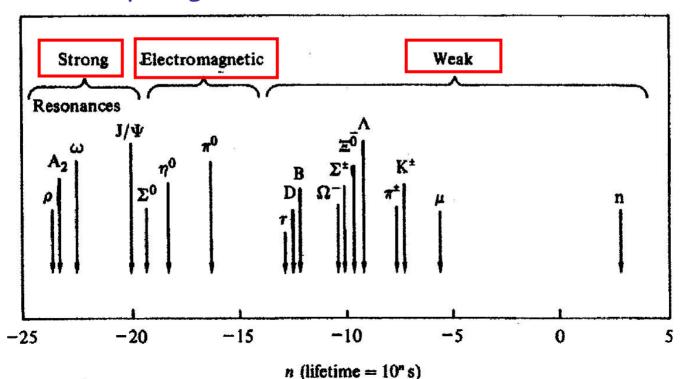
Section VIII The Weak Interaction

The Weak Interaction

The WEAK interaction accounts for many decays in particle physics

> Characterized by long lifetimes and small cross-sections



> Two types of WEAK interaction:

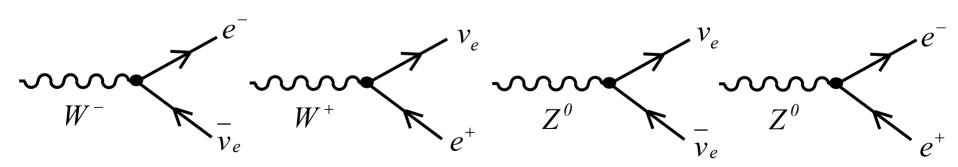
CHARGED CURRENT (CC): W[±] Bosons NEUTRAL CURRENT (NC): Z⁰ Boson

> The WEAK force is mediated by MASSIVE VECTOR BOSONS:

M_W ~ 80 *G*eV M_Z ~ 91 *G*eV

Examples:

Weak interactions of electrons and neutrinos:



Boson Self-Interactions

- > In QCD the gluons carry "COLOUR" charge.
- ➤ In the WEAK interaction the W[±] and Z⁰ bosons carry the WEAK CHARGE
- > W[±] also carry EM charge

⇒ BOSON SELF-INTERACTIONS

 Z^{0} W^{+} W^{-} W^{-} W^{-}

 M_{-}^{-} M_{+}^{-} M_{-}^{-} M_{-

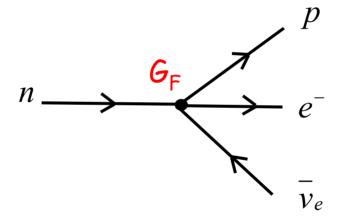
Fermi Theory

Weak interaction taken to be a "4-fermion contact interaction"

- No propagator
- Coupling strength given by the FERMI CONSTANT, G_F
- $G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}$

β Decay in Fermi Theory

$$n \rightarrow pe^-\overline{v}_e$$



Use Fermi's Golden Rule to get the transition rate

$$\Gamma = 2\pi \left| M_{fi} \right|^2 \rho \left(E_f \right) \qquad \rho \left(E_f \right) = \frac{dN}{dE_f}$$

where M_{if} is the matrix element and $\rho(E_f)$ is the density of final states.

Density of Final States: 2-body vs. 3-body (page 46)

>TWO BODY FINAL STATE:

$$dN = \frac{E^2}{(2\pi)^3} \ d\Omega \ dE$$

Relativistic (E ~ p) $dN = \frac{E^2}{(2\pi)^3} d\Omega dE$ i.e. neglect mass of final state particles.

Only consider one of the particles since the other fixed by (E,p) conservation.

> THREE BODY FINAL STATE (e.g. β decay):

$$d^{2}N = \frac{E_{v}^{2}}{(2\pi)^{3}} d\Omega_{v} dE_{v} \frac{E_{e}^{2}}{(2\pi)^{3}} d\Omega_{e} dE_{e}$$

Now necessary to consider two particles - the third is given by (E,p) conservation.

In nuclear β decay, the energy released in the nuclear transition, E_0 , is shared between the electron, neutrino and the recoil kinetic energy of the nucleus:

$$E_0 = E_e + E_v + T_{recoil}$$

Since the nucleus is much more massive than the electron /neutrino:

$$E_0 \approx E_e + E_v$$

and the nuclear recoil ensures momentum conservation.

For a GIVEN electron energy E_e :

$$dE_v = dE_0$$

$$\frac{dN}{dE_0} = \frac{dN}{dE_v} = \frac{E_v^2}{(2\pi)^3} d\Omega_v \frac{E_e^2}{(2\pi)^3} d\Omega_e dE_e$$

Assuming isotropic decay distributions and integrating over $d\Omega_e d\Omega_v$ gives:

$$\frac{dN}{dE_0} = (4\pi)^2 \frac{E_v^2}{(2\pi)^3} \frac{E_e^2}{(2\pi)^3} dE_e = \frac{E_v^2 E_e^2}{4\pi^4} dE_e = \frac{\left(E_0 - E_e\right)^2 E_e^2}{4\pi^4} dE_e$$

$$d\Gamma = 2\pi \left| M_{fi} \right|^2 \frac{\left(E_0 - E_e\right)^2 E_e^2}{4\pi^4} dE_e$$

$$\frac{d\Gamma}{dE_e} = \left| M_{fi} \right|^2 \frac{\left(E_0 - E_e\right)^2 E_e^2}{2\pi^3}$$

Matrix Element

In Fermi theory, $M_{fi}=G_F\int \psi_n\ \psi_p^*\ \psi_e^*\ \psi_{\bar{\nu}}^*\ d^3\vec{r}$ 4-point interaction

and treat
$$e$$
, v as free particles $\psi_e = e^{i\vec{p}_e \cdot \vec{r}}$ $\psi_v = e^{i\vec{p}_v \cdot \vec{r}}$

$$\therefore M_{fi} = G_F \int \psi_p^* e^{-(\bar{p}_e + \bar{p}_v) \cdot \bar{r}} \psi_n d^3 \bar{r}$$

> Typically, e and v have energies ~ MeV, so $\vec{p} \cdot \vec{r} \approx 10^{-2} \leftrightarrow \text{size of nucleus and}$ $\psi_e, \psi_v \approx 1$

Corresponds to zero angular momentum ($l = \theta$) states for the e and v.

⇒ ALLOWED TRANSITIONS

The matrix element is then given by

$$\left| M_{fi} \right|^2 = G_F^2 \left| \int \psi_p^* \psi_n \ d^3 \vec{r} \right|^2 = G_F^2 \left| M_{nuclear} \right|^2$$

where the nuclear matrix element $\left|M_{\it nuclear}\right|^2$ accounts for the overlap of the nuclear wave-functions.

If the n and p wave-functions are very similar, the nuclear matrix element $\left|M_{nuclear}\right|^2=1$

 $\Rightarrow M_{fi}$ large and β decay is favoured:

⇒ SUPERALLOWED TRANSITIONS

Here, assume $\left|M_{nuclear}\right|^2 = 1$ (superallowed transition):

$$\begin{split} \frac{d\Gamma}{dE_e} &= \frac{G_F^2}{2\pi^3} \left(E_0 - E_e \right)^2 E_e^2 & \left| M_{fi} \right|^2 = G_F^2 \\ \Gamma &= \frac{G_F^2}{2\pi^3} \int_0^{E_0} \left(E_0 - E_e \right)^2 E_e^2 \ dE_e = \frac{G_F^2}{2\pi^3} \left[\frac{E_0^5}{3} + \frac{E_0^5}{5} - 2\frac{E_0^5}{4} \right] \\ \Gamma &= \frac{G_F^2 E_0^5}{60\pi^3} \end{split}$$

SARGENT RULE: $au \propto E_0^{-5}$

$$au \propto E_0^{-5}$$

e.g. μ^{-} and τ^{-} decay (see later)

By studying lifetimes for nuclear beta decay, we can determine the strength of the weak interaction in Fermi theory:

$$G_F^{\beta} = (1.136 \pm 0.003) \times 10^{-5} \text{ GeV}^{-2}$$

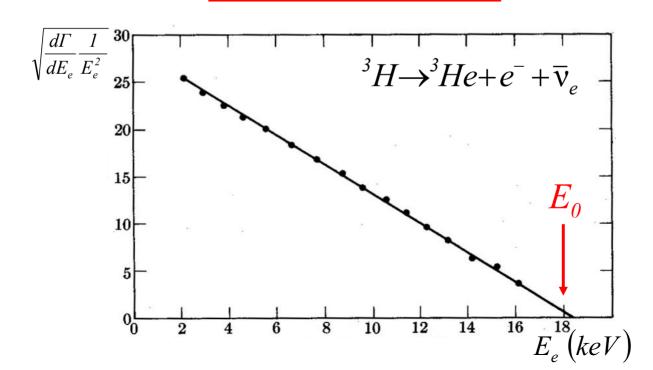
Beta-Decay Spectrum

$$\frac{d\Gamma}{dE_e} = \frac{G_F^2}{2\pi^3} \left(E_0 - E_e \right)^2 E_e^2$$

Plot of
$$\sqrt{\frac{d\Gamma}{dE_e}}\frac{1}{E_e^2}$$
 versus $\left(E_0-E_e\right)$ is linear

$$\sqrt{\frac{d\Gamma}{dE_e}} \frac{1}{E_e^2} \propto \left(E_0 - E_e\right)$$

KURIE PLOT



v Mass

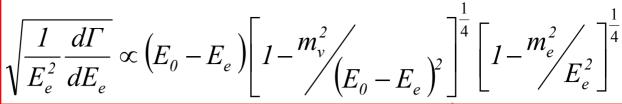
- $m_v = 0$ (neglect mass of final state particles) End point of electron spectrum = E_0
- $> m_v \neq 0$ (allow for mass of final state particles)

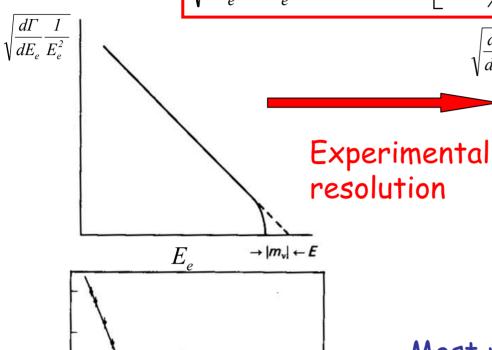
Density of states
$$dN = \frac{E^2}{(2\pi)^3} d\Omega dE \implies dN = \frac{p^2}{(2\pi)^3} \frac{E}{p} d\Omega dE$$
 (page 46)

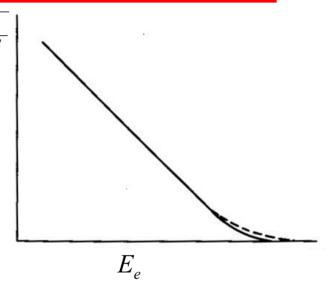
$$\frac{d\Gamma}{dE_e} = \frac{G_F^2}{2\pi^3} \left(E_0 - E_e \right)^2 E_e^2 \sqrt{1 - \frac{m_v^2}{E_0 - E_e}^2} \sqrt{1 - \frac{m_e^2}{E_e^2}}$$

 m_e known, m_v small \Rightarrow only significant effect is where $E_e \approx E_0$

KURIE PLOT



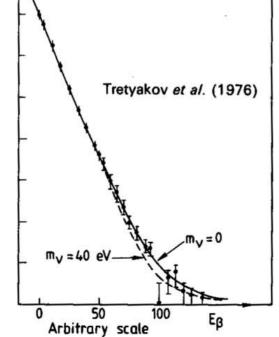




Most recent results (1999) Tritium β decay:

$$m_{ve}$$
 < 3 eV

If neutrinos have mass, $m_{ve} \ll m_e$ Why so small ?



Neutrino Scattering in Fermi Theory (Inverse β Decay).

$$v_e + n \rightarrow p + e^-$$

$$d\sigma = 2\pi \left| M_{fi} \right|^2 \frac{dN}{dE} = 2\pi G_F^2 \frac{E_e^2}{(2\pi)^3} d\Omega$$

$$\sigma = \frac{G_F^2 S}{\pi}$$
Appendix F
$$n$$

where E_e is the energy of the e^- in the centre-of-mass system and $\sqrt{s}\,$ is the energy in the centre-of-mass system.

In the laboratory frame:
$$s = 2E_{\nu}m_n$$
 (see page 26)

$$\Rightarrow \sigma \sim (E_v \text{ in MeV}) \times 10^{-43} \text{ cm}^2$$

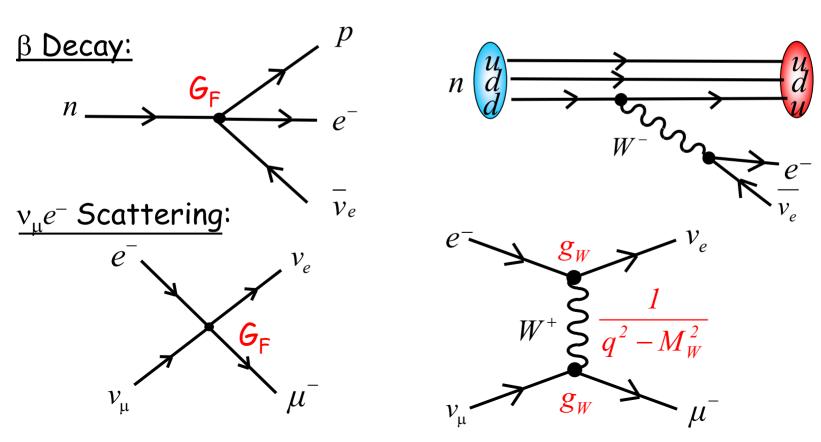
- > v's only interact WEAKLY : have very small interaction cross-sections
- > Here WEAK implies that you need approximately 50 light-years of water to stop a 1 MeV neutrino!

However, as $E_v \to \infty$ the cross-section can become very large. Violates maximum allowed value by conservation of probability at $\sqrt{s}=740~{\rm GeV}$ (UNITARITY LIMIT).

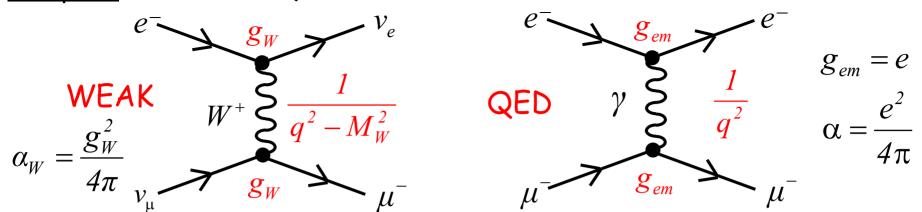
⇒ Fermi theory breaks down at high energies.

Weak Charged Current: W[±] Boson

- > Fermi theory breaks down at high energy
- > True interaction described by exchange of CHARGED W[±] BOSONS
- Fermi theory is the low energy $(q^2 << m_W^2)$ EFFECTIVE theory of the WEAK interaction.

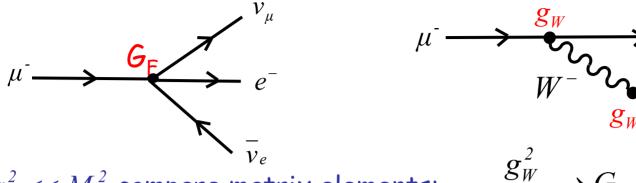


Compare WEAK and QED interactions:



- ightharpoonup Massive propagator \rightarrow short range $M_W = 80.4 \text{ GeV} \implies \text{Range} \approx \frac{I}{1.5} \sim 0.002 \text{ fm}$
- > Exchanged boson carries electromagnetic charge.
- > FLAVOUR CHANGING ONLY WEAK interaction changes flavour
- > PARITY VIOLATING ONLY WEAK interaction can violate parity conservation.

Compare Fermi theory c.f. massive propagator



For $q^2 \ll M_W^2$ compare matrix elements: G_F is small because m_W is large.

$$\frac{\overline{M_W^2} \to G_F}{\sigma^2}$$

The precise relationship is:

$$M_W = 80.4 \, {\rm GeV}$$
 and $G_F = 1.166 \times 10^{-5} \, {\rm GeV}^{-2}$ (see later to what different to $G_W = 0.65$ and $\alpha_W = \frac{g_W^2}{4\pi} \approx \frac{1}{30}$) $\alpha = \frac{e^2}{4\pi} \approx \frac{1}{137}$

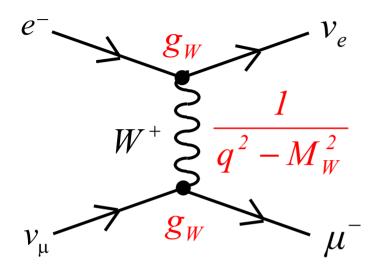
(see later to why different to $G_{\scriptscriptstyle F}^{\scriptscriptstyle eta}$

$$\alpha = \frac{e^2}{4\pi} \approx \frac{1}{137}$$

The intrinsic strength of the WEAK interaction is GREATER than that of the electromagnetic interaction. At low energies (low q^2), it appears weak due to the massive propagator. 184

Neutrino Scattering with a Massive W Boson

Replace contact interaction by massive boson exchange diagram:



$$\frac{d\sigma}{dq^{2}} = \frac{1}{32\pi} \frac{g_{W}^{4}}{\left(q^{2} - M_{W}^{2}\right)^{2}}$$

with $|q| = 2E\sin \theta/2$ where θ is the scattering angle. (similar to page 48)

Integrate to give:

$$\sigma = \frac{G_F^2 S}{\pi} \qquad s << M_W^2$$

$$\sigma = \frac{G_F^2 M_W^2}{\pi} \qquad s >> M_W^2$$

Appendix G

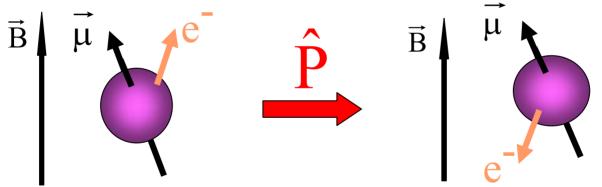
Total cross-section now well behaved at high energies.

Parity Violation in Beta Decay

Parity violation was first observed in the β decay of ^{60}Co nuclei (C.S.Wu et. al. Phys. Rev. 105 (1957) 1413)

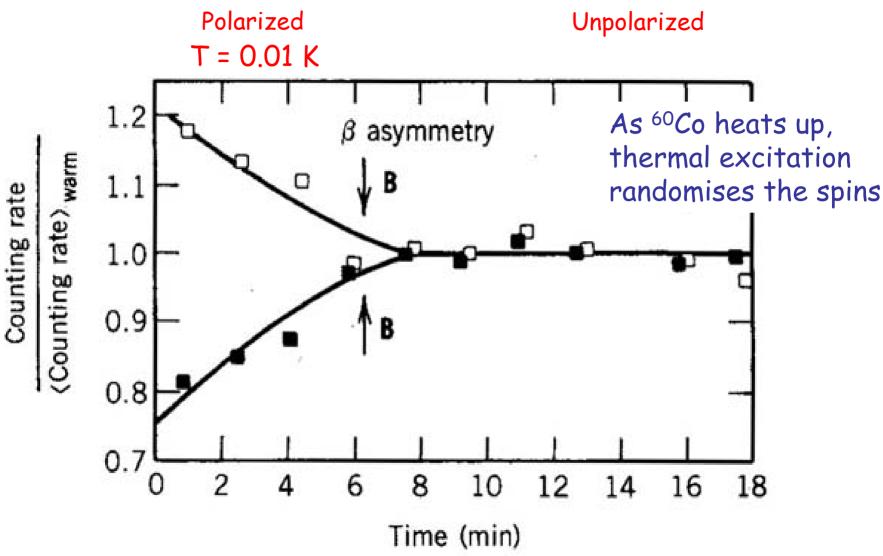
$$^{60}Co \rightarrow ^{60}Ni + e^- + \stackrel{-}{v_e}$$
J=5 J=4

Align ^{60}Co nuclei with \vec{B} field and look at direction of emission of electrons



Under parity:
$$\vec{r} \rightarrow -\vec{r}$$
; $\vec{p} \rightarrow -\vec{p}$
 $\vec{L} = \vec{r} \times \vec{p} \rightarrow \vec{L}$; $\vec{\mu} \rightarrow \vec{\mu}$

If PARITY is CONSERVED, expect equal numbers of electrons parallel and antiparallel to \vec{B}



Most electrons emitted opposite to direction of field \Rightarrow PARITY VIOLATION in β DECAY

Origin of Parity Violation

SPIN and HELICITY

Consider a free particle of constant momentum, \vec{P} .

- ightharpoonup Total angular momentum, $\vec{J} = \vec{L} + \vec{S}$, is ALWAYS conserved.
- ightharpoonup The orbital angular momentum, $\vec{L}=\vec{r}\times\vec{p}$, is perpendicular to \vec{p}
- ightharpoonup The spin angular momentum, \vec{S} , can be in any direction relative to \vec{p}
- ightharpoonup The value of spin \bar{S} along \bar{p} is always CONSTANT.

Define the sign of the component of spin along the direction of motion as the

HELICITY
$$h = \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|}$$

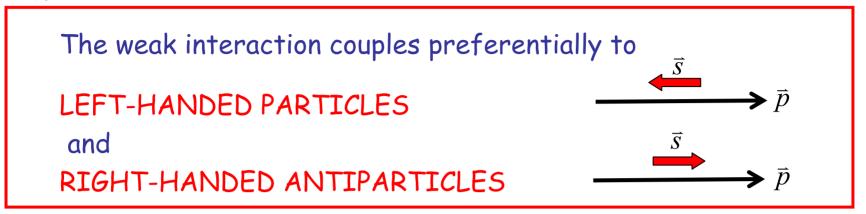
$$\vec{p}$$

$$h = +1$$

"RIGHT-HANDED"

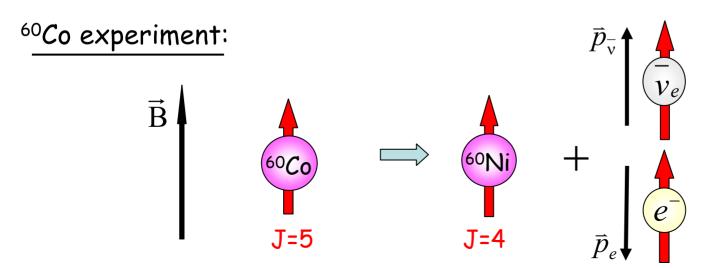
"LEFT-HANDED"

The WEAK interaction distinguishes between LEFT and RIGHT-HANDED states.



In the ultra-relativistic (massless) limit, the coupling to RIGHT-HANDED particles vanishes.

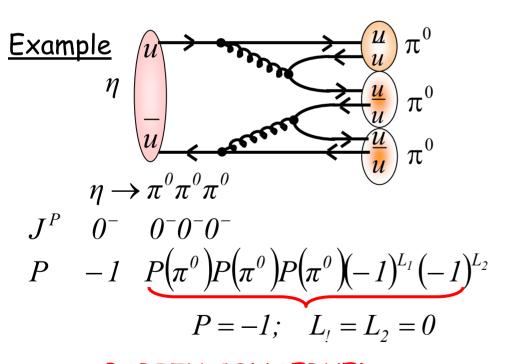
i.e. even if RIGHT-HANDED v's exist - they are unobservable!



Parity Violation

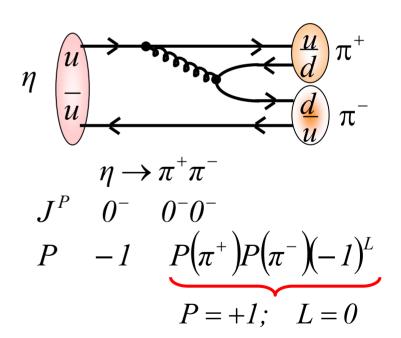
The WEAK interaction treats LH and RH states differently and therefore can violate PARITY (i.e. the interaction Hamiltonian does not commute with \hat{P}).

PARITY is ALWAYS conserved in the STRONG/EM interactions



PARITY CONSERVED

Branching fraction = 32%

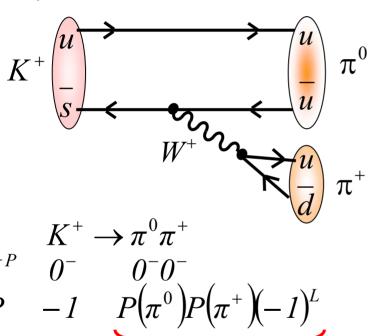


PARITY VIOLATED

Branching fraction < 0.1%

PARITY is USUALLY violated in the WEAK interaction but NOT ALWAYS!

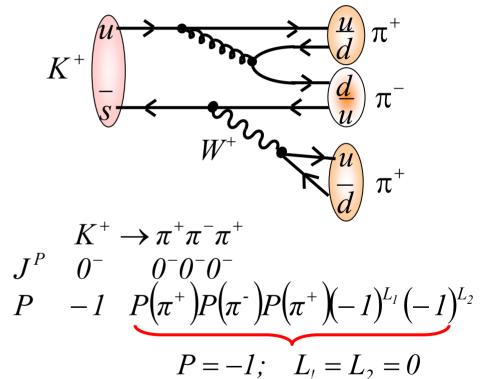
Example



$$P = +1; \quad L = 0$$

PARITY VIOLATED

Branching fraction ~ 21%

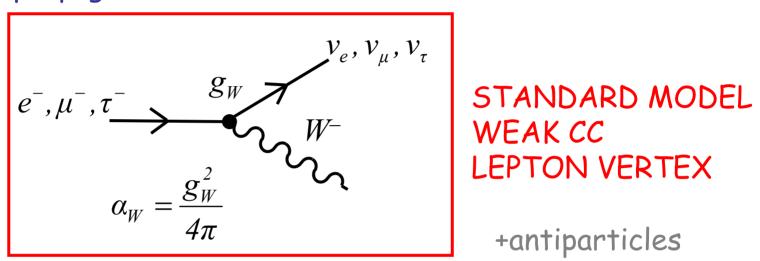


PARITY CONSERVED

Branching fraction ~ 6%

The Weak CC Lepton Vertex

All weak charged current lepton interactions can be described by the W boson propagator and the weak vertex:



WEAK CC LEPTON VERTEX

+antiparticles

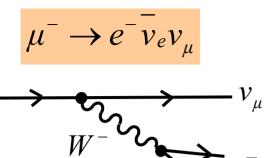
> W Bosons only "couple" to the lepton and neutrino within the SAME generation

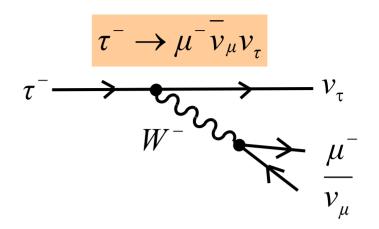
 $\left(egin{array}{c} e^- \ v \end{array}
ight) \left(egin{array}{c} \mu^- \ v \end{array}
ight) \left(egin{array}{c} au^- \ v \end{array}
ight)$

e.g. no We^-v_{μ} coupling

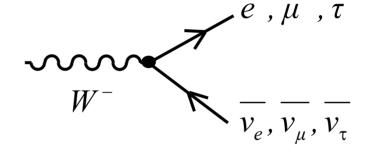
 \triangleright Universal coupling constant g_W

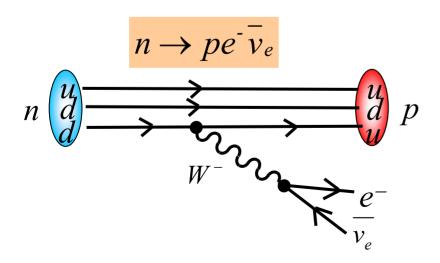
Examples:

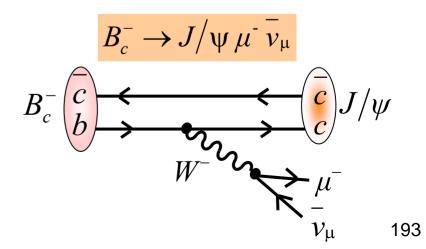




$$W^- \rightarrow e^- v_e, \mu^- v_\mu, \tau^- v_\tau$$

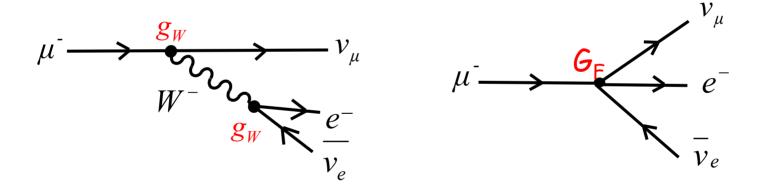






μ Decay

- \triangleright Muons are fundamental leptons ($m_u \sim 206 \ m_e$).
- ightharpoonup Electromagnetic decay $\mu^- \to e^- \gamma$ is NOT observed; the EM interaction does not change flavour.
- > Only the WEAK CC interaction changes flavour.
- ightharpoonup Muons decay weakly: $\mu^-
 ightharpoonup e^- v_e v_\mu$



As $m_{\mu}^2 << M_W^2 \Rightarrow$ can use FERMI theory to calculate decay width (analogous to β decay).

FERMI theory gives decay width proportional to m_{μ}^{5} (Sargent rule).

However, more complicated phase space integration (previously neglected kinetic energy of recoiling nucleus) gives

$$\Gamma_{\mu} = \frac{1}{\tau_{\mu}} = \frac{G_F^2}{192\pi^3} m_{\mu}^5$$

> Muon mass and lifetime known with high precision.

$$\tau_{\rm u} = (2.19703 \pm 0.00004) \times 10^{-6} \text{ s}$$

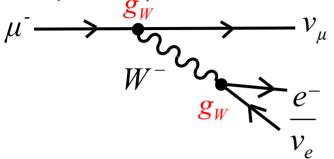
 \blacktriangleright Use muon decay to fix strength of WEAK interaction G_F

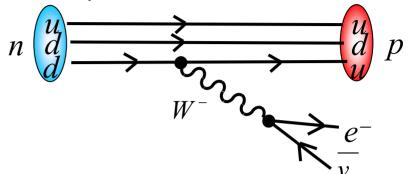
$$G_F = (1.16632 \pm 0.00002) \times 10^{-5} \text{ GeV}^{-2}$$

 $ightharpoonup G_F$ is one of the best determined fundamental quantities in particle physics.

Universality of Weak Coupling

Can compare G_F measured from μ^- decay with that from β decay.





From muon decay measure:

$$G_F^{\mu} = (1.16632 \pm 0.00002) \times 10^{-5} \text{ GeV}^{-2}$$

From β decay measure:

$$G_F^{\beta} = (1.136 \pm 0.003) \times 10^{-5} \text{ GeV}^{-2}$$

Ratio

$$\frac{G_F^{\beta}}{G_F^{\mu}} = 0.974 \pm 0.003$$

Conclude that the strength of the weak interaction is ALMOST the same for leptons as for quarks. We will come back to the origin of this difference $(\cos \vartheta_c)$

τ Decay

The τ mass is relatively large

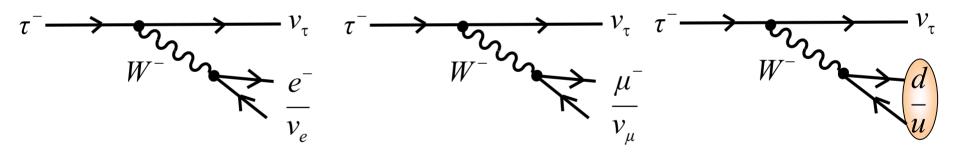
$$m_{\tau} = (1.777 \pm 0.0003) \,\text{GeV}$$

and as

$$m_{\tau} > \{m_{\mu}, m_{\pi}, m_{\rho}, \ldots\}$$

there are a number of possible decay modes.

Examples



Tau branching fractions:

$$\tau^{-} \rightarrow e^{-} \underline{v}_{e} v_{\tau} \qquad (17.8 \pm 0.1\%)$$
 $\tau^{-} \rightarrow \mu^{-} v_{\mu} v_{\tau} \qquad (17.3 \pm 0.1\%)$
 $\tau^{-} \rightarrow hadrons \qquad (64.7 \pm 0.2\%)$

Lepton Universality

Test whether all leptons have the same WEAK coupling from measurements of the decay rates and branching fractions.

If universal strength of WEAK interaction, expect

$$\frac{\tau_{\tau}}{\tau_{\mu}} = 0.178 \frac{m_{\mu}^{5}}{m_{\tau}^{5}}$$

$$m_{\mu}, m_{\tau}, \tau_{\mu} \text{ are all measured precisely}$$

$$m_{\tau} = (1777.0 \pm 0.3) \text{ MeV}$$

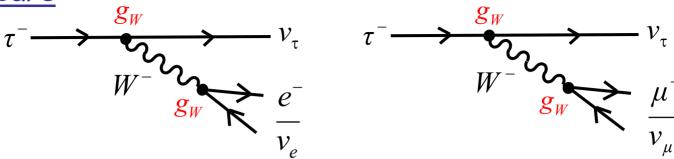
$$\tau_{\mu} = (2.19703 \pm 0.00004) \times 10^{-6} \text{ s}$$

$$m_{\mu} = 105.658 \text{ MeV}$$
 $m_{\tau} = (1777.0 \pm 0.3) \text{ MeV}$
 $\tau_{\mu} = (2.19703 \pm 0.00004) \times 10^{-6} \text{ s}$

$$\tau_{\tau} = (2.91 \pm 0.01) \times 10^{-13} \text{ s}$$

$$\tau_{\tau} = (2.91 \pm 0.01) \times 10^{-13} \text{ s}$$

Also compare



IF same couplings expect:

$$\frac{B(\tau^- \to \mu^- \overline{v}_\mu v_\tau)}{B(\tau^- \to e^- \overline{v}_e v_\tau)} = 0.9726$$

(the small difference is due to the slight reduction in phase space due to the non-negligible muon mass).

due to the non-negligible muon mass). The observed ratio
$$\frac{B(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau)}{B(\tau^- \to e^- \bar{\nu}_e \nu_\tau)} = 0.974 \pm 0.005$$
 is consistent with the prediction.

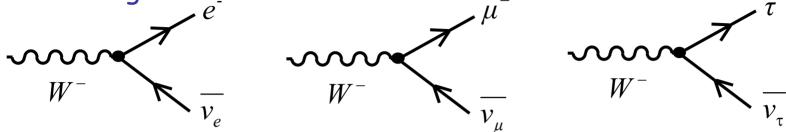
 \Rightarrow SAME WEAK CC COUPLING FOR e, μ AND τ

LEPTON UNIVERSALITY

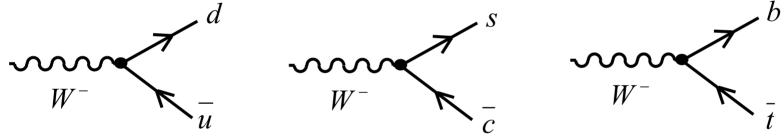
Weak Interactions of Quarks

In the Standard Model, the leptonic weak couplings take place within

a particular generation:



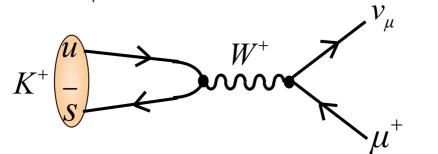
Natural to expect same pattern for QUARKS, i.e.



Unfortunately, not that simple!!

Example:

The decay $K^+ \to \mu^+ v_\mu$ suggests a $W^+ u s^-$ coupling



Cabibbo Mixing Angle

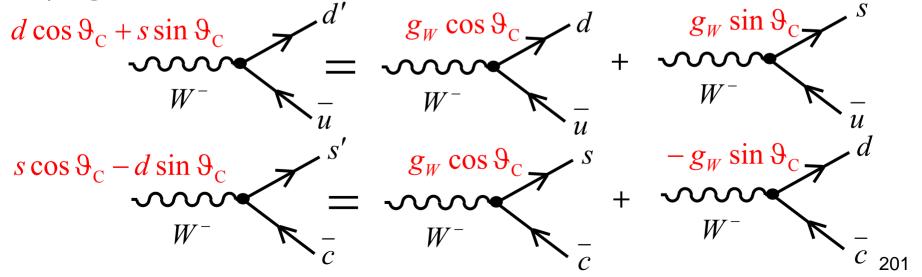
Four-Flavour Quark Mixing

- > The states which take part in the WEAK interaction are ORTHOGONAL combinations of the states of definite flavour (d, s)
- \triangleright For 4 flavours, $\{d, u, s \text{ and } c\}$, the mixing can be described by a single parameter

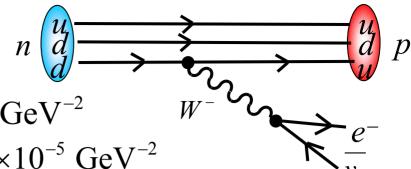
 \Rightarrow CABIBBO ANGLE $\vartheta_{\rm C} \approx 13^{\rm o}$ (from experiment)

Weak Eigenstates

Couplings become:



Example: Nuclear β decay



Recall
$$G_F^{\beta} = (1.136 \pm 0.003) \times 10^{-5} \text{ GeV}^{-2}$$
 $G_F^{\mu} = (1.16632 \pm 0.00002) \times 10^{-5} \text{ GeV}^{-2}$

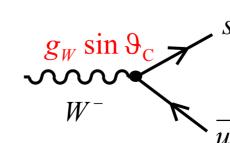
- > strength of ud coupling $g_w \cos \theta_c$
- $\triangleright (G_F^{\beta})^2 \propto |\mathbf{M}|^2 \propto \cos^2 \vartheta_{\mathbf{C}}$
- ightharpoonup Hence, expect $G_F^{\beta} = G_F^{\mu} \cos \theta_C$
- ightharpoonup It works, $1.136 = 1.16632 \times \cos 13^{\circ}$

$$\theta_{\rm C} \approx 13^{\rm o}$$

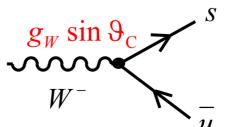
 $g_W \cos \vartheta$

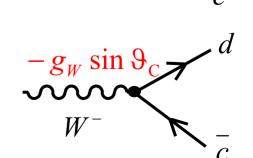
Cabibbo Favoured $|M|^2 \propto \cos^2 \vartheta_C$

Cabibbo Suppressed



 $g_W \cos \vartheta_C$

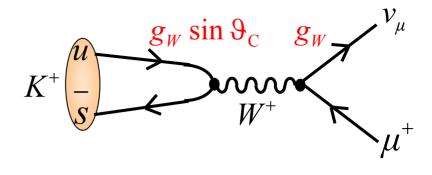




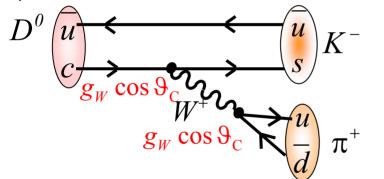
 $\propto \sin^2 \theta_{\rm C}$

Example:
$$K^+ \rightarrow \mu^+ \nu_\mu$$

 us^{-} coupling \Rightarrow Cabibbo suppressed K^{+} $\left| M \right|^{2} \propto \sin^{2} \vartheta_{\mathrm{C}}$



Example: $D^0 o K^-\pi^+$, $D^0 o K^+\pi^-$



$$D^{0} \stackrel{u}{\underset{C}{\longrightarrow}} \frac{u}{d} \pi^{-}$$

$$g_{W} \sin \theta_{C} \stackrel{u}{\underset{S}{\longrightarrow}} K^{+}$$

Expect

$$\frac{\Gamma(D^0 \to K^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)} = \frac{\sin^4 \vartheta_{\rm C}}{\cos^4 \vartheta_{\rm C}}$$

$$\approx 0.0028$$

Measure

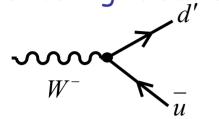
 0.0038 ± 0.0008

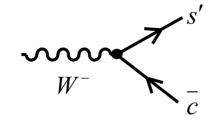
 $D^0 o K^+\pi^-$ is DOUBLY Cabibbo suppressed

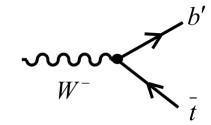
CKM Matrix

Cabibbo-Kobayashi-Maskawa Matrix

Extend to 3 generations





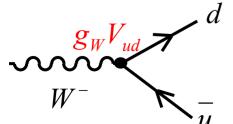


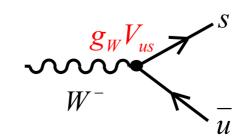
Weak Eigenstates
$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
 Flavour Eigenstates

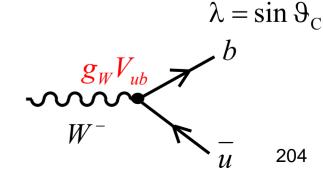
$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} \cos \vartheta_{\mathrm{C}} & \sin \vartheta_{\mathrm{C}} & 0.01 \\ -\sin \vartheta_{\mathrm{C}} & \cos \vartheta_{\mathrm{C}} & 0.05 \\ 0.01 & -0.05 & 1 \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & \lambda^3 \\ -\lambda & 1 - \frac{\lambda^2}{2} & \lambda^2 \\ \lambda^3 & -\lambda^2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & \lambda^3 \\ -\lambda & 1 - \frac{\lambda^2}{2} & \lambda^2 \\ \lambda^3 & -\lambda^2 & 1 \end{pmatrix}$$

Giving couplings

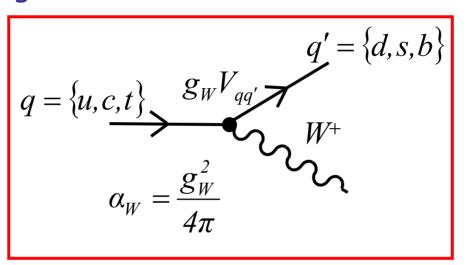






The Weak CC Quark Vertex

All weak charged current quark interactions can be described by the W boson propagator and the weak vertex:



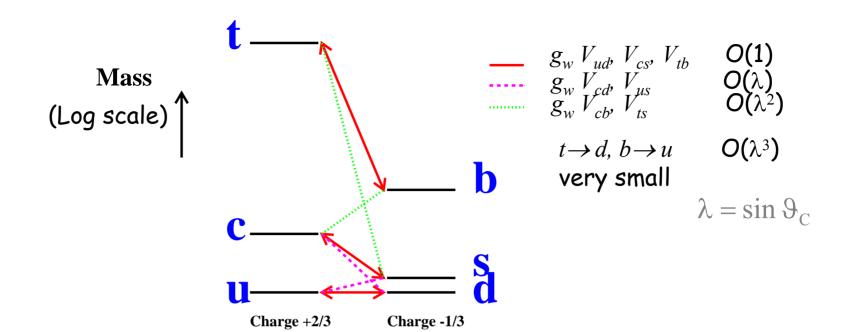
STANDARD MODEL WEAK CC QUARK VERTEX

+antiparticles

- > W bosons CHANGE quark flavour
- > W likes to couple to quarks in the SAME generation, but quark state mixing means that CROSS-GENERATION coupling can occur.

W-Lepton coupling constant
$$\longrightarrow g_W$$

W-Quark coupling constant $\longrightarrow g_W V_{CKM}$



$$\begin{array}{c} \underline{\mathsf{Example:}} \ B_s^0 \to D_s^- \mu^+ \nu_\mu \\ \to \varphi \pi^- \\ \to K^+ K^- \\ B_s^0 \\ \hline b \\ g_W V_{cb} \\ \hline W^+ g_W \\ \nu_\mu \\ \mu^+ \\ \hline |M|^2 \propto g_W^4 \sin^4 \vartheta_{\mathsf{C}} \\ \hline$$

Summary

WEAK INTERACTION (CHARGED CURRENT)

> Weak force mediated by massive W bosons

$$M_W = (80.423 \pm 0.038) \,\text{GeV}$$

> Weak force intrinsically stronger than EM interaction

$$\alpha_W \approx \frac{1}{30}$$
 cf $\alpha_{em} \approx \frac{1}{137}$

- Universal coupling to quarks and leptons
- Quarks take part in the interaction as mixtures of the flavour eigenstates
- Parity can be VIOLATED due to the HELICITY structure of the interaction
- > Strength of the weak interaction given by

$$G_F^{\mu} = (1.16632 \pm 0.00002) \times 10^{-5} \text{ GeV}^{-2}$$