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α Decay
α decay is due to the emission of a         nucleus

is doubly magic and very tightly bound

α decay is energetically favourable for almost all nuclei having 
A ≥ 190 and for many A ≥ 150.

Why α ?

Consider energy release (E0) in various possible decays of 232U

α easy to form inside nucleus    2p ↑↓+2n ↑↓
(extent to which α exist inside nucleus still unknown)

He4
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He4
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n p 2H 3H 3He 4He 5He 6Li 7Li
Q
(MeV)

-7.26 -6.12 -10.70 -10.24 -9.92 +5.41 -2.59 -3.79 -1.94E0
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DEPENDENCE of τ1/2 on E0 (Geiger and Nuttall 1911)

A VERY striking feature of α decay is the strong dependence of 
lifetime on E0.

Example:

A factor of ~ 2.5 in E0 ⇒ Factor 1024 in τ1/2 !
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QUANTUM MECHANICAL TUNNELLING
The nuclear potential for the α particle due to the daughter 

nucleus includes a Coulomb barrier which inhibits the decay.

Classically, α particle cannot enter or escape.

Quantum mechanically, α particle can penetrate the Coulomb 
barrier

⇒ Quantum Mechanical Tunnelling

V(r)

r0

-V0

E0

R R’

Coulomb ~ 1/r

Total energy of α = E0+V0-V0

K.E.   P.E.
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Simple Theory (Gamow, Gurney, Condon 1928)
Assume α exists inside the nucleus and hits the barrier.

α decay probability,  λ = f P

f = escape trial frequency, P = probability of tunnelling through 
barrier

semi-classically, f ~ v/2R

v = velocity of a particle inside nucleus , R = radius of nucleus

e.g. V0 ~ 35 MeV, E0= 5 MeV ⇒ Eα = 40 MeV

Obtain tunnelling probability, P, by solving S.E. in 3 regions and 
using boundary conditions

mα = 3.7 GeV
R ~ 2.1 fm

122 s10~
m
2E

2R
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2R
v~f −=

α
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Transmission probability,

For ka >> 1, P is dominated by exponential decay within barrier

⇒

Coulomb potential, V, and thus k varies with r. Divide into 
rectangular pieces and multiply together exponents.
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Probability to tunnel through Coulomb barrier

where                                         is the GAMOW FACTOR

For r > R:

α escapes at r = R’,  V(R’) = E0 ⇒ R’ = B/ E0

⇒
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Most practical cases R << R’, so term in [...] ~ π/2

e.g. Z = 90, E0 ~ 6 MeV ⇒ R’ ~ 40 fm >> R ⇒

Lifetime
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Simple tunnelling model accounts for strong dependence of τ1/2 on 
E0.

Also explains why decay to heavier fragments e.g. 12C disfavoured

and G ~ charge of fragment

Deficiences
Assumed existence of one a particle in nucleus and have taken no 

account of probability of formation.

Assumed “semi-classical” approach to estimate escape trial 
frequency, f ~ v/2R, and make absolute prediction of decay rate.

If α emitted with some angular momentum, l, radial wave equation 
must include a centrifugal barrier term

which raises the barrier and hence suppresses emission of α in high 
l states.

1/2m~G

2

2

2mr
1)(V hll +

=
l = relative a.m. of α and 

daughter nucleus
m = reduced mass
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SELECTION RULES IN α DECAY

Nuclear Shell Model:     α has JP=0+

Angular momentum

Parity
Parity is conserved in a decay.
Orbital wavefunction has parity (-1)l

X, Y SAME parity        ⇒ l must be EVEN
X, Y OPPOSITE parity ⇒ l must be ODD

Example: if X, Y both even-even nuclei in their ground states ⇒ shell 
model JP=0+ ⇒ l = 0

More generally, if X has JP=0+, the states of Y which can be formed 
in a decay are JP = 0+, 1− , 2+, 3−, 4+, …

l⊕= YX JJ

l ranges from JX + JY to |JX - JY|  

α  Y  X +→
spin      JX JY

l
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β Decay

β−

β+

electron capture
β decay is a weak interaction mediated by the W boson
Parity is violated in β decay

Kinematics: Decay is possible if energy release E0 > 0
Nuclear Mass Atomic Mass

Only n→ peν  can occur outside the nucleus (mn > mp)
Electron capture is possible if β+ not allowed
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Nuclear Stability Against β Decay
Plot nuclear mass on an axis ⊥’r to N - Z plane.

SEMF (page 288)

β decay, A is constant, Z changes by ±1 ⇒ m(A,Z) is quadratic in Z.

Most stable nuclei when
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β DECAY RATE (see page 172-178)
β decay in Fermi Theory

where Mif is the matrix element 

and ρ(Ef) is the density of final states

Total decay rate given by SARGENT RULE

β decay spectrum described by KURIE PLOT
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The momentum of the electron is modified by the Coulomb 
interaction as it moves away from the nucleus (different for e− and e+)

⇒ Multiply spectrum by FERMI FUNCTION, F(Z,E)

All the information about the nuclear wavefunctions is contained 
in the matrix element. Values for the complicated FERMI 
INTEGRAL

are tabulated.

Mean lifetime             , half-life

⇒ COMPARATIVE
HALF-LIFE
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Comparative Half-lives

Decays with  
log10 f τ1/2 ~3-4    SUPERALLOWED

~4-7    ALLOWED
≥ 6       FORBIDDEN  (i.e. suppressed, small M)

N
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log10  f τ1/2
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SELECTION RULES IN β DECAY
Fermi theory, 

e, ν

SUPERALLOWED TRANSITIONS

ALLOWED TRANSITIONS
Angular momentum of eν pair relative to nucleus, l = 0.

There are TWO types of ALLOWED/SUPERALLOWED
transitions depending on the relative spin states of the emitted e
and ν.

e, ν both have spin ½ ⇒ Total spin of eν system, Seν = 0 or 1

rdψe ψGM 3
n

r)pp-i(*
pFif

νe vvvv ⋅+∫=

1rdψ ψ~M 3
n

*
pif ≈∫ v log10  fτ1/2 ~ 3-4

log10fτ1/2 ~ 4-71~e r)pp-i( νe
vvv ⋅+
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eνYX SJJ ⊕=ν++→ eYX
FERMI TRANSITIONS Seν = 0

GAMOW-TELLER TRANSITIONS Seν = 1

Total number of spin states of eν = 4  (3 G-T, 1 Fermi)

No change in angular momentum of the eν pair relative to the 
nucleus, l = 0 ⇒ PARITY UNCHANGED

↓+↑+↑→↑ −
e  e  p  n ν

JX =  JY               Seν = 0
∆J = 0

↑+↑+↑→↑ −
e  e  p  n ν

JX = JY               Seν = ±1
∆J = ±1

∆J = 0
0→0 Forbidden

↑+↑+↓→↑ −
e  e  p  n ν

JX = JY ±1     Seν = ±1
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FORBIDDEN TRANSITIONS
Angular momentum of the eν pair relative to the nucleus l > 0.

l 0               1                    2 ...
P=(-1)l even          odd                even …

Allowed        1st 2nd

forbidden        forbidden

Transition probabilities for large l are small ⇒ forbidden transitions. 

Forbidden transitions are only competitive if an allowed transition 
cannot occur (selection rules). The lowest permitted order of 
“forbiddeness” will dominate.

In general, nth forbidden ⇒ eν system carries orbital angular 
momentum l = n, and 
Seν 0 (Fermi) or 1 (G-T).

log10  fτ1/2 ≥ 6

( ) ( )[ ] Kvvvvvvvvv
−⋅++⋅+−=⋅+ 2

νeνe
r)ppi(- rpprppi1e νe
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Examples:

)Sr(9/2)Rb(3/2

)K(3/2)Ar(7/2

)p(1/2)n(1/2

)N(1)C(0

)S(0)Cl(0

8787

3939

1414

3434

+−

+−

++

++

++

→

→

→

→

→
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γ Decay
Emission of γ-rays (electromagnetic radiation) occur when a nucleus is 
formed in an excited state (e.g. after α, β decay or collision).

The treatment of radiative transitions in nuclei is generally the same 
as for atoms, except

Atom  Eγ ~ eV λ ~ 108 fm   Γ ~ 109 s-1

Only dipole transitions are important.

Nuclei Eγ ~ MeV λ ~ 102 fm   Γ ~ 1016 s-1

Higher order transitions also important. Collective 
motion of many p’s lead to higher transition rates.

Two types of transitions:

ELECTRIC (E) TRANSITIONS arise from an oscillating charge which 
causes an oscillation in the external electric field.

MAGNETIC (M) TRANSITIONS arise from a varying current or 
magnetic moment which sets up a varying magnetic field.



In the simplest case, the photon carries away angular momentum l
when a proton in the nucleus makes a transition from its initial a.m. 
state Ji to its final a.m. state Jf.

and

The photon has intrinsic JP = 1− ⇒ l ≥ 1

⇒ Single γ emission is FORBIDDEN for a transition between two J=0
states. 0→0 transitions can only occur via internal conversion or 
emission of more than 1 γ.

The transition probabilities obtained using

FERMI GOLDEN RULE
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final
γ

Ji

l

Jf

fi JJ
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ELECTRIC DIPOLE TRANSITIONS (E1) l=1
Insert dipole matrix element into FGR

see Adv. Quantum     
after averaging over initial and 
summing over final states

For an order of magnitude estimate of this rate,

Example: Eγ = 1 MeV, R = 5 fm

(c.f. atoms Γ ~ 109 s-1)

As nuclear wavefunctions have definite parity, the matrix 
element can only be non-zero if the initial and final states have 
opposite parity

⇒ E1 transition ⇒ parity change of nucleus
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MAGNETIC DIPOLE TRANSITION (M1) l=1
Matrix element

µ = magnetic moment, σ = Pauli spin matrix

Typically,                                Nuclear Magneton

Proton

Magnetic moment transforms as angular momentum

⇒ M1 transition ⇒ no parity change of nucleus
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HIGHER ORDER TRANSITIONS  (El, Ml where l > 1)
If the initial and final nuclear states differ by more than 1 unit of 

angular momentum ⇒ HIGHER MULTIPOLE RADIATION

The perturbing Hamiltonian is a function of electric and magnetic 
fields and hence of the vector potential

for a photon is taken to have the form of a plane wave

Each successive term in    is reduced from the previous one approx 
by a factor pR.

Example: p ~ 1 MeV,  R~5 fm  ⇒ pR~5 MeVfm ~ 0.025   |pR|2 ~ 10-3
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The matrix element for E2 transitions ~ r2 i.e. even under a 
parity transformation

In general,  El transitions    Parity = (-1)l
Ml transitions   Parity = (-1)l+1

In general, a decay will proceed dominantly by the highest order 
process permitted by angular momentum and parity.

Example: if a process has ∆J = 2, no parity change, it will go by E2, 
even though M3, E4 are also allowed.

Rate        1      10-3 10-6 10-9…
E1    E2       E3       E4  ...

M1       M2      M3  …
Parity      x x
change
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Example:

Information about nature of transitions is useful in inferring JP

values of states.

This discussion of rates is very naïve. More complete formulae can 
be found in books.
Also collective effects may be important

many nucleons participate in transitions.
If nucleus has a large Q → rotational excited states enhance E2 

transitions

Sn117
50

E2
M4

M1 +

+

−

+

21
23
211
27 M1 (E2 also allowed)

M4 
more likely than                      (E5)
E2
M2
M3 less likely

+−

++

→
→

23211
2123

++ → 2327

+− → 21211

++

−+

→
→

2127
21127
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Mössbauer Effect 
Measurement of small energy differences with extremely high 
precision using the natural width of nuclear states.

Basic idea:
Nucleus in excited state emits γ to g.s:

initial state

Recoiling nucleus γ

γ

Ei

Ef

2m
∆E∆E

2m
E

∆EE
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pEEE

22
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γ

2

γfi
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++= p = nucleus recoil momentum = pγ= Eγ

c = 1
Εγ ≈ ∆EEmission

∆E = Ei-Ef

final state

Similarly, for γ absorption
2m
∆E∆EE

2

γ +≈



Eγ varies due to natural width of energy levels
e.g. 

Initial state is in thermal motion ⇒ Doppler shift

EMISSION            ABSORPTION

σ

Eγ

2m
∆E 2

∆E

ΓD

Γ

Recoil energy

Ir191
77 τ ~ 1.4 x 10-10 s, Ei = 0.13 MeV
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ΓeV105

τ
1Γ −−×==

Γ  eV10few~Γ 1
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Mössbauer Experiment (1958)

Absorption of γ’s can only occur 
for energies in the overlap region. 

If absorption occurs, re-emission 
is isotropic ∴ expect reduced intensity

Expect

I

Eγ∆E

Ir191
77

Emitter   Absorber         γ detector

Ir191
77

High T → ΓD increases
Larger overlap
More absorption

Low T → ΓD decreases
Smaller overlap
Less absorption

σ

Eγ∆E

High T

Eγ∆E

σ Low T
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Mössbauer found that at LOW TEMP the absorption INCREASED.

ΓD reduced BUT nucleus bound in crystal lattice

∴ Mnucleus → Mcrystal

negligible recoil

MÖSSBAUER EFFECT

The Mössbauer effect can be used to measure energy differences ~ 
same order as width of the resonance (e.g. 10-5 eV Ir, 10-8 eV Fe).

Most applications determine the properties of the physical or 
chemical environment of a nucleus. When the emitter and absorber are 
in different environments, the emission and absorption peaks do not 
occur at precisely the same energy. The relative velocity required to 
obtain maximum absorption is measured.

σ

E
γ

∆E
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GRAVITATIONAL RED SHIFT
Principle of Equivalence: Effects of a local uniform gravitational field 
cannot be distinguished from those of a uniformly accelerated reference 
frame.

Nucleus in emitter has additional   P.E. = mgh = Egh

Radiated photons are Doppler red-shifted

Example: Harvard-Tower: Pound and Rebka:           sensitivity Γ/Eγ~3x10-13

(                   expected)

⇒ One of the most precise tests of GR

Uniform 
gravitational field.

Emitter   

Absorber       

γ detector
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