Neutron Background to Atmospheric Neutrino Analyses:

Update - 24th May 2005

Pat Ward University of Cambridge

- Recall: in February presented estimate of neutron flux at MINOS Far Detector from GEANT4 simulation
- This now written up NuMI-NOTE-SIM,ATM_NU-1085
- Here just mention results and a couple of things new since February

Neutron Rates at Far Detector from GEANT4 Simulation

	$E_{ m n}>$ 100 MeV		
	Events/y $[10^3]$	Neutrons/y $[10^3]$	
Accompanied by muon	$9.68 {\pm} 0.05$	13.75±0.06	
Without muon	8.10±0.04	10.01 ± 0.05	
Total	17.79±0.06	23.76±0.07	
	$E_{ m n}>$ 300 MeV		
	Events/y $[10^3]$	Neutrons/y $[10^3]$	
Accompanied by muon	3.52 ± 0.03	4.46±0.03	
Without muon	1.83±0.02	2.05 ± 0.02	
Total	$5.54{\pm}0.04$	6.51 ± 0.04	

Hadronic Interaction Models

- Approx. 64% of neutrons with $E_{\rm n}$ > 100 MeV incident on detector are from secondary interactions
 - \Rightarrow Results sensitive to modelling of hadronic interactions
- Main simulation (as presented in February, results on previous slide) used (energy-dependent) parameterized models for inelastic hadronic processes (\equiv LHEP physics list)
- Replace with different physics lists:
 - QGSP: theory-driven quark-gluon string model
 - QGSP_BERT: as QGSP but Bertini cascade for pions and nucleons below 3 GeV
 - QGSP_BIC: as QGSP but Bertini cascade for nucleons below 3 GeV

Ratio of neutron fluxes to default simulation:

	$E_{ m n}>$ 100 MeV		$E_{ m n}>$ 300 MeV	
	Events/y	Neutron/y	Events/y	Neutrons/y
QGSP	0.86±0.02	0.87±0.02	0.81±0.03	0.85±0.03
QGSP_BERT	1.31±0.02	1.39±0.02	1.28±0.04	1.33±0.04
QGSP_BIC	1.20±0.02	1.22±0.02	1.24±0.04	1.26±0.04

- See variations up to 30–40%
- There are also uncertainies in the muon-nuclear interaction model, rock composition/density etc.

Estimated rates probably reliable to ${\sim}50\%$

Neutrons in Soudan 2

- Is GEANT4 estimate consistent with neutron rate observed in Soudan 2?
- In February, estimate from Soudan 2 data gave 200 n/y at MINOS WITH VISIBLE ENERGY $E_{\rm vis}$ > 300 MeV
- But how does visible energy relate to neutron energy?
- Try to make estimate of rate with VISIBLE energy above 300 MeV
- Using GMINOS simulation of events output from G4 program, sum energy of secondary particles above Soudan 2 thresholds (e/ γ 100 MeV/c, π 150 MeV/c, p 500 MeV/c)
- Most events have many particles, so consider 'visible energy' originating from highest energy neutron
- Number of events/year with $E_{\rm vis} >$ 300 MeV = 1741

Neutrons in Soudan 2

- But many of these events also have visible muon and/or another neutron and would have been rejected as ν events by scanning at Soudan 2
- If also demand muon misses detector and no 'visible energy' from other particles, number of events/year reduced to 320
- Within factor of 2 of my estimation from Soudan 2 data (\sim 200 events/year)