


The Standard Model

Spin 3 Fermions

_ . N\ Charge (units of e)
LEPTONS (8 j (ﬂ j (T j -1
vT

V, Vﬂ 0

QUARKS U C 4 2/3
d S b -1/3

PLUS antileptons and antiquarks.

Spin 1 Bosons Mass (GeV/c?)
Gluon g 0 STRONG
Photon Y 0 EM
W and Z Bosons W% 7’ 91.2/80.3 WEAK

The Standard Model also predicts the existence of a spin O
HIGGS BOSON
which gives all particles their masses via its interactions. 59



Theoretical Framework

Macroscopic > Microscopic
Slow Classical Mechanics Quantum Mechanics

Fast Special Relativity Quantum Field Theory

The Standard Model is a collection of related GAUGE THEORIES

which are QUANTUM FIELD THEORIES that satisfy LOCAL

GAUGE INVARTANCE.

&

(O

ELECTROMAGNETISM: QUANTUM ELECTRODYNAMICS (QED)

1948 Feynman, Schwinger, Tomonaga (1965 Nobel Prize)

ELECTROMAGNETISM: ELECTROWEAK UNIFICATION

+WEAK

STRONG:

1968 Glashow, Weinberg, Salam (1979 Nobel Prize)

QUANTUM CHROMODYNAMICS (QCD)
1974 Politzer, Wilczek, Gross (2004 Nobel Prize) .
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Klein-Gordon Equation

To describe the fundamental interactions of particles we need a
theory of RELATIVISTIC QUANTUM MECHANICS.

Schrodinger Equation: s
For a free particle Ey = p—w

2m
with energy and momentum operators: E=i aﬁ , p=-iV
[
- Oy 1 _, 7 =1 natural units
giving I—=—"—Vy
ot 2m

which has plane wave solutions /(7,t)=Ne 7"

Schrodinger Equation:

» 1st Order in time derivative } Not Lorentz Invariant!
> 2" Order in space derivatives

Schrodinger equation cannot be used to describe the physics of

relativistic particles. 61



From Special Relativity: E’=p’+m

From Quantum Mechanics: E=i— , p=-iV
ot
. . 2
Combine to give: B C;ZJ V2 miy
OV _(v?—m?)y | KLEIN-GORDON
ot EQUATION

Second order in both space and time derivatives and hence Lorentz
invariant.

Plane wave solutions w(7,t)= Ne" ™ 7" give E° = p’ +m’

E=+|p| +m’

Negative energy solutions required to form complete set of
eigenstates

ma) | ANTIMATTER
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Antimatter

The negative energy solution is equivalent to a negative energy
particle state travelling backwards in time

o1t = (=)~

— Interpret as a positive energy antiparticle travelling forwards in
time.

Then all solutions describe physical states with positive energy,
going forward in time.

Examples: efe™ annihilation pair creation _
e e
v Y
Va¥a SN
All quantum numbers carried
. . +
ot into vertex by e*, same as if e

viewed as outgoing e". 63



Interaction via Particle Exchange

Consider two particles, fixed at 7, and 7,, which exchange a
particle of mass m.

Space 4 ]s’ra‘rei s’ra‘reji state i

Time
Calculate shift in energy of state i due to this process, using
2"d order perturbation theory:

0H\jjJH S Il possible states
AE Z“ ‘]><]‘ ‘> W?TT\ cc;\i/fe;ﬂe?"er?’roisngniac.( e

J#I
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Consider <j‘H‘i> ( transition from i to j by emission of m at 7, )

W, =Yy, Original 2 particles
'7”] — l/jlw2w3 WS — e—l(Et—p.I”)

W/ ; represents a free particle with ¢* = (E, p)

Let g be the probability of emitting m at 7, /Dlmc 5funchon
o |7 o' (F
(i|H)i) =g [d'F yiwwsww, 6°(F-F) o
i(Et-p7,) =1 r=r
= 8¢ ] o
=0 r#r,
Similarly <i‘H‘j> is the transition fromj to i at 7,
()t
Shift in energy state is
gZQZP(’”z —77) gzelp(rz —77)
AE ™ = = E=E -E

J# Ei _Ej

];/—'l
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Normalization
Previously normalized wave-functions to 1 particle in a box of side L.
In relativity, the box will be Lorentz contracted by a factor y

] 1

-V _ ]_ﬁ 2 _E
Rest frame Lab. frame / c’ m
1 particle per V 1 particle per V/y

ie. V'= V(ﬂ]
E

i.e. E/m particles per volume V.

Need to adjust normalization volume with energy

)i
Conventional choice: N=———
N2E

For initial/final state particles the normalization 1/2E is cancelled by
corresponding terms in the flux/density of states (like 1/L° before).
For the intermediate particle no such cancellation occurs. 66



Different states j have different momenta p. Therefore sum is
actually an integral over all momenta:

-2 g2€lﬁ(72_?f) ( 1 Y 2dO
AE; 77 = =|
| j ——PP)dp pR)=\ 5| P
2 _ip«(r,—7;) 3
g 2~ N ] ] )
— dp dS2
j —FE 2E(27rj paep
5 ] 3 ip-(r;=1; ) 5 5 5 5

The integral can be done by choosing the z-axis along 7 =7, —7,.
Then p-F = prcosd and dQ = 2rxd(cos9)
NE? — g’ r’ p’ e = i Appendix D
l 2(27r)2 0 p’+m’ ipr
Write this integral as one half of the integral from -« to +wo, which
can be done by residues giving

l St r 67
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Can also exchange particle from 2 to 1:

Space % ]s’ra’rei : sState;j: statei
2
Time
gZ e—mr
Get the same result: AE’™ = ;
T r

Total shift in energy due to particle exchange is

2 _—mr
AE, =—2_°
dr r

ATTRACTIVE force between two particles which decreases
exponentially with range r.
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Yukawa Potential

2 _—mr

e

YUKAWA POTENTIAL v =-%

dr r

» Characteristic range = 1/m Hideki Yukawa
(Compton wavelength of exchanged particle) 1949 Nobel Prize

2

» For m—0, Vir)=— & infinite range
4dntr

Yukawa potential with m = 139 MeV/c? gives good description of long
range interaction between two nucleons and was the basis for the
prediction of the existence of the pion.
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Scattering from the Yukawa Potential

Consider elastic scattering (no energy transfer) p/vl B
o P; p
Born Approximation M ;= je’p'rV(r)d3z7 STy
2 _—mr L — E’ -
Yukawa Potential Vir)=— g € 9 ( p)
4T r 2 _ E2 _‘]3 2
2 —mr 2
M, = _& (€ P d3r = — 2g > g’ is invariant
o= 1 p +m "VIRTUAL MASS"

The integral can be done by choosing the z-axis along 7 , then
p-¥ = prcosd and d°7 = 2nr’ drd(cos9)

For elastic scattering, ¢* =(0,p), ¢’ =-|p[ and exchanged
massive particle is highly "virtual”

2

g
M, =
Ji qz_m2
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Virtual Particles

Forces arise due to the exchange of unobservable VIRTUAL
particles.

> The mass of the virtual particle, ¢°, is given by
12
¢’ =E’~|p

and is not the physical mass m, i.e. it is OFF MASS-SHELL.

» The mass of a virtual particle can by +ve, -ve or imaginary.

> A virtual particle which is off-mass shell by amount Am can only
exist for time and range

h )i h )i ,
t ~ > = , range = = i =c=1 natural units
Amc Am Amec  Am

> If ¢°=m?, then the particle is real and can be observed.
71



For virtual particle exchange, expect a contribution to the matrix
element of >

g
M, =
Ji qz_mz

where g COUPLING CONSTANT
STRENGTH OF INTERACTION
PHYSICAL (On-shell) mass

q VIRTUAL (Off-shell) mass
%2 _m? PROPAGATOR

Qualitatively: the propagator is inversely proportional to how far
the particle is off-shell. The further off-shell, the smaller the

probability of producing such a virtual state.
2

> Form — 0 e.qg. single y exchange M ; = g_z

> q°— 0, very low energy transfer EM scattering ,



Feynman Diagrams

Results of calculations based on a single process in Time-Ordered
Perturbation Theory (sometimes called old-fashioned, OFPT) depend
on the reference frame.

The sum of all time orderings is not frame dependent and provides
the basis for our relativistic theory of Quantum Mechanics.

The sum of all fime orderings are repr'esen’red by FEYNMAN
DIAGRAMS. !

al —— S —
=_ 4 7

° ) ° )
Time Time

Cl
>

- FEYNMAN
= DIAGRAM
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Feynman diagrams represent a term in the perturbation theory
expansion of the matrix element for an interaction.

Normally, a matrix element contains an infinite number of Feynman
diagrams.

Total amplitude M,=M,+M,+M;+--

Total rate  I', =2z|M, +M,+M,+--{ p(E) Eﬁlf‘:“'s Golden

But each vertex gives a factor of g, so if g is small (i.e. the
perturbation is small) only need the first few.

2 4 5

g g

e’ 1
: =e=A+4no o= ~
Example: QED g tr 137 o




Anatomy of Feynman Diagrams

Feynman devised a pictorial method for evaluating matrix elements
for the interactions between fundamental particles in a few simple
rules. We shall use Feynman diagrams extensively throughout this

course.

Represent particles (and antiparticles):

Spin 3 Quarks and
Leptons

Spin 1 y, W#and Z° VAVAVAVA

g =11311

and their interaction point (vertex) witha "“e".

Each vertex gives a factor of the coupling constant, g.
75



External Lines (visible particles)

Particle >—e Incoming

Spin 3 —> Outgoing
Antiparticle <—o Tncoming

® < Outgoing

Spin 1 Particle SUMY e Tncoming
e P Oufgoing

Internal lines (propagators)

Spinz | Particle o o Each propagator gives
(antiparticle) a factor of
Spin 1 Y, W*and Z° L VAVAVAVY ]
2 2
g LTSS ¢ -
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Examples:
ELECTROMAGNETIC STRONG

e

Electron-proton scattering Quark-antiquark annihilation

WEAK

Neutron decay ¢ -






QED

QUANTUM ELECTRODYNAMICS is the gauge theory of
electromagnetic interactions.

Consider a non-relativistic charged particle in an EM field:

—_

F:q(E+17><Z;’)

E,B given in term of vector and scalar potentials 4,¢

—_

B=Vxi: E:—W—Z—A Maxwells Equations
4
_ l (. =V
H=—(p—qA ) +q9

e
e‘/ Change in state of ¢~ requires change in field
—>— % — Interaction via virtual y emission
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Schrodinger equation [L(ﬁ—qﬁ )2+q¢}w(ﬂ):i51//(f,f)

2m ot
is invariant under the gauge transformation Appendix E
W — l//' — eiqa(ﬁt)w
e oo
A—> A+Va ; gﬂ—)go—a—
5

— LOCAL GAUGE INVARIANCE

LOCAL GAUGE INVARTIANCE requires a physical GAUGE FIELD
(photon) and completely specifies the form of the interaction
between the particle and field.

» Photons are massless - in order to cancel phase changes over all
space-time, the range of the photon must be infinite.

» Charge is conserved - the charge ¢ which interacts with the field
must not change in space or time.

= QED is a GAUGE THEORY 80



The Electromagnetic Vertex

All electromagnetic interactions can be described by the photon
propagator and the EM vertex:

e U, T
- g=0e q STANDARD MODEL
CLHLT_ y ELECTROMAGNETIC
q VERTEX
e2
o =— ) .
47 +antiparticles

» The coupling constant, g, is proportional to the fermion charge.

» Energy, momentum, angular momentum and charge always
conserved.

> QED vertex NEVER changes particle type or flavour
ie.e —>ey butnote —>¢qy ore —>uy
» QED vertex always conserves PARITY 81



Pure QED Processes g’

M ~
Compton Scattering (ye—ye) o q’
M e’ oL = i
g oC ‘M‘z oc e In

g oC (47r)zoc2

yj\f' MOCZeS’
| M‘Z o 7260 The processes e—ey

and y— efe"cannot occur

32 3
o (4n) Z’a for real e*, y due to
. . enhergy, momentum
Pair Production (y— e*e) conservation.
Y e M o Ze°
‘M‘Z o Z%e°
3~2 3
Nucleus e’ o (47[) Lo 82




e y 9 M Qe
e+€_ Annlhl_l(]TIOH >/\/\,\< ‘M‘Z o Qq264
e 3 o oc (47) 0o

q
Y M o Q’e’
n° Decay o2 ) f ‘M‘Z oc Qe
u
' — vy < b O o (4%)2 Q;tOL2
W |MecQe’
Y 2 2 4
J/ vty I/v ‘M ‘ o Qe
w 0 X (47[)2 Qjaz

The coupling strength determines “order of magnitude” of the matrix

element. For particles interacting/decaying via EM interaction: typical
values for cross-sections/lifetimes

c,, ~ 102 mb
1, ~ 1020 g 83




Scattering in QED

Examples: Calculate the “spin-less” cross-sections for the two processes:
1 ° °© @ ¢ _

1
2

Electron-proton scattering  Electron-positron annihilation

Fermi's Golden rule and Born Approximation (see page 48):
do E’ 2
- 2 ‘M‘
dQ (2r)

For both processes write the SAME matrix element

2
e 4na

M: =

2 2

q q
> e’ =4ma is the strength of the interaction.

> /2 measures the probability that the photon carries 4-momentum
q

g"=(Ep) ¢’ =FE —\13\2 i.e. smaller probability for higher m8ciss.




(1) "Spin-less” e-p Scattering

€ e’ 4ma
M = =
T q
do  E° | . E° (4ma) 4a’E’
- 2‘M‘ - 2 VA 1
» dQ (2rn) (2z) ¢ q
q° is the four- momentum transfer: -
9’ =q"q, = (E ~Ef - (pf p.f

—2m2—2E E. +2‘pf cos9

D

Neglecting elec’rron mass: i.e.m. =0 and ‘pf‘—
=—2E E(1- COSS)

rLsin”
Therefore for ELASTIC scattering E, = E,

do o RUTHERFORD

2,49
dQ 4E°sin é SCATTERING

=E;+E —-2E,E,—p,—p; +2p, D,
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Discovery of Quarks
Virtual y carries 4-momentum g* = (Eﬁ)

Large ¢ = Large p, small 4 D= %
Large E, large o E=hw

High ¢ wave-function oscillates rapidly in space and time = probes
short distances and short time.

, utherford Scattering
g small dg 1°

m104

SLAC e scattering (1972)
E=8GeV

Excited states 10°
g2 increases —\f\ \/\_ 102

! 0 005 01 015 02 025 0.3 035 04 045 05
Angle (radians)

Expected Rutherford
scattering

g% large E

A<<size of proton
g% >1(6eV)?

Elastic scattering from
quarks in proton 86




(2) "Spin-less” e*e- Annihilation

2

e 4ma
M= ¢ 7
do _ E’ [ - E’ (4ma) _40’E’
dQ (2r) (2z) ¢’ q’

Same formula, but different 4-momentum transfer:
4" =q"q, =(E, +E.) = (P, +D..)
Assuming we are in the centre-of-mass system £, =FE, =E
ﬁe- = _pe+
do 40’E’ 4a’E° o’

2 B 2 _
- - g’ =q"q,=(2E) =s
aQ ¢’ I6E* s '

Integrating gives total cross-section:

2
4na
O' f—

S 87




This is not quite correct, because we have neglected spin. The
actual cross-section (using the Dirac equation) is

dO' az wt """"""" I BB L
= I+cos’9 : 3
dQ 4S ( ) 0] (nb) : -
2 L
ole’e > uu )= o :
3s

Ll e

Example: Cross-section at Js =22 GeV |
(i.e. 11 GeV electrons colliding with “

11 GeV positrons) 1) SN S PR S|
e -+ . A4ma® 4m Js  (GeV)
o(e e — = =
‘ i) 3s (137)2 3x22°
=4.6x107 GeV ™
=4.6x107 x(O.]Q%
=1.8x107° fn’

=(0.18 nb

he=0.197 GeVfim
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The Drell-Yan Process

Can also annihilate gg as in the Drell-Yan process.

Example: 7 p — u"u” + hadrons See example sheet 1 (Question 13)

Tr—
n

a(n'p —>uu+ hadrons)oc O’e’ c Q’a’
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Experimental Tests of QED

QED is an extremely successful theory tested to very high precision.

Example: )
> Magnetic moments of e, u*t: U= g%§
> For a point-like spin 7 particle: g=2 Dirac Equation

However, higher order terms introduce an anomalous magnetic
moment i.e. g not quite 2.

O(a?)

o(1)
12672 diagrams
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Higher Orders

So far only considered lowest order term in the perturbation
series. Higher order terms also contribute

e u
Lowest y e ‘M‘z oc e’ oca’ ~ (%37)2
Order ) )

e

e TX n ‘M‘2OC0‘4”(]137)4

Y Y
Second e e)mnnn(ié T oo
Order .
e uoe u
2

o ) H— e y H_ ‘M‘ x a6 N( ]37)é
Third +
Order M y é% e . _i

e’ w e W N 41

Second order suppressed by o? relative to first order. Provided o
is small, i.e. perturbation is small, lowest order dominates. 92



Running of o

2
> o=°¢€ Aﬂ specifies the strength of the interaction between an
electron and a photon.

> BUT o is NOT a constant.

Consider an electric charge in a dielectric medium.
Charge Q appears screened by a halo of +ve charges.
Only see full value of charge Q at small distance.

Consider a free electron.
The same effect can happen due to quantum

fluctuations that lead to a cloud of virtual e*e pairs
-

» The vacuum acts like a dielectric medium

» The virtual e*e” pairs are polarised

> At large distances the bare electron charge is screened.

» At shorter distances, screening effect reduced and see a larger
effective charge i.e. a.
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Measure a(g?) from e'e” — u u” etc

130

> o increases with increasing ¢2 1%

(i.e. closer to the bare charge

> At ¢?=0: a=1/137 115
> At ¢?=(100 GeV)?: a=1/128 110}

105 &

)120

TOPAZ pu/eeuu: A qq: A

Fitsto leptonic data from:
*DORIS OPETRA, ¢TRISTAN

0 25 50 75 100 125 150 175 200
Q/GeVv
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