(G) + h(H)
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and yet f(x) need not be a linear function! The spliting of P into G+H, and the fact that h(0) = 0,
appear to be both ‘fortunate’ in some sense. It is not yet obvious to me why such a split need
have been possible. Indeed, my method of finding a split seems very contrived, which suggests I
am missing the bigger picture somwhere. We have certainly relied on some seemingly irrelevant
but particular features of f(x). For example: if f(x) had been defined slightly differently as f̂(x)
including a leading N :

f̂(x) = N + (N − 1)x+ (N − 2)x2 + · · ·+ xN−1

then we would have concluded that f̂(1) = 1
2N(N + 1), and for values of x 6= 1:

f̂(x) = N + (N − 1)x+ (N − 2)x2 + · · ·+ xN−1 (123)

= 1 + x+ x2 + · · ·+ xN−2 + xN−1+

1 + x+ x2 + · · ·+ xN−2+

· · ·
1 + x+ x2+

1 + x+

1 (124)

=
(1− xN ) + (1− xN−1) + · · ·+ (1− x2) + (1− x)

1− x
(125)

=
N − (x+ x2 + · · ·+ xN )

1− x
(126)

=
N

1− x
− x(1− xN )

(1− x)2
. (127)

In such a scenario, although we might have attempted to define

ĝ(x) =
1

2
N(N + 1)x 6= f̂(x), and (128)

ĥ(x) = f̂(x), (129)

we would have found that the last of these definitions would have been incompatible with our last
proof. The previous proof required g(0) = h(0) = 0, but above we have ĥ(0) = N 6= 0. This is
a shame, as in many ways it would be a lot nicer to work with f̂(x) than with f(x). There is
probably a better way of approaching this problem that allows f̂(x) to be used.

6 Computing the variance
Putting (90) together with (95) and (122) yields the variance in b of our histogram after N draws:

Var[sb]N = Nπb + 2

(
1

2
N(N − 1)P∞ +

NQ

1−Q
− Q−QN+1

(1−Q)2

)
bb

πb −N2π2
b (130)

= Nπb +N(N − 1) (P∞)bb πb + 2

(
NQ

1−Q
− Q−QN+1

(1−Q)2

)
bb

πb −N2π2
b (131)

= Nπb +N(N − 1)π2
b + 2

(
NQ

1−Q
− Q−QN+1

(1−Q)2

)
bb

πb −N2π2
b (since (P∞)bb = πb CITE)

(132)

= Nπb(1− πb) + 2πb

(
NQ

1−Q
− Q−QN+1

(1−Q)2

)
bb

(after cancellation). (133)

7 Testing/Examples

7.1 Example 1
A ‘sticky’ Markov chain that flits between B = 2 bins, resting in each with equal probability (on
average) but which tends to ‘stick’ on the current bin for O(1/ε) events before moving off, might
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be expected to have an effective sample size per bin that is a factor of order 1/ε smaller than would
be expected for a chain that produces fully uncorrelated samples. We will see later that this is the
case, though there are subtleties in how this statement must be made concrete.

A matrix P describing such a chain could be as follows:

P =

(
1− ε ε
ε 1− ε

)
.

It may be trivially checked that this P has invariant distribution ~π =

(
1
2
1
2

)
and so satisfies

P∞ =

(
1
2

1
2

1
2

1
2

)
and Q = P − P∞ =

(
1
2 − ε ε− 1

2
ε− 1

2
1
2 − ε

)
.

A small amount of algebra then shows that the variance in either bin predicted by (133) is given
by:

Var[sb|example 1]N =
N

4

(
1

ε
− 1

)
+

(1− 2ε)N − 1

8ε2
− (1− 2ε)N − 1

4ε
. (134)

For ε = 1
2 this chain becomes fully uncorrelated, at which point

lim
ε→ 1

2

Var[sb|example 1]N =
N

4

matching the standard Var = Npq formula for a bionomial distribution with p = 1
2 as expected.

What is more interesting, however, is the small-ε behaviour:

Var[sb|example 1]N =
N

4

(
1

ε
− 1

)
+
−2Nε+ N(N−1)

2 (−2ε)2 +O(ε3)

8ε2
− −2Nε+O(ε2)

4ε
(135)

=
0

ε
+

(
−N

4
+
N(N − 1)

4
+
N

2

)
+O(ε) (136)

=
N2

4
+O(ε). (137)

Evidently the variance does not have the O(N/ε) behaviour we expected! Let us think more
carefully about this. In the ε � 1 case, our two options are that either all the samples land on
state one, or all the samples land on state two. Both are equally likely. Therefore the mean score
in any bin is 〈sb〉 = N/2 and the variance is therefore〈

(sb − 〈sb〉)2
〉
=

1

2
(N − N

2
)2 +

1

2
(0− N

2
)2 =

N2

4

which is the result we just found in (137). So the result was right, but our intuition needs qualifying
more precisely. The reason is as follows. The variance cannot scale as N/ε in the small ε limit
since this would lead to unboundedly large variances which are not possible when N is finite. The
fininteness of N acts as a kind of ‘regularizer’ that prevents divergence in the variance. We must
therefore be careful about the order in which we take our limits. If we take the N →∞ limit first,
we can try to stay in the 1

N � ε � 1
2 regime and find therein the originally expected behavour.

Let

ρ(ε,N) =
Var[sb|example 1 with ε = ε]N

Var[sb|example 1 with ε = 1
2 ]N

(138)

=
N
4

(
1
ε − 1

)
+ (1−2ε)N−1

8ε2 − (1−2ε)N−1
4ε

N
4 (2− 1) + (1−1)N−1

2 − (1−1)N−1
2

(139)

=
N
4

(
1
ε − 1

)
+ (1−2ε)N−1

8ε2 − (1−2ε)N−1
4ε

N
4

(140)

=

(
1

ε
− 1 +

(1− 2ε)N − 1

2Nε2
− (1− 2ε)N − 1

Nε

)
(141)

=

(
1

ε
− 1

)
+

(
1

2ε2
− 1

ε

)
(1− 2ε)N − 1

N
. (142)
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Then

lim
N→∞

ρ(ε,N) =

(
1

ε
− 1

)
+

(
1

2ε2
− 1

ε

)
lim
N→∞

(1− 2ε)N − 1

N
(143)

=
1

ε
− 1 (144)

(since 0 ≤ ε ≤ 1 and so 0 ≤ 2ε ≤ 2 and so −1 ≤ 2ε− 1 ≤ 1 and so (1− 2ε)
2 ≤ 1) in contrast to the

lim
ε→0

ρ(ε,N) =
N2

4
N
4

= N (145)

already found. Thus we see the sense in which the variance of a chain with

Pε =

(
1− ε ε
ε 1− ε

)
.

is bigger than the variance of the fully uncorrelated chain

P 1
2
=

(
1
2

1
2

1
2

1
2

)
by a factor of 1

ε − 1 (previously guessed to be O(1/ε)). This result requires the N → ∞ limit to
be taken before the ε → 0 limit, meaning that this result is only ‘practically’ valid under certain
conditions, which might (perhaps) be something like N � 1

ε . Note also that, in words, the factor
1
ε − 1 carries the meanting of ‘one less than the expected dwell time on each state’ – something we
might call the expected ‘additional’ dwell time.

7.2 Example 2
COPY IN THE EXAMPLE FROM THE PAPER HERE

7.3 Example with Weights
Suppose:

1. We create a set of bin counts sb by drawing N samples from our general B-state Markov
chain whose transition matrix is P .

2. That the Markov chain was constructed such that the ‘desired’ count in bin b is actually

s′b = wbsb

rather than sb. In other words, associated with each bin is a known weight correction factor
wb.

3. That each corrected bin count s′b is intended to represent the count in a bin, of width δxb,
within a histogram.

4. That, if plotted as a histogram, the height y′b within that bin would therfore be y′b = s′b/δxb.

5. That normalising that histogram to unit area would requre generating a new set of heights

y′′b =
y′b∑B

i=1 y
′
iδxi

since then the resuling area A′′ would be:

A′′ =

B∑
b=1

y′′b δxb =

N∑
b=1

y′b∑B
i=1 y

′
iδxi

δxb = 1.

12



6. Writing out MOO in terms of s′, we see that

s′′b /δxb =
s′b/δxb∑B

i=1 (s
′
i/δxi) δxi

=
s′b/δxb∑B
i=1 s

′
i

and so

s′′b =
s′b∑B
i=1 s

′
i

=
wbsb∑B
i=1 wisi

(146)

and

B∑
b=1

s′′b =

B∑
b=1

s′b∑B
i=1 s

′
i

= 1. (147)

We are therefore at liberty to ignore the widths δxb and concentrate exclusively on using the
weights so long as we renormalise such that

∑B
b=1 s

′′
b = 1. I don’t really know why I’m saying

this. This seems pretty obvious.

7. We are therefore primarily interested in the variance of s′′b since we can work out the variance
in other things from it:

Var[s′′b ] =
〈
(s′′b )

2
〉
− (〈s′′b 〉)

2 (148)

however neither of the quantities therein are easy to calculate. For example:

〈s′′b 〉 =

〈
s′b∑B
i=1 s

′
i

〉
(149)

=

〈
sbwb∑B
i=1 siwi

〉
(150)

which is not easy to simplify as the denominator inside the expectation is not constant and so
cannot be taken outside the expectation. The denominator would be constant if the weights
wi all shared a common value w, because then

∑B
i=1 siwi =

∑B
i=1 siw = w

∑B
i=1 si = wN .

But alas the weights need not share a common value, and those that do are not particularly
useful. We could Monte Carlo expectations of the above form relatively easily - and indeed
have. But can we do anything else?

Recall that the weighted and normalised counts in each bin are defined to be:

s′′b =
sbwb∑B
i=1 siwi

. (151)

To empahsise that these weighted and re-normalised quantities are estimators for probabilities
which sum to one (see (147)) we rename s′′b as p′′b :

p′′b =
sbwb∑B
i=1 siwi

(152)

admitting then the customary notation for complementary probabilities:

q′′b = 1− p′′b =
∑
i6=B

p′′i . (153)

With those definitions:

dp′′b =

B∑
k=1

 δbkwb∑B
i=1 siwi

− sbwbwk(∑B
i=1 siwi

)2
 dsk (154)
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and so

dp′′b
p′′b

=

B∑
k=1

δbk
sb
− wk(∑B

i=1 siwi

)
 dsk (155)

=

B∑
k=1

δbk − skwk(∑B
i=1 siwi

)
 dsk

sk
(since

δbk
sb

=
δbk
sk

) (156)

=

B∑
k=1

(δbk − p′′k)
dsk
sk

. (157)

Defining the fractional differentials dfb and df ′′b by:

dfb =
dsb
sb

and df ′′b =
dp′′b
p′′b

we therefore have:

df ′′b =

B∑
k=1

(δbk − p′′k) dfk (158)

which is the same as

df ′′1 = +q′′1df1 − p′′2df2 − p′′3df3 − . . .− p′′BdfB (159)

df ′′2 = −p′′1df1 + q′′2df2 − p′′3df3 − . . .− p′′BdfB (160)

df ′′3 = −p′′1df1 − p′′2df2 + q′′3df3 − . . .− p′′BdfB (161)
...

df ′′B = −p′′1df1 − p′′2df2 − p′′3df3 − . . .+ q′′BdfB . (162)

7.4 Uncertainties in the linear regime
Prior to this point, statements have been rigorous, and no assumptions have been made about the
size of any uncertainties. Hereafter, however, we make an assumption that need not always be
valid, namely that all uncertainties are small enough that we may analyse them linearly, neglecting
uncertainties on the coefficients of the differentials.

7.4.1 Correlations

Since
∑B
b=1 sb = N , any up-fluctuations in some of the sb will always be compensated for by down-

fluctuations in some of the others:
∑B
b=1 dsb = 0. For this reason, the δfb = δsb

sb
cannot ever be

completely independent. Additional correlations could arise from dependencies between adjancent
samples generated by the Markov chain if P∞ 6= P .

7.4.2 Assuming no correlations

If the fractional uncertainties of the raw counts in each bin were uncorrelated, we could say that:

δf ′′1 = q′′1 δf1 ⊕ p′′2δf2 ⊕ p′′3δf3 ⊕ . . .⊕ p′′BδfB (163)

δf ′′2 = p′′1δf1 ⊕ q′′2 δf2 ⊕ p′′3δf3 ⊕ . . .⊕ p′′BδfB (164)

δf ′′3 = p′′1δf1 ⊕ p′′2δf2 ⊕ q′′3 δf3 ⊕ . . .⊕ p′′BδfB (165)
...

δf ′′B = p′′1δf1 ⊕ p′′2δf2 ⊕ p′′3δf3 ⊕ . . .⊕ q′′BδfB . (166)

in which we use ⊕ to mean summation in quadrature.
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In the special case of an approximately uniform distribution (p′′b = O(1/B)) with approximately
equal raw uncertainties in each bin (δfb = O(δf)) then (163) would look like

δf ′′b =

√
[(1−O(1/B))O(δf)]

2
+ (B − 1) [O(1/B)O(δf)]

2 (167)

= O(δf) +O(1/B)O(δf) (168)

7.4.3 Assuming worst possible correlations

If, instead, we assumed that the uncertainties in each of the raw counts were correlated so as to
generate the largest possible fractional uncertainties in the f ′′b quantities, we would have:

δf ′′1 ≤ q′′1 |δf1|+ p′′2 |δf2|+ p′′3 |δf3|+ . . .+ p′′B |δfB | (169)

δf ′′2 ≤ p′′1 |δf1|+ q′′2 |δf2|+ p′′3 |δf3|+ . . .+ p′′B |δfB | (170)

δf ′′3 ≤ p′′1 |δf1|+ p′′2 |δf2|+ q′′3 |δf3|+ . . .+ p′′B |δfB | (171)
...

δf ′′B ≤ p′′1 |δf1|+ p′′2 |δf2|+ p′′3 |δf3|+ . . .+ q′′B |δfB |. (172)

In general these are over-estimates, since it is not possible for all δfb to simultaneously fluctuate
up (or down).

In the special case of an approximately uniform distribution (p′′b = O(1/B)) with approximately
equal raw uncertainties in each bin (δfb = O(δf)) then (169) would look like

δf ′′b ≤ (1−O(1/B))O(δf) + (B − 1)O(1/B)O(δf) = O(δf) +O(1/B)O(δf) (173)

7.4.4 Realistic correlations

What is really needed is a measure that is based on a realistic measure of potential correlations.

Var[df ′′b ] = Var

[
B∑
k=1

(δbk − p′′k) dfk

]
(174)

=

B∑
i=1

Var [(δbi − p′′i ) dfi] +
∑
i 6=j

Cov
[
(δbi − p′′i ) dfi,

(
δbj − p′′j

)
dfj
]

(175)

≈
B∑
i=1

(δbi − p′′i )
2
Var [dfi] +

∑
i 6=j

(δbi − p′′i )
(
δbj − p′′j

)
Cov [dfi, dfj ] (176)

≈
B∑
i=1

(δbi − p′′i )
2

s2i
Var [dsi] +

∑
i 6=j

(δbi − p′′i )
si

(
δbj − p′′j

)
sj

Cov [dsi, dsj ] (177)

where the approximation in the last two lines come from our assumption (described earlier) that
we are in an appropriate linear regime. This is usable if the covariances of the raw counts is a
calculable quantity. Now,

Cov(sb, sc) = 〈(sb − 〈sb〉)(sc − 〈sc〉)〉 (178)
= 〈sbsc〉 − 〈sb〉 〈sc〉 (179)

= 〈sbsc〉 −N2πbπc (180)

so the only quantity needing to be calculated is 〈sbsc〉 which may be amenable to an approach that
iterates on N .

Hypothesis

I hypothesise that the off-diagonal elements of the matrix buried in (133) are going to become
relevant! (Update: they did!)
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7.4.5 Can the existing arguments be generalised?

It does not matter whether or not they can, since the indicator function method used below
surpasses them.

8 Using indicator functions
Let the random variable sbt be 1 if the Markov chain sits in bin b at time t, and zero therwise.
Therefore

sb =

N∑
t=1

sbt.

8.1 Variance

Var[sb] = Var

[
N∑
t=1

sbt

]
(181)

=

N∑
t=1

N∑
u=1

Cov [sbt, sbu] (182)

=

N∑
t=1

N∑
u=1

[〈sbtsbu〉 − 〈sbt〉 〈sbu〉] (183)

=

N∑
t=1

N∑
u=1

[〈sbtsbu〉 − πbπb] (184)

=

N∑
t=1

N∑
u=1

〈sbtsbu〉 −N2πbπb (185)

=

N∑
t=1

N∑
u=1

p(bt ∩ bu)−N2πbπb (186)
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where p(bt∩ cu) means the probability that the chain will be in bin b at time t and in bin c at time
u. Thus

Var[sb] =

N∑
t=1

p(bt ∩ bt) + 2

N−1∑
t=1

N∑
u=t+1

p(bt ∩ bu)−N2πbπb (since p(bu ∩ bt) = p(bt ∩ bu))

(187)

=

N∑
t=1

p(bt) + 2

N−1∑
t=1

N∑
u=t+1

p(b0 ∩ bu−t)−N2πbπb (188)

=

N∑
t=1

πb + 2

N−1∑
t=1

N∑
u=t+1

p(b0 ∩ bu−t)−N2πbπb (189)

= Nπb + 2

N−1∑
t=1

N−t∑
k=1

p(b0 ∩ bk)−N2πbπb (replacing u with k = u− t) (190)

= Nπb + 2

N−1∑
k=1

N−k∑
t=1

p(b0 ∩ bk)−N2πbπb (reversing order of sum) (191)

= Nπb + 2

N−1∑
k=1

(N − k)p(b0 ∩ bk)−N2πbπb (192)

= Nπb + 2

N−1∑
k=1

(N − k)p(b0)p(bk|b0)−N2πbπb (193)

= Nπb + 2πb

N−1∑
k=1

(N − k)p(bk|b0)−N2πbπb (194)

= Nπb + 2πb

N−1∑
k=1

(N − k)Gkbb −N2πbπb. (195)

in which we have defined GNcb to denote the probability of ending up at state c, after N moves,
having started in state b:

GNcb = p(cN |b0).
Perhaps you might think of G as a bit like a Greens function. Clearly

GNcb =

B∑
i=1

pciG
N−1
ib (196)

=

B∑
i,j

pcipijG
N−2
jb (197)

=

B∑
i,j,··· ,z

pcipij · · · pyzGN−Nzb (198)

=

B∑
i,j,··· ,z

pcipij · · · pyzδzb (199)

=

B∑
i,j,··· ,z

pcipij · · · pyb (200)

=
(
PN
)
cb
. (201)

Hence

Var[sb] = Nπb + 2πb

N−1∑
k=1

(N − k)(P k)bb −N2πbπb (202)

= Nπb + 2πb(f(P ))bb −N2πbπb (203)

in terms of the f(P ) defined in (95).
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8.2 Similarly, for the co-variance:

Cov [sb, sc] = 〈(sb − 〈sb〉)(sc − 〈sc〉)〉 (204)
= 〈sbsc〉 − 〈sb〉 〈sc〉 (205)

= 〈sbsc〉 −N2πbπc (206)

=

〈
N∑
t=1

sbt

N∑
u=1

scu

〉
−N2πbπc (207)

=

N∑
t=1

N∑
u=1

〈sbtscu〉 −N2πbπc (208)

=

N∑
t=1

N∑
u=1

p(bt ∩ cu)−N2πbπc (209)

where p(bt∩ cu) means the probability that the chain will be in bin b at time t and in bin c at time
u. Thus

Cov[sb, sc] =

N∑
t=1

p(bt ∩ ct) +
N∑

t,u|t 6=u

p(bt ∩ cu)−N2πbπc (210)

=

N∑
t=1

δbcp(bt) +

(
N−1∑
t=1

N∑
u=t+1

+

N∑
t=2

t−1∑
u=1

)
p(bt ∩ cu)−N2πbπc (211)

=

N∑
t=1

δbcπb +

N−1∑
t=1

N∑
u=t+1

p(b0 ∩ cu−t) +
N∑
t=2

t−1∑
u=1

p(c0 ∩ bt−u)−N2πbπc (212)

= Nδbcπb +

N−1∑
t=1

N∑
u=t+1

p(b0 ∩ cu−t) +
N∑
u=2

u−1∑
t=1

p(c0 ∩ bu−t)−N2πbπc (re-labelling second double sum)

(213)

= Nδbcπb +

N−1∑
t=1

N∑
u=t+1

p(b0 ∩ cu−t) +
N−1∑
t=1

N∑
u=t+1

p(c0 ∩ bu−t)−N2πbπc (re-ordering second double sum)

(214)

= Nδbcπb +

(
N−1∑
t=1

N∑
u=t+1

p(b0 ∩ cu−t) + [b↔ c]

)
−N2πbπc (215)

= Nδbcπb +

(
N−1∑
t=1

N−t∑
k=1

p(b0 ∩ ck) + [b↔ c]

)
−N2πbπc (replacing u with k = u− t)

(216)

= Nδbcπb +

(
N−1∑
k=1

N−k∑
t=1

p(b0 ∩ ck) + [b↔ c]

)
−N2πbπc (reversing order of sum)

(217)

= Nδbcπb +

(
N−1∑
k=1

(N − k)p(b0 ∩ ck) + [b↔ c]

)
−N2πbπc (218)

= Nδbcπb +

(
N−1∑
k=1

(N − k)p(b0)p(ck|b0) + [b↔ c]

)
−N2πbπc (219)

= Nδbcπb +

(
πb

N−1∑
k=1

(N − k)p(ck|b0) + [b↔ c]

)
−N2πbπc (220)

= Nδbcπb +

(
πb

N−1∑
k=1

(N − k)Gkcb + [b↔ c]

)
−N2πbπc. (221)
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in which we have defined GNcb to denote the probability of ending up at state c, after N moves,
having started in state b:

GNcb = p(cN |b0).

Perhaps you might think of G as a bit like a Greens function. Clearly

GNcb =

B∑
i=1

pciG
N−1
ib (222)

=

B∑
i,j

pcipijG
N−2
jb (223)

=

B∑
i,j,··· ,z

pcipij · · · pyzGN−Nzb (224)

=

B∑
i,j,··· ,z

pcipij · · · pyzδzb (225)

=

B∑
i,j,··· ,z

pcipij · · · pyb (226)

=
(
PN
)
cb
. (227)

Hence

Cov[sb, sc] = Nπbδbc +

(
πb

N−1∑
k=1

(N − k)(P k)cb + [b↔ c]

)
−N2πbπc (228)

= Nπbδbc +

(
πb(f(P ))cb + [b↔ c]

)
−N2πbπc (229)

in terms of the f(P ) defined in (95).

9 Computing the co-variance
Putting (229) together with (95) and (122) yields the variance in b of our histogram after N draws:

Cov[sb, sc]N = Nπbδbc +

{(
1

2
N(N − 1)P∞ +

NQ

1−Q
− Q−QN+1

(1−Q)2

)
cb

πb + [b↔ c]

}
−N2πbπc

(230)

= Nπbδbc +

{
1

2
N(N − 1) (P∞)cb πb +

(
NQ

1−Q
− Q−QN+1

(1−Q)2

)
cb

πb + [b↔ c]

}
−N2πbπc

(231)

= Nπbδbc +

{
1

2
N(N − 1)πcπb +

(
NQ

1−Q
− Q−QN+1

(1−Q)2

)
cb

πb + [b↔ c]

}
−N2πbπc (since (P∞)cb = πc CITE)

(232)

= Nπbδbc +N(N − 1)πbπc +

{(
NQ

1−Q
− Q−QN+1

(1−Q)2

)
cb

πb + [b↔ c]

}
−N2πbπc

(233)

= Nπb(δbc − πc) +
{(

NQ

1−Q
− Q−QN+1

(1−Q)2

)
cb

πb + [b↔ c]

}
(after cancellation).

(234)
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9.1 Checks
9.1.1 Check number one

Try P =

(
1
2

1
2

1
2

1
2

)
. This has Q = 0 and so has Cov[s1, s2]N = N 1

2

(
0− 1

2

)
= −N4 . Compare this

to a direct calculation of

Cov[s1, s2] = 〈s1s2〉 − 〈s1〉 〈s2〉 (235)

=

N∑
s=0

s(N − s) N !

s!(N − s)!
(
1

2
)s(

1

2
)N−s − N

2

N

2
(236)

=

N∑
s=0

s(N − s) N !

s!(N − s)!

(
1

2

)N
− N2

4
(237)

=

N−1∑
s=1

s(N − s) N !

s!(N − s)!

(
1

2

)N
− N2

4
(238)

=

(
1

2

)N
N(N − 1)

N−1∑
s=1

(N − 2)!

(s− 1)!(N − s− 1)!
− N2

4
(239)

=

(
1

2

)N
N(N − 1)2N−2 − N2

4
(240)

=
1

4
N(N − 1)− N2

4
(241)

= −N
4

(242)

as desired.

9.1.2 Check number two

Now try Try P =

(
1− a b
a 1− b

)
. This has ~π = (b, a)/(a+ b) and so P∞ =

(
b b
a a

)
/(a+ b)

and so

Q = P − P∞ (243)

=

(
a− a2 + b− ab ab+ b2

a2 + ab a− ab+ b− b2
)
/(a+ b)−

(
b b
a a

)
/(a+ b) (244)

=

(
a− a2 − ab ab+ b2 − b
a2 + ab− a −ab+ b− b2

)
/(a+ b) (245)

...... I got bored and checked this one on mathematica, and it was fine for N = 2.

(246)

10 Correlations between samples, introduced by the use of
Markov chains, cannot be accounted for by a single cor-
rection that accounts for ‘effective sample size’

It is easy to see that the correlations which a Markov chain introduces between its successive
samples must tend to increase the variance in each bin of the histogram being estimated. For
example, if 0 < ε� 1, then a Markov chain with left-stochastic matrix(

1− ε ε
ε 1− ε

)
will visit two states equally frequently in the long run, much like fair coin tosses, but unlike fair coin
tosses this Markov chain will tend to stay in any given state for O(1/ε) time-steps before moving
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on. Consequently, after N time-steps the Markov chain will have only made O(εN) non-trival state
transitions — much as O(εN) independent coin-tosses will lead to O(εN) transitions from head to
tail (or vice versa). Accordingly, the N highly correlated samples of the original Markov chain are
said to be about as useful as O(εN) independent samples would have been. The history of this
chain is said to have an ‘effective sample size’ of O(εN), and the variance in the number of visits
to a given state is O(N/ε) rather than O(N) for independent coin tosses.

It is tempting to assume that for a more complicated Markov chain having more than two
states, that the same will apply; namely that for any Markov history of length N there will exist
a scale factor k, with 0 < k < 1, such that the effective sample size of this chain is kN . If this
were so then one might hope that the variance in the number of times state b is visited would be
O(nπb(1−πb)/k) instead of the O(nπb(1−πb)) variance that would pertain in the case that states
had been filled independently. Alas, convenient though they would be, such hopes and desires are
groundless. More precisely stated:

When estimating uncertainties in a histogram generated by a Markov chain, one may
not (i) first estimate per-bin uncertainties by assuming that the events in the Markov
history were uncorrelated, and then (ii) inflate those uncertainties by a single global
correction factor to account for sample-to-sample correlations.

The correctness of the above statement may be made manifest through the creation of a chain
which visits each one of its states with equal probability, but which has one or more states whose
frequency of visits has a variance which is different to that of one or more of the other states. It is
not possible to demonstrate the above with a chain having fewer than three states. Let us consider,
therefore, the matrix

Pρ =

 0 1− ρ ρ
1− ρ 0 ρ
ρ ρ 1− 2ρ


defined for some 0 < ρ < 1

2 . It may easily be verified that the matrix is a left-stochastic matrix1

representing a Markov chain Mρ with a stationary distribution that is uniform on three discrete
states.2 If a history is generated from this Markov chain by starting at a randomly chosen state
(each being equally likely), and then continuing until N locations have been visited, then since the
stationary distribution is uniform the expected number of visits to each state b is simply 〈nb〉 = N/3
for all b ∈ {1, 2, 3}. Must the variance of these nb values likewise be the same for all b? No.
Concretely, for the case ρ = 1/5 we have

P1/5 =

 0 4
5

1
5

4
5 0 1

5
1
5

1
5

3
5


and variances predicted by equation (??) are found to be:

 Var(n1)
Var(n2)
Var(n3)

 ≡
 V1N [M 1

5
]

V2N [M 1
5
]

V3N [M 1
5
]

 =


100
675N −

10
243 + ε1(N)

100
675N −

10
243 + ε2(N)

350
675N −

40
81 + ε3(N)

.
For the particular value of N = 675, the specific values are

 Var(n1, N = 675)
Var(n2, N = 675)
Var(n3, N = 675)

 =


100− 10

243 +O(10−67)

100− 10
243 +O(10−67)

350− 40
81 +O(10−269)

 ≈


99.96

99.96

349.51

 .

The variance in the number of times the third state is visited is more than three times larger than
the variance in the number of times the first or second states are visisted. The same result may
be verified by computer simulation.

1It is a left-stochastic matrix if its columns sum to one and all elements are non-negative.
2The stationary distribution is uniform since Pρ~π = ~π with ~π =

(
1
3
, 1
3
, 1
3

)T .
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10.1 A uniform symmetric check
Using N = 675 with the stochastic matrix

P1/5 =

 0 4
5

1
5

4
5 0 1

5
1
5

1
5

3
5

 which has ~π =
1

3

 1
1
1


we find by simulation that Cov[n1, n1] Cov[n2, n1] Cov[n3, n1]

Cov[n1, n2] Cov[n2, n2] Cov[n3, n2]
Cov[n1, n3] Cov[n2, n3] Cov[n3, n3]

 =

 99.93± 0.03 74.79± 0.02 −174.72± 0.04
74.79± 0.02 99.93± 0.02 −174.72± 0.04

−174.72± 0.04 −174.72± 0.04 349.44± 0.07


which is in good agreement with the theoretical predictions: Cov[n1, n1] Cov[n2, n1] Cov[n3, n1]

Cov[n1, n2] Cov[n2, n2] Cov[n3, n2]
Cov[n1, n3] Cov[n2, n3] Cov[n3, n3]

 ≈
 99.959 74.794 −174.753

74.794 99.959 −174.753
−174.753 −174.753 349.506

 .

10.2 A non-uniform, non-symmetric check
A non-symmetric, non-uniform test using N = 10 with the stochastic matrix

P =

 0 2
5

1
5

4
5 0 2

5
1
5

3
5

2
5

 , which has ~π =
1

40

 9
14
17


was observed in simulation to have variances: Cov[n1, n1] Cov[n2, n1] Cov[n3, n1]

Cov[n1, n2] Cov[n2, n2] Cov[n3, n2]
Cov[n1, n3] Cov[n2, n3] Cov[n3, n3]

 =

 1.1502± 0.0005 0.16478± 0.0003 −1.3149± 0.0007
0.1648± 0.0003 0.83845± 0.0003 −1.0032± 0.0005
−1.3149± 0.0007 −1.00322± 0.0005 2.3182± 0.0011


which is in agreement with the theoretical predictions: Cov[n1, n1] Cov[n2, n1] Cov[n3, n1]

Cov[n1, n2] Cov[n2, n2] Cov[n3, n2]
Cov[n1, n3] Cov[n2, n3] Cov[n3, n3]

 ≈
 1.15025 0.165032 −1.31528

0.165032 0.838874 −1.00391
−1.31528 −1.00391 2.31919

 .
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