
Elastic net

for standalone RICH ring finding

S. Gorbunov1 I. Kisel2

1DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany
2Kirchhoff Institute of Physics, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany

Abstract

The elastic neural net is implemented for finding rings in RICH detector. The method
does not require any prior track information and can be used for triggering. Application
of the method to the RICH detector of the CBM experiment [1] shows very good efficiency
and extremely high speed. The source code of the algorithm is given in the Appendix.

1 Introduction

The elastic net method [2] is a kind of artificial neural network [3, 4] that has been used
for track recognition in high energy physics [5, 6, 7, 8, 9]. Based on the elastic net we have
developed an algorithm for standalone RICH ring reconstruction.

2 The traveling salesman problem

The method is well illustrated on a simple example of the traveling salesman problem (TSP).
The traveling salesman problem is a classic problem in the field of combinatorial optimization,
in which efficient methods for maximizing or minimizing a function of many independent
variables is sought. The problem is to find for a number of cities with given positions the
shortest tour in which each city is visited once.

All exact methods known for determining an optimal route require a computing effort that
increases exponentially with the number of cities, so in practice exact solutions can be at-
tempted only on problems involving a few hundred cities or less. The traveling salesman prob-
lem thus belongs to the large class of nondeterministic polynomial time complete problems.
Many heuristic algorithms were developed for the TSP aiming to bypass the combinatorial
difficulties [10]. One of the most successful approaches to the problem is the elastic net of
Durbin and Willshaw [2]. The elastic net can be thought of as a number of beads connected
by elastics to form a ring. The essence of the method is to iteratively elongate a circular
close path in a non uniform way until it eventually passes sufficiently near to all the cities to
define a tour.

Following the deformable template approach [3], let us denote the cities by ~xi. We are going
to match these cities with template coordinates ~ya such that

∑
a |~ya − ~ya+1| is minimum and

that each ~xi is matched by at least one ~ya. Define a binary neuron sia to be 1 if a is matched

1

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



a b c

d e f

a b c

d e f

a b c

d e f

Figure 1: Example of the progress of the elastic net method in the traveling salesman problem
with 100 cities [2]

to i and 0 otherwise. The following energy expression is to be minimized in a valid tour:

E (sia, ~ya) =
∑
i, a

sia · |~xi − ~ya|2 + γ ·
∑
a

|~ya − ~ya+1|2 . (1)

The multiplier γ governs the relative strength between matching and tour length. Applying
the mean field approximation [3] one can derive the dynamical equation:

∆~ya = η

[
2

∑
i

via · (~xi − ~ya) + γ · (~ya+1 − 2~ya + ~ya−1)

]
, (2)

where continuous neurons via describe matching of a to i:

via =
e−|~xi−~ya|2/T∑
b e−|~xi−~yb|2/T

. (3)

Here the “temperature” T is decreasing at each update of templates ~ya, and η is the parameter
controlling the minimization speed.

The algorithm is thus a procedure for the successive recalculation of the positions of a number
of points of the plane in which the cities lie. The points describe a closed path which is initially
a small circle centered on the middle of the distribution of cities and is gradually elongated
non-uniformly to eventually pass near all the cities and thus define a tour around them,
see Fig. 1 (for details see the original paper [2]). Each point on the path moves under the
influence of two types of force (see Eq. 2):

1. the first moves it towards those cities to which it is nearest;

2. the second pulls it towards its neighbors on the path, acting to minimize the total path
length.

By this process, each city becomes associated with a particular section on the path. The
tightness of the association is determined by how the force contributed from a city depends
on its distance, and the nature of this dependence changes as the algorithm progresses.
Initially all cities have roughly equal influence on each point of the path. Subsequently a
larger distance becomes less favored and each city gradually gets more influenced on the
points on the path closest to it.

The elastic net algorithm produces tours of the same quality as other well known heuristic
algorithms [11].

2

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



3 Discrete elastic net

The evolution of the elastic net coordinates in the continuous space results in a significantly
large number of iterations without changing the order of the cities. This can be avoided if
the net nodes are forced to coincide with cities at each iteration. Such a modification of the
elastic net has been developed by us in order to increase the speed of the net. In this so-called
discrete algorithm the elastic net can be represented as a closed tour passing exactly through
a subset of the cities. An iteration consists of adding new cities to or releasing some cities
from the net.

File name Number of cities Extra path (%) Time, ms Time per city, µs
berlin52 52 0.00 0.98 19
st70 70 4.27 1.27 18
kroA100 100 3.03 1.46 15
lin105 105 0.78 1.84 18
ch130 130 5.59 2.56 20
tsp225 225 5.34 4.36 19
pcb442 442 8.37 12.35 28
pr1002 1002 6.12 24.94 25
pr2392 2392 8.42 58.53 24

Table 1: Extra path length (in % to the optimum) and time of the discrete ENN algorithm
in the TSP problem for several distributions of cities with known optimal tour

Results of application of the discrete ENN algorithm to several distributions of cities with
known optimal tour are presented in table 1. The algorithm has good performance for real-life
applications and is extremely fast. The last column of the table shows an almost constant
execution time per city, which means linear behavior of the algorithm in spite of the increase
of the combinatorial complexity of the problem.

The task of ring finding in the RICH detector with about 1000 hits per event is similar in
combinatorial complexity to the pr1002 example in the Table 1. Having now additional
knowledge of the form of the final tour one can expect an increase of the speed down to a
few milliseconds per event.

4 Elastic net method for ring finding

The problem of ring finding can be formulated as reconstruction of rings by measured hits
registered in detection plane of RICH detector. The problem is complicated by overlapping
of rings and presence of noise hits (see an example of a detected event in figure 2).

Here we describe a standalone ring finder which does not need neither the number of rings
nor their parameters. The algorithm searches for rings consequently one by one in local areas,
where noise hits and hits from other rings are also present. The main problem therefore is
to construct single rings from maximum possible number of hits around the ring within the
distance determined by the measurement errors.

The idea of the algorithm is to represent a ring as an elastic net evolving in the detector
plane. Starting at some initial position the net iterates and converges to the group of ring
hits.

3

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



Figure 2: An event in the upper part of the RICH detector of the CBM experiment. The
size of hits (registered photons) corresponds to the error of measurement.

Here, in contrast to the TSP problem, the circular form of rings is predefined. It is convenient
to represent the net geometrically not as a set of nodes, but as a continuous curve in order
to keep the circular form. Since there are no preferences on the ring parameters, the first
evolution rule can be formulated as:

• the net has no internal forces.

In case of special preferences on the ring parameters (such as elliptical form) additional
constraints can be easily introduced.

The second distinction from TSP is that the desired ring does not pass through all hits but
only through a maximum possible number of them. Therefore the problem of single ring
finding is divided into two steps: recognition of ring hits and further reconstruction of ring
parameters.

At the recognition step a special energy function is used to separate ring hits from others.

σ

i

d

ix

d
i

j

y

Figure 3: Selection of ring hits at the
recognition step

Let us define the following variables (figure 3):
xi — the i-th hit;
yi — the elastic net point closest to the i-th hit;
di = (xi − yi) — distance between the hit and the net.

With these variables:

• the external forces are defined by minimizing the sum of (not squared) distances to hits

E =
∑

|di| , (4)

4

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



therefore the net point yi is attracted with the force

∆yi = −di/|di| . (5)

Under the condition (5) the attraction force does not increase with increasing of the distance
between the hit and the net.

The algorithm based on the energy function (4) is robust since hits at large distances prac-
tically do not bias the net. In other words, such force separates “signal” hits from “noise”
hits.

d

|d|min{          }

min{         }2

Figure 4: Energy function minima for
the one-dimensional problem

Let us illustrate the robustness of the external force (5) on an one-dimensional example
(Fig. 4), where hits are {xi} points and the net is just one point y. The task is to find a
cluster with maximum number of hits. It can be seen that minimization of E =

∑
|xi − y|

provides the correct solution while the minimum of E =
∑

(xi − y)2 is shifted to the left by
a noise hit.

σ

1

E

d

Figure 5: Dependence of the energy
function on distance between the hit
and the net

After the ring hits are recognized, one can apply the standard χ2 minimization in order to
get the optimal ring parameters.

The energy function E which combines both recognition and fitting steps can be represented
as:

E =
∑ |di|2

max{σ, |di|}
, (6)

where σ is the maximum deviation of hits from the ring.

The energy function (6) is shown in Fig. 5. The function has no gap at the border (|di| = σ)
and is equivalent to the χ2 function for all hits satisfying the criteria (|di| ≤ σ).

The ring is now not only recognized by the elastic net, but is also fitted by its hits making
the final refit unnecessary. In addition, the use of the χ2 function at small distances provides
a reliable minimization procedure which converges after few iterations.

The main features of the ring finder can be summarized as following:

• the net is a continuous curve (a ring);

5

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



• there are no internal forces;

• the minimized energy function is

E =
∑ |di|2

max{σ, |di|}
. (7)

An example (figure 6) of finding a circle illustrates the process of straightforward minimization
of the energy function (7). The net starts with an arbitrary circle (top left), finds the mean
circular distribution of all hits (top right) and finally converges to the solution (bottom left,
compare with the simulated rings at bottom right).

Figure 6: Finding of a circle with 15 hits by the elastic net in the presence of another
overlapping ring with 15 hits and additional 15 noise hits randomly distributed

5 Application of the ring finder in the CBM experiment

A typical event registered in the RICH detector has many rings. In a standalone approach
one assumes that number of rings and ring parameters are initially unknown.

Since rings in the RICH detector are independent on each other, one can also search for
rings independently, one by one. To do this the elastic net method described in the previous
section is applied to find single rings in local areas.

6

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



Most hits belong to rings, therefore ring search is performed in local areas around every hit
assuming that the ring passes through the hit. The size of the search area is limited by the
expected maximum ring size.

The ring finding procedure consists of a single loop over all hits:

• take a hit;

• initialize the search area around the hit;

• find a ring which passes through the hit;

• store the ring if found.

At the end a special ring selection procedure must be applied to remove clone rings and
reduce the ghost rate.

Finding a single ring

In the RICH detector of the CBM experiment rings are well described by circles. Therefore
the ring we are looking for is a circle which contains the current hit and has parameters
(X, Y,R).

Let us shift the center of the coordinate system to the current hit. Since in the new coordinate
system the circle has to pass through the (0, 0) point, its radius is defined by the position of
its center:

R =
√

X2 + Y 2 . (8)

The ring has only two unknown parameters (X, Y ) which have to be determined.

Following the general formula (Eq. 6) the energy function is:

E(X, Y ) =
∑ (

√
(xi −X)2 + (yi − Y )2 −R)2

max{σ, |
√

(xi −X)2 + (yi − Y )2 −R|}
, (9)

where (xi, yi) is position of the i-th hit.

The energy function (9) can be modified to accelerate the minimization procedure:

E(X, Y ) =
∑ ((xi −X)2 + (yi − Y )2 −R2)2

max{σ2, |(xi −X)2 + (yi − Y )2 −R2|}
. (10)

In addition, let us introduce weights wi:

wi(X, Y ) = 1/ max{σ2, |(xi −X)2 + (yi − Y )2 −R2|} . (11)

The final form of the energy function is:

E(X, Y ) =
∑

wi(X, Y ) · ((xi −X)2 + (yi − Y )2 −R2)2 . (12)

The energy function E is minimized iteratively using weights wi, calculated at the previous Appendix
140-164iteration:

E(Xk, Y k) =
∑

wi(Xk−1, Y k−1) ·
(
(xi −Xk)2 + (yi − Y k)2 − (Xk)2 − (Y k)2

)2
. (13)

The minimization of (Eq. 13) is similar to a weighted circle fit and takes 3–4 iterations to
converge to the minimum.

7

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



Noise rejection

A noise rejection procedure is introduced to help the finder in complicated situations. At
each iteration hits which are far away from the found ring (“noise” hits) are excluded from
the search area.

(X,Y)
d’

(0,0)

i

i

i(x’,y’)i

(x ,y )i

Figure 7: Noise rejection criteria d′
i for

the hit (xi, yi)

It is useful to eliminate noise hits in the parameter space (XY ). For every hit (xi, yi), position
(x′

i, y
′
i) of the preferred ring center (figure 7) is defined as:

(x′
i, y

′
i) = (xi, yi) ·

[
1
2
− xi ·X + yi · Y

x2
i + y2

i

]
+ (X, Y ) . (14)

Distance in the parameter space between the hit and the ring is: 153

d′
i =

∣∣∣∣(x′
i, y

′
i)− (X, Y )

∣∣∣∣ =
√

xi
2 + yi

2 ·
∣∣∣∣∣12 − xi ·X + yi · Y

x2
i + y2

i

∣∣∣∣∣ . (15)

For hits which are close to the ring d′
i is set to zero. After each iteration a set of noise hits

is determined using the criteria 154

d′
noise ≥ Creject ·max

i
{d′

i} , (16)

and these hits are excluded from the searching area. The rejection criteria Creject = 0.5 is
used in the algorithm.

Fig. 8 shows the search area and the parameter space at different iterations. The ring hits in
the parameter space are concentrated at the center even when the ring is not yet found.

Full scheme of ring finding

The ring finder is simple and consists of a single loop over hits: 049-238

1. take a hit hk; 053

2. shift the center of the coordinate system to hk; 078-080

3. initialize a search area around hk; 072-120

4. find ring center (X, Y ) by minimizing the energy function E (Eq. 13); 125-132

8

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



Figure 8: The ring search area (top) and the parameter space (bottom) during evolution
(from left to right)

5. reject noise hits according to (Eq. 16) and continue to 4; 153,154

6. if no noise hits are left, store the found ring and mark its hits as used; 167-237

7. continue to 1.

The task of the described ring finder is to find the best ring-candidates in the local search
areas.

Selection of found rings

After all ring-candidates are found in the local search areas a global optimization is performed
by a ring selection procedure. The selection is based on a ring quality which includes: 240-286

• total number of hits on the ring Ntot (≥ Nmin
tot );

• number of its own hits which are not on the already selected rings Nown (≥ Nmin
own );

• purity of the ring P = Nown/Ntot (≥ Pmin).

Using the ring quality the algorithm takes the best ring, stores it and marks its hits as used.
Selection repeats until the next best ring satisfies the quality criteria.

Timing

Since the net converges within 2–3 iterations, the total time to reconstruct an event is pro-
portional to:

TENN ∼ Nrings ·Nhits per ring + Nnoise hits. (17)

9

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



The selection time is negligible. The total time per event is about 5 ms for central Au+Au
collisions at 35 AGeV.

6 Performance of the ENN ring finder

The ring finder has been applied in the CBM experiment. Aiming its implementation in a
trigger we have focused on maximizing the speed of the algorithm.

Rings set Performance (%) Number of rings
Reference set efficiency 94.3 16
All set efficiency 74.0 54
Extra set efficiency 65.5 38
Clone rate 0.8 0
Ghost rate 12.8 7
Hits/event 1394
Found MC rings/event 39
Time/event 5.4 ms
Time/hit 3.9 µs

Table 2: Performance of the ENNRingFinder algorithm taken on central Au+Au collisions
at 35 AGeV

The performance of the algorithm is presented in Table 2. The “all set” contains rings with
5 and more hits. In the “reference set” we put rings which originate from the target region
and have 15 and more hits. The other rings form the “extra set”.

A reconstructed ring is assigned to a generated Monte Carlo ring if there is at least 70% hits
correspondence. A Monte Carlo ring is regarded as found if it has been assigned to at least
one reconstructed ring. If the ring is found more than once, all additionally reconstructed
rings are regarded as clones. A reconstructed ring is called ghost if it is not assigned to any
Monte Carlo ring using 70% criteria.

The algorithm shows a high efficiency for reference rings (94%). The ghost rate can be further
suppressed at the next step when rings will be matched to tracks from other detectors.

7 Conclusion

We have developed the standalone ring finder based on the elastic net method. Imple-
mented for the CBM experiment, it has demonstrated a good ring finding efficiency and
reliability. Additional track information can be included at the stage of ring finding in the
parameter space improving the performance and the speed of the algorithm. Because of its
computational simplicity and extremely high speed, the algorithm is considered to be further
implemented in hardware which can increase the speed by another few orders of magnitude.

8 Acknowledgements

We acknowledge the support of the European Community-Research Infrastructure Activ-
ity under the FP6 “Structuring the European Research Area” programme (HadronPhysics,

10

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



Figure 9: Example of a RICH event reconstructed by the ENNRingFinder algorithm. Top
and bottom parts of the RICH detector are shown separately.

contract number RII3-CT-2004-506078).

References

[1] CBM Collaboration, “Compressed Baryonic Matter Experiment. Technical Status Re-
port”, GSI, Darmstadt, 2005,
(http://www.gsi.de/onTEAM/dokumente/public/DOC-2005-Feb-447 e.html).

[2] R. Durbin and D. Willshaw, “An Analogue Approach to the Travelling Salesman Prob-
lem Using an Elastic Net Method”, Nature 326, 16 April (1987) 689.

[3] C. Peterson and T. Rögnvaldsson, “Introduction to Artificial Neural Networks”, 1991
CERN School of Computing, Ystad, Sweden, 23 August – 2 September 1991, CERN 92-
02, 1992, p. 113.

[4] I. Kisel, V. Neskoromnyi and G. Ososkov, “Applications of Neural Networks in Exper-
imental Physics”, Phys. Part. Nucl. 24 (6), November–December 1993, p. 657.

11

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



[5] I. Kisel, V. Kovalenko, F. Laplanche et al. (NEMO Collaboration), “Cellular Automa-
ton and Elastic Net for Event Reconstruction in the NEMO-2 Experiment”. Nucl. Instr.
and Meth. A387 (1997) 433.

[6] I. Abt, D. Emeliyanov, I. Gorbounov and I. Kisel, “Cellular automaton and Kalman
filter based track search in the HERA-B pattern tracker”, Nucl. Instr. and Meth. A490
(2002) 546.

[7] M. Gyulassy and M. Harlander, “Elastic Tracking and Neural Network Algorithms for
Complex Pattern Recognition”, Comp. Phys. Commun. 66 (1991) 31.

[8] M. Ohlsson, C. Peterson and A.L. Yuille, “Track Finding with Deformable Templates
— the Elastic Arms Approach”, Comp. Phys. Commun. 71 (1992) 77.

[9] S. Gorbunov, I. Kisel and V. Tretyak, “Ring recognition method based on the elastic
neural net”, Computing in High Energy Physics CHEP’01, Beijing, China, 2001.

[10] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan and D.B. Shmoys, The Traveling Sales-
man Problem, John Wiley & Sons Ltd, 1985.

[11] I. Antoniou, S. Gorbunov, V. Ivanov, I. Kisel and E. Konotopskaya, “Elastic neural
nets for the traveling salesman problem”, J. Comp. Meth. in Sci. and Eng. 2 (2002)
111.

12

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



Appendix

001 #ifndef _ENNRingFinder_
002 #define _ENNRingFinder_
003
004 #include <vector.h>
005
006 struct ENNHit {
007 double x, y; // coordinates
008 int busy; // quality of the best ring with this hit
009 // variables for local search:
010 double lx, ly, lr2; // local coordinates
011 double S0, S1, S2, S3, S4; // coefficients for calculation of E
012 double C, Cx, Cy; // coefficients for the parameter space
013 bool on_ring; // is the hit close to the current ring
014 };
015
016 bool CompareENNHits( const ENNHit &h1, const ENNHit &h2 ){
017 return ( h1.x < h2.x );
018 }
019
020 struct ENNRing {
021 bool on; // is the ring selected?
022 double x, y, r; // parameters
023 double chi2; // chi^2
024 vector<ENNHit*> Hits; // pointers to ring hits
025 // variables for the selection procedure:
026 int NHits; // number of ring hits
027 int NOwn; // number of its own hits
028 bool skip; // skip the ring during selection
029 };
030
031 inline void ENNRingFinder( vector<ENNHit> &Hits, vector<ENNRing> &Rings,
032 double HitSigma = 1., int MinRingHits = 5,
033 double RMin = 2., double RMax = 6. ){
034 // INITIALIZATION
035
036 const double Rejection = .5;
037 const double R2Min = RMin*RMin, R2Max = RMax*RMax;
038 const double HitSize = HitSigma/2.;
039 const double HitSize4 = 4 * HitSize;
040 const double AreaSize = 2 * ( RMax + HitSigma );
041 const double AreaSize2 = AreaSize * AreaSize;
042
043 typedef vector<ENNHit>::iterator iH;
044 typedef vector<ENNHit*>::iterator iP;
045
046 Rings.clear();
047 sort( Hits.begin(), Hits.end(), CompareENNHits );
048

13

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



049 // MAIN LOOP OVER HITS
050
051 iH ileft = Hits.begin(), iright = ileft, i = ileft;
052
053 for( ; i != Hits.end(); ++i ){
054
055 if( i->busy >= 1 ) continue; // already found hit
056
057 double left = i->x - AreaSize;
058 double right = i->x + AreaSize;
059
060 while( ileft->x < left ) ++ileft;
061 while( iright != Hits.end() && iright->x < right ) ++iright;
062
063 vector<ENNHit*> SearchArea;
064 vector<ENNHit*> PickUpArea;
065
066 double X = 0, Y = 0, R = 0, R2 = 0;
067 int NRingHits = 1;
068 double Dmax = 0.;
069 double S0, S1, S2, S3, S4, S5, S6, S7;
070 int NAreaHits = 0;
071
072 { // initialize hits in the search area
073
074 S0 = S1 = S2 = S3 = S4 = 0.;
075
076 for( iH j = ileft; j != iright; ++j ){
077 if( j == i ) continue;
078 j->ly = j->y - i->y;
079 if( fabs(j->ly) > AreaSize ) continue;
080 j->lx = j->x - i->x;
081 j->S0 = j->lx * j->lx;
082 j->S1 = j->ly * j->ly;
083 j->lr2 = j->S0 + j->S1;
084 if( j->lr2 > AreaSize2 ) continue;
085 NAreaHits++;
086 if( j->busy >= 13 ){
087 PickUpArea.push_back( &*j );
088 continue;
089 }
090 SearchArea.push_back( &*j );
091
092 double &lr2 = j->lr2;
093 double lr = sqrt(lr2);
094 if( lr > Dmax ) Dmax = lr;
095
096 j->S2 = j->lx * j->ly;
097 j->S3 = j->lx * lr2;
098 j->S4 = j->ly * lr2;

14

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



099 j->C = -lr/2;
100
101 if( lr > 1.E-4 ){
102 double w = 1./lr, w2 = w*w;
103 j->Cx = w*j->lx;
104 j->Cy = w*j->ly;
105 S0 += w2*j->S0;
106 S1 += w2*j->S1;
107 S2 += w2*j->S2;
108 S3 += w2*j->S3;
109 S4 += w2*j->S4;
110 }else {
111 j->Cx = j->Cy = 0;
112 S0 += j->S0;
113 S1 += j->S1;
114 S2 += j->S2;
115 S3 += j->S3;
116 S4 += j->S4;
117 }
118 }
119 if( NAreaHits+1 < MinRingHits ) continue;
120 }// end of initialization of the search area
121
122 // loop for minimization of E and noise rejection
123
124 do{
125 // calculate parameters of the current ring
126 double tmp = S0*S1-S2*S2;
127 if( fabs(tmp) < 1.E-10 ) break;
128 tmp = 0.5/tmp;
129 X = (S3*S1 - S4*S2)*tmp;
130 Y = (S4*S0 - S3*S2)*tmp;
131 R2 = X*X + Y*Y;
132 R = sqrt( R2 );
133
134 double Dcut = Dmax * Rejection; // cut for noise hits
135 double RingCut = HitSize4 * ( HitSize + R ); // closeness
136 S0 = S1 = S2 = S3 = S4 = 0.0;
137 NRingHits = 1;
138 NAreaHits = 0;
139 Dmax = -1.;
140 for( iP j = SearchArea.begin(); j != SearchArea.end(); ++j ){
141 double dx = (*j)->lx - X;
142 double dy = (*j)->ly - Y;
143 double d2 = fabs( dx*dx + dy*dy - R2 );
144 (*j)->on_ring = ( d2 <= RingCut );
145 if( (*j)->on_ring ){
146 NRingHits++;
147 S0 += (*j)->S0;
148 S1 += (*j)->S1;

15

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



149 S2 += (*j)->S2;
150 S3 += (*j)->S3;
151 S4 += (*j)->S4;
152 }else {
153 double dp = fabs( (*j)->C + (*j)->Cx*X + (*j)->Cy*Y );
154 if( dp > Dcut ) continue;
155 if( dp > Dmax ) Dmax = dp;
156 NAreaHits++;
157 double w = 1./d2;
158 S0 += w*(*j)->S0;
159 S1 += w*(*j)->S1;
160 S2 += w*(*j)->S2;
161 S3 += w*(*j)->S3;
162 S4 += w*(*j)->S4;
163 }
164 }
165 }while( Dmax > 0 && NRingHits + NAreaHits >= MinRingHits );
166
167 // store the ring if it is found
168
169 if( NRingHits < MinRingHits || R2 > R2Max || R2 < R2Min ) continue;
170
171 { // final fit of 3 parameters (X,Y,R)
172 int n = 1;
173 S0 = S1 = S2 = S3 = S4 = S5 = S6 = S7 = 0.0;
174 for( iP j = SearchArea.begin(); j != SearchArea.end(); ++j ){
175 if( !(*j)->on_ring ) continue;
176 S0 += (*j)->S0;
177 S1 += (*j)->S1;
178 S2 += (*j)->S2;
179 S3 += (*j)->S3;
180 S4 += (*j)->S4;
181 S5 += (*j)->lx;
182 S6 += (*j)->ly;
183 S7 += (*j)->lr2;
184 n++;
185 }
186 double s0 = S6*S0-S2*S5;
187 double s1 = S0*S1-S2*S2;
188 double s2 = S0*S4-S2*S3;
189 if( fabs(s0) < 1.E-6 || fabs(s1) < 1.E-6 ) continue;
190 double tmp = s1*(S5*S5-n*S0)+s0*s0;
191 double A = ( ( S0*S7-S3*S5 )*s1-s2*s0 ) / tmp;
192 Y = (s2 + s0*A )/s1/2;
193 X = ( S3 + S5*A - S2*Y*2 )/S0/2;
194 R2 = X*X+Y*Y-A;
195 if( R2 < 0 ) continue;
196 R = sqrt( R2 );
197 }// end of the final fit
198

16

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



199 if( R2 > R2Max || R2 < R2Min ) continue;
200
201 ENNRing tmp;
202 Rings.push_back( tmp );
203 ENNRing &ring = Rings.back();
204 ring.x = i->x+X;
205 ring.y = i->y+Y;
206 ring.r = R;
207 ring.Hits.push_back(&*i);
208 ring.NHits = 1;
209 ring.chi2 = 0;
210 for( iP j = SearchArea.begin(); j != SearchArea.end(); ++j ){
211 double dx = (*j)->lx - X;
212 double dy = (*j)->ly - Y;
213 double d = fabs( sqrt(dx*dx+dy*dy) - R );
214 if( d <= HitSigma ){
215 ring.chi2 += d*d;
216 ring.Hits.push_back(*j);
217 ring.NHits++;
218 }
219 }
220 for( iP j = PickUpArea.begin(); j != PickUpArea.end(); ++j ){
221 double dx = (*j)->x - ring.x;
222 double dy = (*j)->y - ring.y;
223 double d = fabs( sqrt(dx*dx+dy*dy) - ring.r );
224 if( d <= HitSigma ){
225 ring.chi2 += d*d;
226 ring.Hits.push_back(*j);
227 ring.NHits++;
228 }
229 }
230 if( ring.NHits < MinRingHits ){
231 Rings.pop_back();
232 continue;
233 }
234 ring.chi2 = ring.chi2 / ( ring.NHits - 3)/.3/.3;
235 for( iP j = ring.Hits.begin(); j != ring.Hits.end(); ++j ){
236 if( (*j)->busy<ring.NHits ) (*j)->busy = ring.NHits;
237 }
238 }// END OF THE MAIN LOOP OVER HITS
239
240 // SELECTION OF RINGS
241
242 typedef vector<ENNRing>::iterator iR;
243
244 for( iH i = Hits.begin(); i != Hits.end(); ++i ) i->busy = 0;
245 for( iR i = Rings.begin(); i != Rings.end(); ++i ){
246 i->skip = i->on = 0;
247 i->NOwn = i->NHits;
248 if( ( i->NHits < MinRingHits ) ||

17

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005



249 ( i->NHits <= 6 && i->chi2 > .3 ) )
250 i->skip = 1;
251 }
252
253 do{
254 iR best = Rings.end();
255 int bestOwn = 0;
256 double bestChi2 = 1.E20;
257 for( iR i = Rings.begin(); i != Rings.end(); ++i ){
258 if( i->skip ) continue;
259 if( ( i->NOwn < 1.0*MinRingHits ) ||
260 ( i->NHits < 10 && i->NOwn < 1.00*i->NHits ) ){
261 i->skip = 1;
262 continue;
263 }
264 if( ( i->NOwn > 1.2*bestOwn ) ||
265 ( i->NOwn >= 0.8*bestOwn && i->chi2 < bestChi2 ) ){
266 bestOwn = i->NOwn;
267 bestChi2 = i->chi2;
268 best = i;
269 }
270 }
271 if( best == Rings.end() ) break;
272 best->skip = 1;
273 best->on = 1;
274 for( iP i = best->Hits.begin(); i != best->Hits.end(); ++i )
275 (*i)->busy = 1;
276 for( iR i = Rings.begin(); i != Rings.end(); ++i ){
277 if( i->skip ) continue;
278 double dist = i->r+best->r+2*HitSigma;
279 if( fabs(i->x-best->x) > dist ||
280 fabs(i->y-best->y) > dist ) continue;
281 i->NOwn = 0;
282 for( iP j = i->Hits.begin(); j != i->Hits.end(); ++j ){
283 if( !(*j)->busy ) i->NOwn++;
284 }
285 }
286 }while(1);
287 }
288
289 #endif

18

CBM-SOFT-note-2005-002
I3HP-FutureDAQ-note-2005-003

22 September 2005


