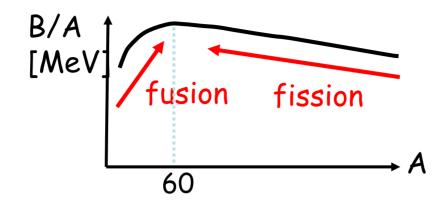
Section XV Fission and Fusion

Fission and Fusion



Most stable form of nuclear matter is at $A\sim60$. Expect a large amount of energy released in the FISSION of a heavy nucleus into two medium nuclei and in the FUSION of two light nuclei into a single medium nucleus.

SEMF
$$B(A,Z) = a_V A - a_S A^{2/3} - \frac{a_C Z^2}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \delta(A)$$

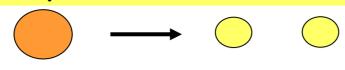
<u>FISSION</u> occurs because the total Coulomb repulsion energy of p's in a nucleus is reduced if the nucleus splits into two smaller nuclei. The nuclear surface energy increases in the process, but its magnitude is much smaller.

<u>FUSION</u> occurs because the two low A nuclei have too large a surface area for their volume. The surface area decreases when they amalgamate.

Coulomb energy increases, but its magnitude is too small.

374

Spontaneous Fission



(A,Z)

$$(A_1,Z_1)$$
 (A_2,Z_2)

> Expect spontaneous fission to occur if energy released

$$E_0 = B(A_1, Z_1) + B(A_2, Z_2) - B(A, Z) > 0$$

- > Assume $\frac{A_1}{A} = \frac{Z_1}{Z} = y_1$ and $\frac{A_2}{A} = \frac{Z_2}{Z} = y_2$; $y_1 + y_2 = 1$
- From SEMF $E_0 = a_S A^{2/3} (1 y_1^{2/3} y_2^{2/3}) + a_C \frac{Z^2}{A^{1/3}} (1 y_1^{5/3} y_2^{5/3})$
- Maximum energy release when $\frac{\partial E_0}{\partial y_1} = 0$ $(dy_2 = -dy_1)$

$$\frac{\partial E_0}{\partial y_1} = a_S A^{2/3} \left(-\frac{2}{3} y_1^{-1/3} + \frac{2}{3} y_2^{-1/3} \right) + a_C \frac{Z^2}{A^{1/3}} \left(-\frac{5}{3} y_1^{2/3} + \frac{5}{3} y_2^{2/3} \right) = 0 \text{ when } y_1 = y_2 = \frac{1}{2}$$

Maximum $E_0 = 0.37 a_C \frac{Z^2}{A^{1/3}} - 0.26 a_S A^{2/3}$

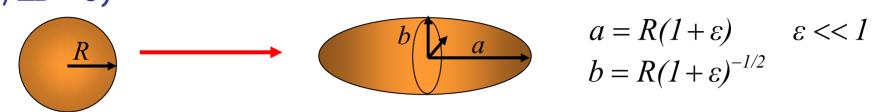
SYMMETRIC FISSION

 $a_S = 16.8 \quad MeV$ $a_C = 0.72 \quad MeV$

Example: $^{238}_{92}U$ Maximum $E_0 \approx 200$ MeV

~106 > energy released in chemical reaction.

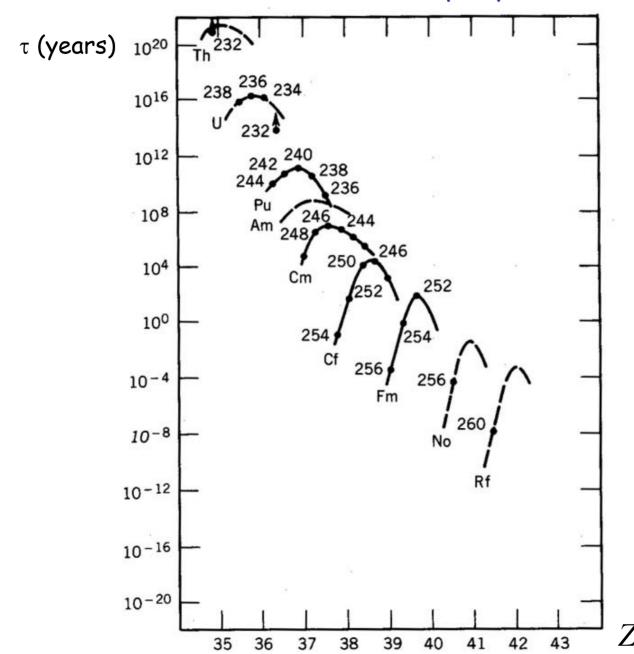
> Estimate mass at which nuclei become unstable to fission (i.e. point at which energy change due to deformation gives a change in B.E, $\Delta B > 0$)



- > SEMF Volume term unchanged: $Volume = \frac{4}{3}\pi ab^2 = \frac{4}{3}\pi R^3 = CONSTANT$
- > Change in surface term: $a_S A^{2/3} \longrightarrow a_S A^{2/3} (1 + \frac{2}{5}\varepsilon^2)$ See Segrè Change in Coulomb term: $a_C \frac{Z^2}{A^{1/3}} \longrightarrow a_C \frac{Z^2}{A^{1/3}} (1 \frac{\varepsilon^2}{5})$
- ► Change in Binding Energy: $\Delta B = B(\varepsilon) B(0) = a_C A^{2/3} \left(\frac{Z^2}{A} \frac{2a_S}{a_C} \right) \frac{\varepsilon^2}{5}$

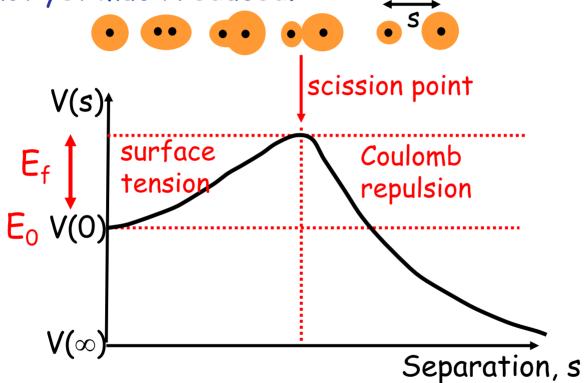
i.e. if
$$\frac{Z^2}{A} > \frac{2a_S}{a_C}$$
 $\Delta B > 0$ and nucleus unstable under deformation $\Rightarrow \frac{Z^2}{A} > 50$

\triangleright Spontaneous fission lifetimes fall rapidly as Z^2/A approaches 50.



Fission Barrier

In the fission process, nuclei have to pass through an intermediate state where the surface energy is increased, but the Coulomb energy is not yet much reduced.



 E_0 = energy released \rightarrow K.E. of fragments.

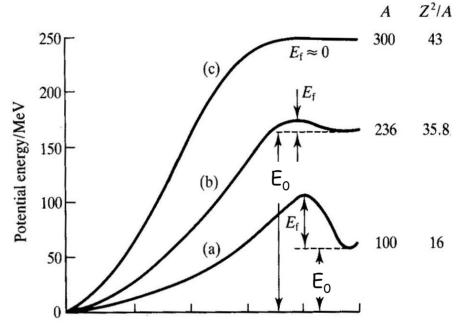
E_f = FISSION ACTIVATION ENERGY
$$E_f = a_C A^{2/3} \left(\frac{Z^2}{A} - \frac{2a_S}{a_C} \right) \frac{\varepsilon^2}{5} \approx \underline{6 \ MeV} \qquad ^{236}_{92} U$$

Spontaneous fission is possible if tunnelling occurs (c.f. α decay).

Tunnelling probability depends on

 $\geq Z^2/A$.

$$E_f \sim \frac{Z^2}{A}$$



Mass of fragment.

$$P = e^{-2G}$$
 $G \sim m^{1/2}$

Large mass \rightarrow low probability for tunnelling e.g. 10^6 less probable than α decay for $^{238}_{92}U$

Induced Fission

LOW ENERGY NEUTRON CAPTURE

- > At low energies, neutrons can be absorbed by nuclei (no Coulomb barrier).
- > Important for the design of thermonuclear reactors.
- \triangleright For a low energy excited state, γ decay is most probable.

Breit-Wigner Cross-section

$$\sigma(n,\gamma) = \frac{g\pi \lambda^2 \Gamma_n \Gamma_{\gamma}}{\left(E - E_0\right)^2 + \frac{\Gamma^2}{4}}$$

 $\Gamma_n \ll \Gamma_y \approx \Gamma$

At resonance

$$\sigma(n,\gamma) = 4\pi \lambda^2 g \frac{\Gamma_n \Gamma_{\gamma}}{\Gamma^2} \approx 4\pi \lambda^2 g \frac{\Gamma_n}{\Gamma}$$

Typically, $\Gamma_n \sim 10^{-3}$ eV, $\Gamma \sim 1$ eV, 1eV neutron $\Rightarrow \sigma \sim 10^3$ b (largest $^{135}X_e$ $\sigma \sim 10^6$ b)

Below resonance

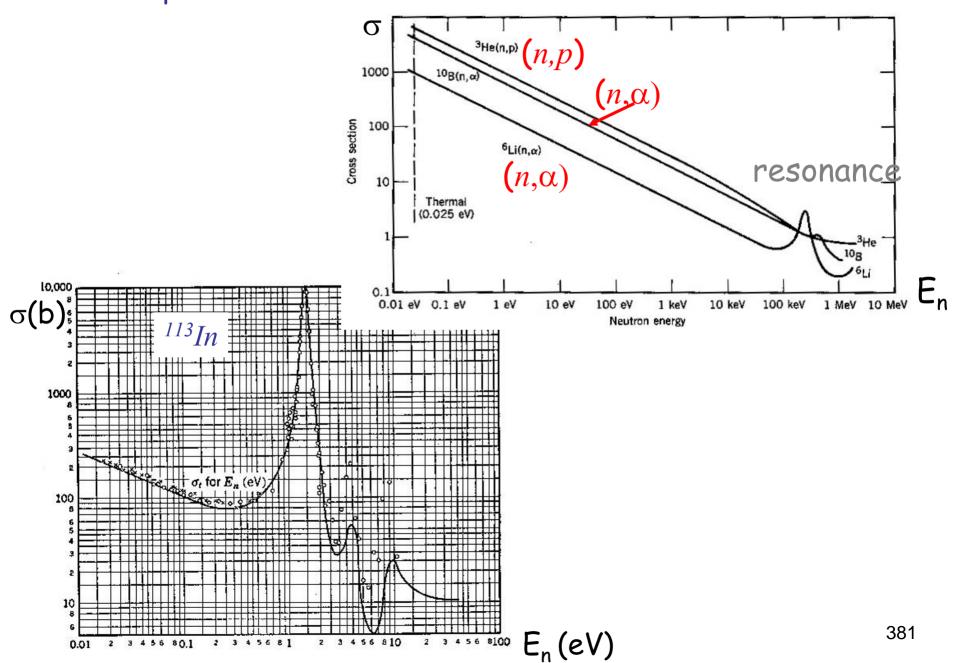
$$\sigma(n,\gamma) \approx \hat{\chi}^2 \Gamma_n \left| \frac{g\pi \Gamma_{\gamma}}{E_0^2 + \Gamma_{4}^2} \right| \leftarrow constant$$

 Γ_n dominated by phase space

$$\Gamma_n \sim \frac{p^2}{v} \sim v$$
; $\lambda = \frac{\hbar}{p} \rightarrow \lambda^2 \sim \frac{1}{v^2} \longrightarrow \therefore \sigma(n, \gamma) \approx \frac{1}{v} \frac{"1/v LAW"}{380}$

$$\therefore \sigma(n,\gamma) \approx \frac{1}{v}$$

$\sigma \sim 1/v$ dependence far from resonance \Rightarrow Ln $\sigma \sim$ - Ln E



INDUCED FISSION of nuclei occurs when a nucleus captures a low energy neutron receiving enough energy to climb the fission barrier.

e.g.
$$n + {}^{235}_{92}U \rightarrow {}^{236}_{92}U \rightarrow X^* + Y^* \rightarrow X + Y + \kappa n$$
 $\kappa \sim 2.4$ PROMPT NEUTRONS

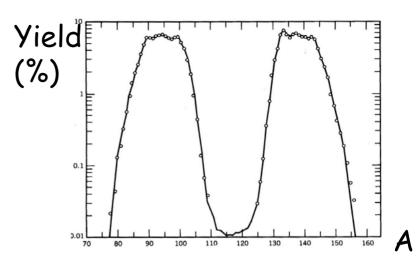
ightharpoonup If excitation energy > fission activation energy, fission will occur for zero energy neutrons ightharpoonup THERMAL NEUTRONS.

(Available energy from separation energy of n).

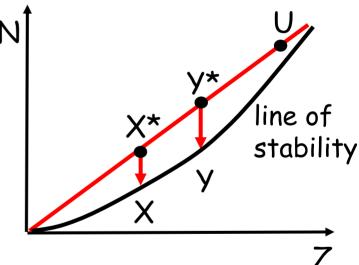
 \triangleright Otherwise need to supply energy using K.E. of n.

e.g.
$$n+^{238}U \rightarrow ^{239}U^*$$
 $E_f \sim 6$ MeV $E_n=0$ $E \sim 5$ MeV no thermal fission $E_n=1.4$ MeV $E \sim 6.4$ MeV fission

Masses of fragments are unequal (in general). Tend to have Z, N near magic numbers.



Fragments tend to have same Z/N ratio as parent \rightarrow neutron rich nuclei which emit PROMPT NEUTRONS (10⁻¹⁶s)



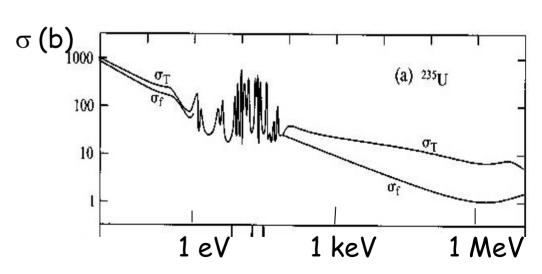
- \triangleright X and Y undergo β decay more slowly
 - → DELAYED NEUTRON EMISSION (~1 delayed n/100 fissions)

Chain Reaction

- ➤ Neutrons from fission process can be used to induce further fission
 → CHAIN REACTION
- \triangleright A chain reaction can be sustained if at least 1 n per fission induces another fission process.

Define k = number of neutrons from one fission which induce another

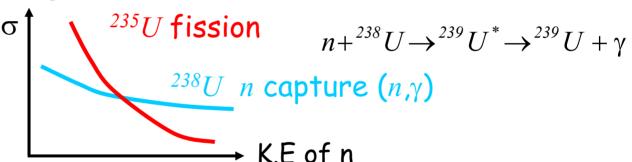
Prompt neutrons are FAST,
<E> ~ 2 MeV and the fission
cross-section is small



 \triangleright Hence, need to slow down fast neutrons before they escape or absorbed by (n,γ) process \rightarrow CHAIN REACTION

Fission Reactors

- For reactors want a steady energy release, exactly critical (k = 1).
- > A MODERATOR slows neutrons via elastic collisions (large energy transfer). Requires a light nucleus (e.g. 12C).
- > PROBLEM: Natural U (99.3% ^{238}U , 0.7% ^{235}U) and n capture cross-section large for ^{238}U



- Need to THERMALISE fast neutrons AWAY from ^{238}U to avoid capture (i.e. in rods of ^{12}C).
- \succ CONTROL number of neutrons by absorption (e.g. 113 Cd rods). Typical time between fission and daughter inducing another fission $\sim 10^{-3}$ s.
 - → Mechanical control of rods in times « seconds not possible.

What happens if no control of neutrons?

$$N(t+dt) = N(t) + (k-1)N(t)\frac{dt}{\tau} \implies dN = (k-1)N\frac{dt}{\tau}$$

$$\int_{N(0)}^{N(t)} \frac{dN}{N} = \int_{0}^{t} (k-1)\frac{dt}{\tau} \implies N(t) = N(0)e^{(k-1)t/\tau}$$

where N(t) is the number of neutrons at time t (k-1) is the % change in number of neutrons in 1 cycle τ mean time for 1 cycle ~10⁻³ s (fission \to fission)

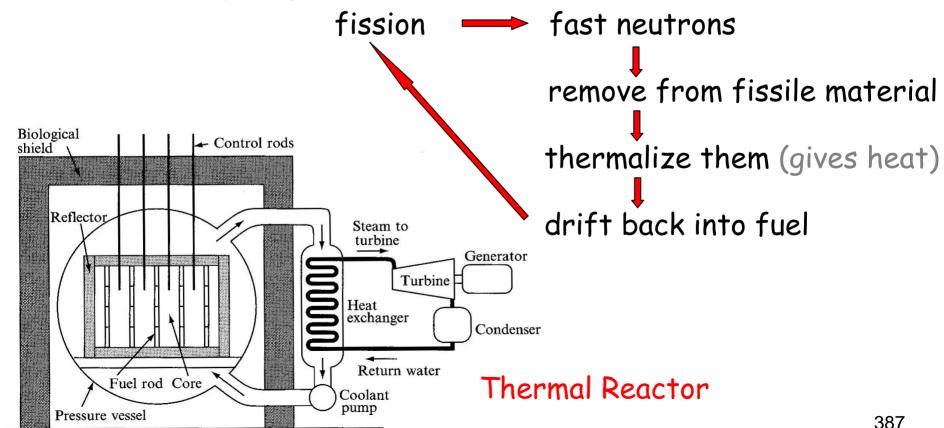
e.g.
$$k$$
 =1.01, τ = 0.001s, t = 1s
$$\frac{N(t)}{N(0)} = e^{0.01/0.001} = e^{10}$$
 (22,000 in 1s)

NOTE: U reactor will NOT explode if it goes supercritical. As it heats up, K.E. of neutrons increases and fission cross-section drops. Reactor stabilizes at a very high temperature

- \triangleright Solution is to make use of delayed *n* emission. (delay ~ 13 s)
- \triangleright Design reactor to be subcritical to PROMPT n and use DELAYED n to take it to critical.

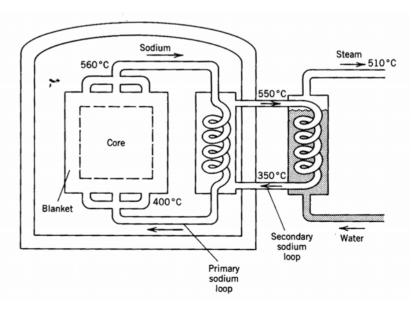
THERMAL REACTORS

Require following steps:



FAST BREEDER REACTORS

- \blacktriangleright Can use fast neutrons to produce chain reaction. Thermal σ higher, but high enrichment compensates. No moderator required.
- > n capture by $n+^{238}U \rightarrow^{239}U \rightarrow^{239}Np \rightarrow^{239}Pu$ Hence, BREEDER. All fuel used. fissionable
- > Control rods required.



Nuclear Fusion

> Energetically favourable for light nuclei to fuse and release energy. However, light nuclei need energy to overcome Coulomb barrier.

e.g most basic process $p + p \rightarrow d + e^+ + v_e$ $E_0 = 0.42 \text{ MeV}$

$$p + p \rightarrow d + e^+ + v_e$$

> Coulomb barrier

$$V = \frac{e^2}{4\pi\varepsilon_0 R} = \frac{\alpha\hbar c}{R} = \frac{197}{137 \times 1.2} = \underline{1.2 \text{ MeV}}$$

- > ACCELERATORS: Energies above barrier easy to achieve. However, high particle densities for long periods of time very difficult. These are required to get the rate of fusion reactions for desired power.
- > STARS: Large proton density 10³² m⁻³. Particle K.E. due to thermal motion.

For kT ~1 MeV require T~1010 K Sun T~107 K Energies ~1 keV

FUSION RATE IN SUN

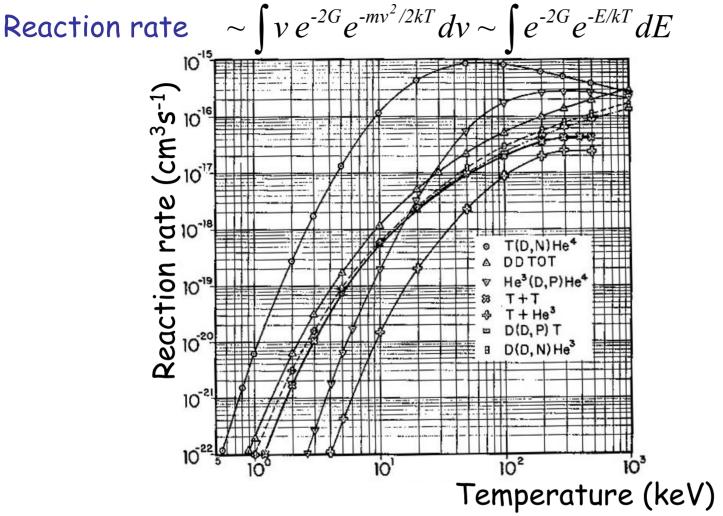
- ➤ Particles in the sun have Maxwell-Boltzman velocity distribution very important because tunnelling probability is a strong function of energy.
- Reaction rate/unit volume for particles of velocity v $= \sigma(v) \varphi \, N$ where $\varphi = Nv$
- $ightharpoonup \sigma$ is modified by tunnelling probability $P=e^{-2G(v)}$

Gamow Factor
$$G(v) \approx \left(\frac{2m}{E_0}\right)^{1/2} \frac{e^2}{4\pi\varepsilon_0} \frac{Z_1 Z_2}{\hbar} \frac{\pi}{2} = \frac{e^2}{4\pi\varepsilon_0} \frac{\pi Z_1 Z_2}{\hbar v}$$

Convolve with velocity distribution

Probability velocity between v and v+dv $f(v)dv = v^2 e^{-mv^2/2kT} dv$

$$\Rightarrow$$
 Reaction Rate = $\int N(Nv) \sigma(v) P f(v) dv$



Typical fusion reactions peak at kT~100 keV \Rightarrow T~10°K

e.g. $p+p \rightarrow d+e^++\nu_e$ Reaction rate/proton/sec ~ 5×10^{-18} s \Rightarrow Mean life, τ = 10^{10} years

This defines the burning rate in the Sun.

FUSION PROCESSES IN THE SUN

(1)
$$p + p \rightarrow d + e^{+} + v$$
 $p + p \rightarrow d + e^{+} + v$ $E_{0} = 0.42 \text{ MeV}$ $E_{0} = 0.42 \text{ MeV}$ (2) $p + d \rightarrow {}^{3}He + \gamma$ $p + d \rightarrow {}^{3}He + \gamma$ $p + d \rightarrow {}^{3}He + \gamma$ $E_{0} = 5.49 \text{ MeV}$ (3) $E_{0} = 5.49 \text{ MeV}$ $E_{0} = 12.86 \text{ MeV}$

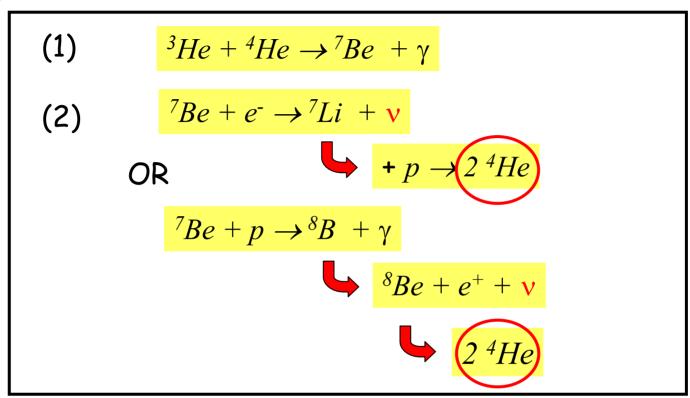
Net Reaction
 2e⁺ annihilate with 2e⁻

$$4p \rightarrow ^4He + 2e^+ + 2v$$

$$E_0 = 4m_e = 2.04 \text{ MeV}$$

- Total energy release in fusion cycle = <u>26.7 MeV</u> i.e. energy release per proton in fusion cycle = 26.7/4 = 6.7 MeV
- > v's emerge without further interaction with ~2% of the energy. The rest heats the core.
- Observed luminosity ~ $4 \times 10^{26} \text{ J/s}$ Number of protons consumed $s^{-1} = \frac{4 \times 10^{26}}{1.6 \times 10^{-13}} \frac{1}{6.7} = \frac{4 \times 10^{38}}{6.7}$

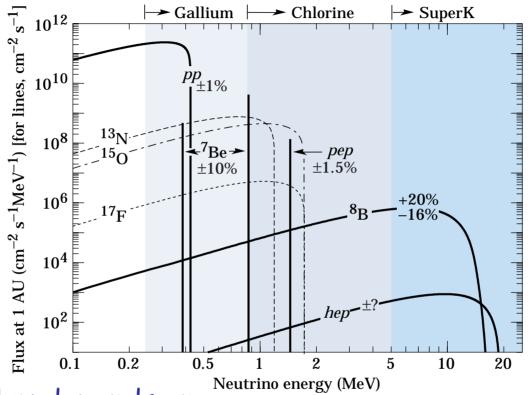
Other ³He interactions:



- > Other fusion cycles also possible e.g. C-N-0
- Dbservation of solar neutrinos from the various sources directly addresses the theory of stellar structure and evolution (Standard Solar Model).
- > The Sun also provides an opportunity to investigate v properties e.g. mass, oscillations...

Solar Neutrinos

Many experiments have studied the solar neutrino flux



Expected flux depends on

- > Standard Solar Model (temp, density, composition vs r)
- > Nuclear reaction cross-sections

Observed v flux ~ 1/3 expected v flux

The Solar v problem has recently been solved by the Sudbury Neutrino Observatory (SNO) collaboration. They have reported evidence for a non- v_e neutrino component in the solar v flux

→ NEUTRINO OSCILLATIONS

SNO measure the ⁸B solar v flux using the reactions

$$v_e + d \rightarrow e^- + p + p$$
 $v_e \text{ flux}$

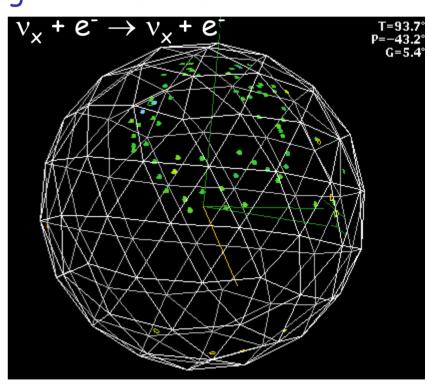
$$v_{x} + d \rightarrow v_{x} + p + n$$
 } total flux (all $v_{x} + e^{-} \rightarrow v_{x} + e^{-}$ } (all $v_{x} + e^{-} \rightarrow v_{x} + e^{-}$

1000 tons D_20 in spherical vessel

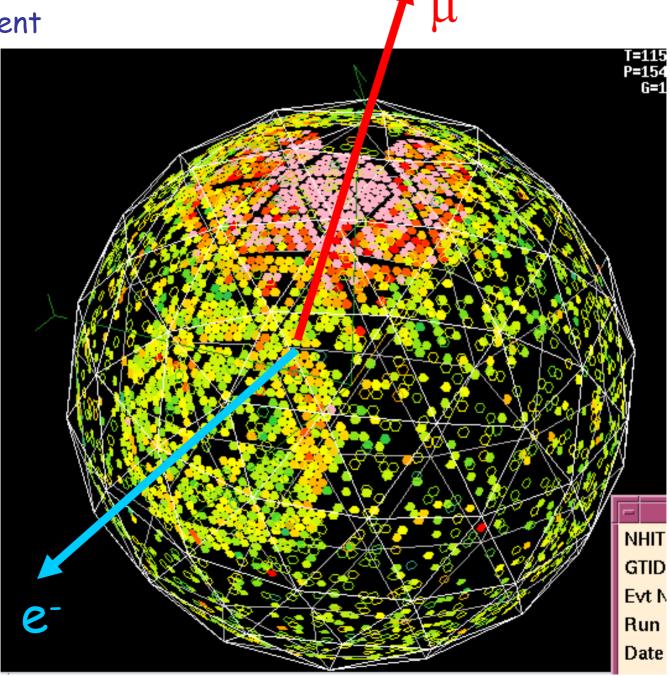
Evidence for $v_e \Leftrightarrow v_x$ at 5σ

All Solar and reactor v's \Rightarrow

$$\sin^2 2\theta \approx 0.81$$
 $\Delta m^2 = 7.9 \times 10^{-5} \text{ eV}^2$



SNO event



Thankyou for being a Great Part II Class!