
Standard Model Results from LEP

Pat Ward University of Cambridge

- Introduction
- Electroweak Physics
- QCD and Two-photon Results

Introduction

LEP1 1989–1995
$$\sqrt{s}\sim m_{\rm Z}$$
 4.5M Z events / expt LEP2 1996–2000 161 $<\sqrt{s}<$ 209 GeV 10k WW events/expt

- LEP was shut down at the end of 2000, so why are we still giving LEP talks?
- Many physics results still being produced
- In the last 2 years, the 4 LEP experiments (ALEPH, DELPHI, L3 and OPAL)
 have submitted for publication >100 papers
 About 25% of these were on LEP1 physics
- The 4 expts have submitted > 120 papers to ICHEP04
 Majority on Standard Model physics
 Mostly final results, but some new preliminary results too
- This talk will concentrate on results which have been finalized, or are new, in the last year (but include some older important results too)

Pat Ward September 2004

Introduction

LEP Standard Model physics covers a wide range of topics; no time in this talk for, e.g.,

• Precise measurement of the τ lifetime (DELPHI)

$$\tau_{\tau} = 290.9 \pm 1.4 \pm 1.0 \text{ fs}$$
 (c.f. PDG2004: 290.6 \pm 1.1 fs)

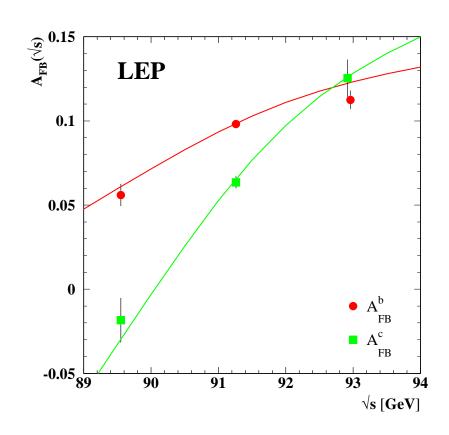
- \bullet τ branching ratios and strange spectral functions (DELPHI, OPAL)
- $\mu^+\mu^-$, $\tau^+\tau^-$ and hard-photon production in two-photon collisions (DELPHI, L3, OPAL)
- \bullet Excited b-hadrons, $B_s^0 \overline{B_s^0}$ oscillations, B spectral moments (DELPHI)

Will give a brief overview of current results; for more details consult the

experiments' web pages: http://aleph.web.cern.ch/aleph/

http://delphiwww.cern.ch/

http://l3.web.cern.ch/l3/


http://opal.web.cern.ch/Opal/PPwelcome.html

LEP1 Electroweak Physics

 Z lineshape measurements final since summer 2000

$$m_{
m Z}$$
 = 91.1875 \pm 0.0021 GeV
 $\Gamma_{
m Z}$ = 2.4952 \pm 0.0023 GeV
 $\sigma_{
m h}^0$ = 41.540 \pm 0.037 nb
 R_{ℓ} = 20.767 \pm 0.025
 $A_{
m FB}^{0,\ell}$ = 0.01714 \pm 0.00095

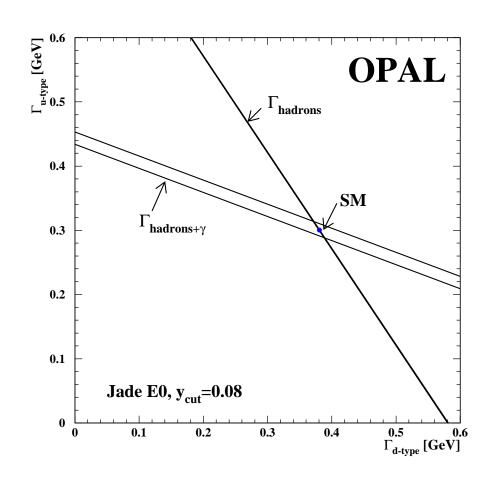
- New measurement of $A_{
 m FB}^{
 m b}$ (DELPHI)
- ⇒ new LEP heavy-flavour combination

 $A_{\rm FB}^{0,{
m b}}$ =0.0998 \pm 0.0017

LEP1 Electroweak Physics

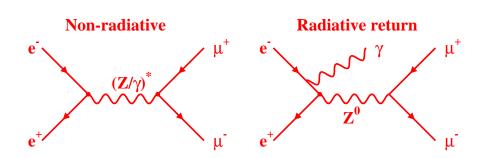
- OPAL have published new measurements of Γ_u , Γ_d
- Use hadronic events with FSR $(Z \to q \overline{q} \gamma)$

Enriched in up-type quarks


$$\Gamma_{\text{had}} = 2\Gamma_{\text{u}} + 3\Gamma_{\text{d}}$$

$$\Gamma_{\rm had+\gamma} \sim 8\Gamma_{\rm u} + 3\Gamma_{\rm d}$$

Results:


$$\Gamma_{u} = 300^{+19}_{-18} \text{MeV}$$

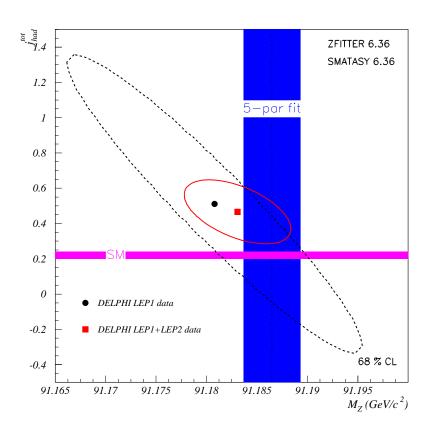
$$\Gamma_{d} = 381^{+12}_{-12} \text{MeV}$$

Good agreement with SM

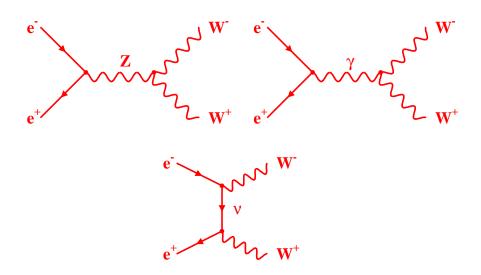
 More precise than earlier measurements (DELPHI, L3, OPAL)


Two-fermion Production at LEP2

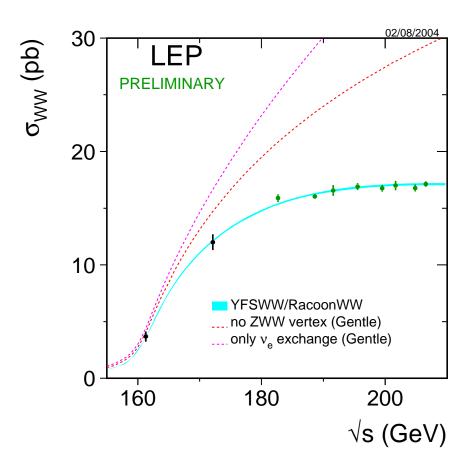
- Measure cross-sections and asymmetries for inclusive and 'nonradiative' events
- LEP combination of preliminary measurements


Good agreement with SM

 \Rightarrow limits on new physics, e.g. Z', leptoquarks, RPV squarks, contact interactions, extra dimensions


Two-fermion Production at LEP2

- At LEP2 energies, γ -exchange becomes important \Rightarrow can measure γ -Z interference \Rightarrow almost modelindependent determination of $m_{\rm Z}$ in S-matrix fit
- e.g.DELPHI results $m_{\rm Z}$ = 91.1831 \pm 0.0034 GeV c.f. $m_{\rm Z}$ = 91.1863 \pm 0.0028 GeV from standard LEP1 fit assuming SM interference

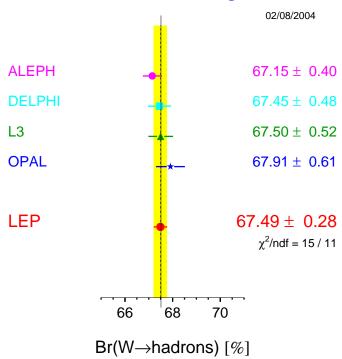

- OPAL, DELPHI have finalized two-fermion measurements; new combination when all experiments have final results
- ullet Expect small improvements to $\sigma(\mathrm{q}\overline{\mathrm{q}})$, but leptons dominated by statistics

WW Cross-sections

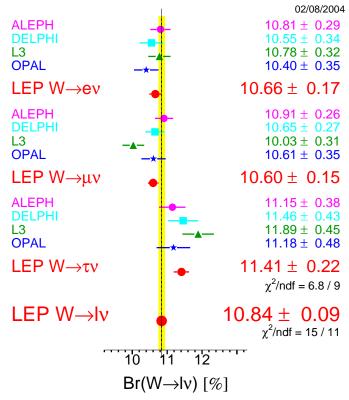
• 3 channels:
$$W^+W^- \to q\overline{q}q\overline{q}$$
 $W^+W^- \to q\overline{q}\ell\overline{\nu}_\ell$ $W^+W^- \to \ell\overline{\nu}_\ell\ell\overline{\nu}_\ell$

 LEP combination updated with final values from ALEPH, L3
 Final combination awaiting OPAL final results

Good agreement with theoretical expectations

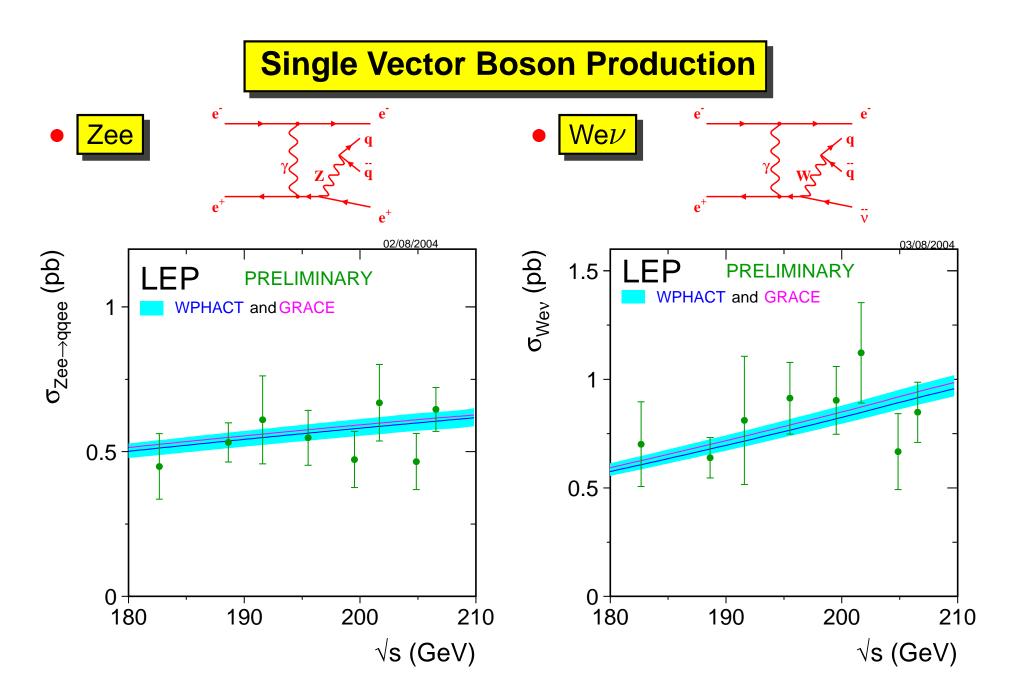

W Branching Ratios

LEP combination updated with final values from ALEPH, L3


Summer 2004 - LEP Preliminary

Summer 2004 - LEP Preliminary

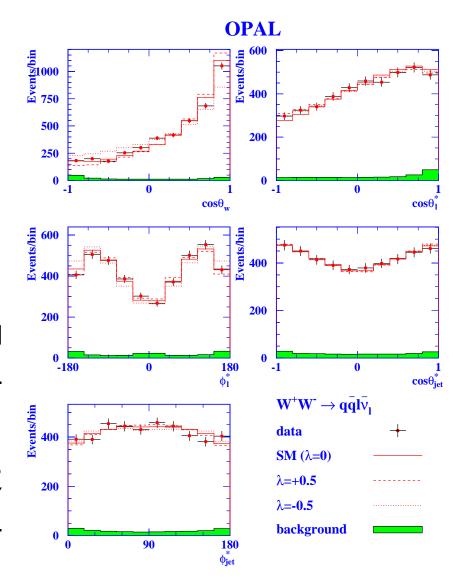
W Hadronic Branching Ratio


W Leptonic Branching Ratios

9

• B(Wo au
u) higher than average of B(Wo au
u) and B(W $o ext{e}
u$) by 3 σ

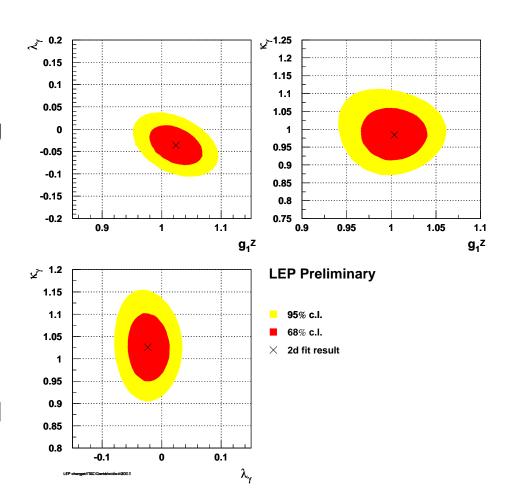
Pat Ward September 2004



LEP combination updated with final measurements from ALEPH, L3

Charged Triple Gauge Boson Couplings

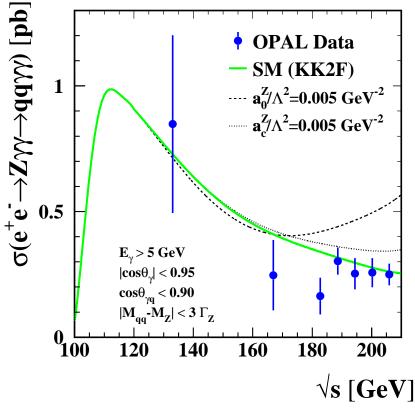
- Measured using WW events: $\sigma(\text{WW}),\,\cos\theta_{\text{W}},\,\text{W decay angles}$
- \bullet Also We ν and $\nu\overline{\nu}\gamma$ channels
- Assuming C, P conservation and gauge constraints: 14 o 3 couplings: $g_1^{\rm Z}, \lambda_\gamma, \kappa_\gamma$
- ullet LEP combination: combine $\log \mathcal{L}$ curves including correlated systematics

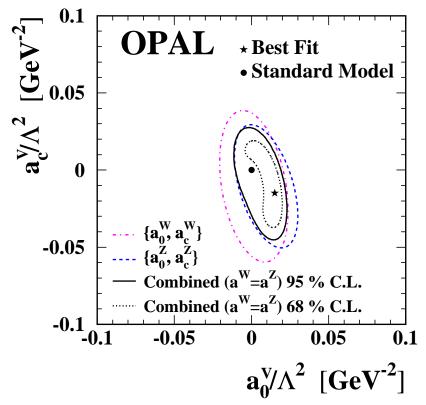


Charged Triple Gauge Boson Couplings

- L3, OPAL values final, ALEPH,
 DELPHI values preliminary
- LEP combined results allowing one free parameter:

$$g_1^{\rm Z} = 0.991^{+0.022}_{-0.021}$$
 $\kappa_{\gamma} = 0.984^{+0.042}_{-0.047}$
 $\lambda_{\gamma} = -0.016^{+0.021}_{-0.023}$

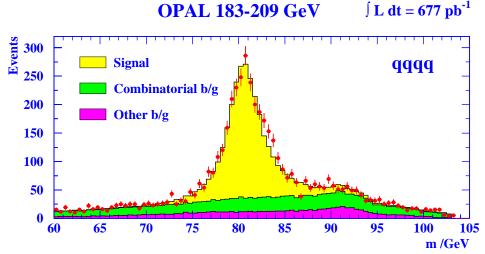

- Good agreement with Standard Model
- Couplings measured with precision of 2–4%

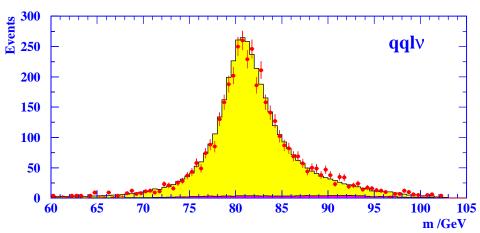


 LEP combined confidence levels allowing 2 free parameters

Other Gauge Boson Couplings

- Neutral Triple Gauge Boson couplings (ZZ γ , Z $\gamma\gamma$) are zero in SM
- Limits set from ZZ and Z γ channels
- SM Quartic Gauge Couplings either zero or too small to be observed at LEP
- Limits set from WW γ , $Z\gamma\gamma$ and $\nu\overline{\nu}\gamma\gamma$ channels



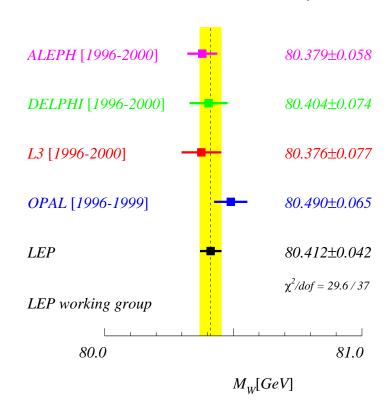


Pat Ward September 2004

W Mass Measurement

- A principal aim of LEP2
- Comparison of direct measurement with indirect determination from EW fits is test of SM
- Measure by direct reconstruction of $q\overline{q}$ or $\ell\overline{\nu}_{\ell}$ mass in $W^+W^- \to q\overline{q}\ell\overline{\nu}_{\ell}$ and $W^+W^- \to q\overline{q}q\overline{q}$ channels
- Reconstruct event-by-event mass using beam energy constraint (kinematic fit) to improve resolution

• Fit mass distribution $\Rightarrow m_{\mathrm{W}}$, using MC to correct for bias


W Mass Measurement

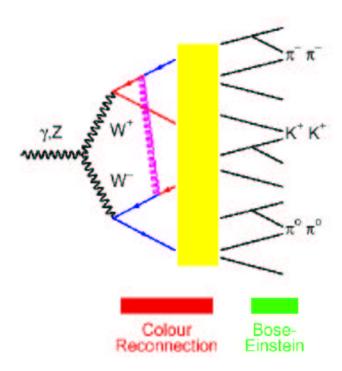
LEP preliminary values:

$$m_{\rm W}({\rm q} {\rm \overline{q}} \ell {\overline {\nu}}_{\ell})$$
 = 80.411±0.032(stat)±0.030(sys) GeV

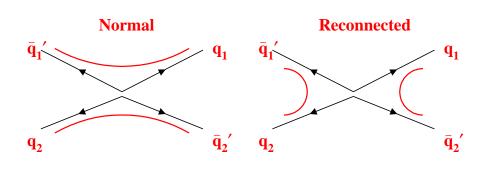
$$m_{\rm W}(q\bar{q}q\bar{q}) = 80.420 \pm 0.035 ({\rm stat}) \pm 0.101 ({\rm sys}) {\rm GeV}$$

Summer 2003 - LEP Preliminary

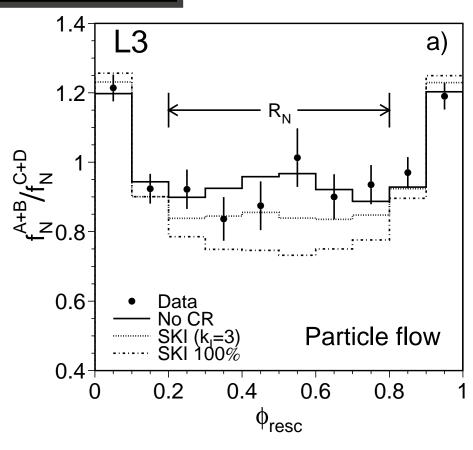
- Systematics completely dominate $q\overline{q}q\overline{q} \text{ channel (and important in } q\overline{q}\ell\overline{\nu}_{\ell} \text{ channel)}$
- Combined value:


$$m_{\rm W}$$
 = 80.412 \pm 0.042 GeV

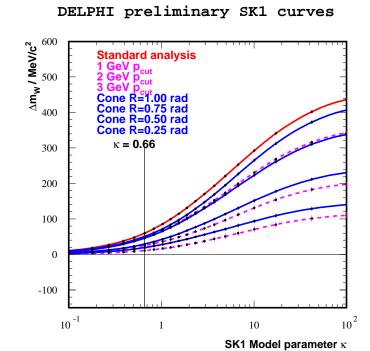
 What has been happening in last year to improve and finalize measurements?


W Mass Measurement

- Main systematics in $q\overline{q}q\overline{q}$ channel arise from final state interactions
- Separation of W decay vertices ~ 0.1 fm < hadronic scale ~ 1 fm
 ⇒ W decays have space-time overlap and can exchange colour:
 Colour Reconnection
- May also be Bose-Einstein Correlations between like-sign particles from different W's
- Both effects may shift measured $m_{
 m W}$ by large amount (\sim 100 MeV)


 Not included in standard MC used to calibrate $m_{
 m W}$ measurement
- Much effort to measure CR and BEC effects to estimate realistic errors

Colour Reconnection


- Effects estimated using phenomenological models
- Look at particle flow between jets in $W^+W^- \to q\overline{q}q\overline{q}$ events
- Compare particle flow in inter-W region with intra-W region

- L3 results final, ADO preliminary
- Use largest reconnection probability compatible with data to set $\Delta(m_{\rm W})$ Current LEP combination uses κ = 2.1 in SK1 model (\sim 55% reconnected) $\Rightarrow \Delta m_{\rm W}({\rm q} \overline{\rm q} {\rm q} \overline{\rm q})$ = 90 MeV

Colour Reconnection

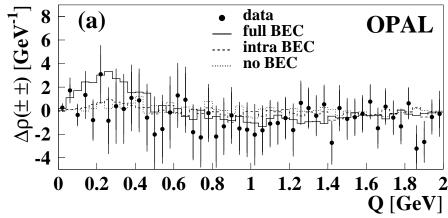
- Soft particles most affected by FSI
 ⇒ reduce effects with momentum
 cuts or jet cone cuts
 Reduces FSI error at expense of
 statistical error, as jet directions
 less precisely determined
- Final $m_{
 m W}$ analyses will optimize jet reconstruction

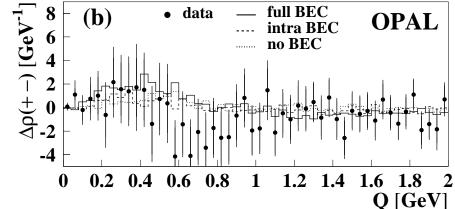
Bose-Einstein Correlations

- BEC between like-sign pions well-established in Z decays
 Do they occur between particles from different W's?
- Currently contributes 35 MeV to $\Delta m_{\mathrm{W}}(\mathrm{q}\overline{\mathrm{q}}\mathrm{q}\overline{\mathrm{q}})$ (LUBOEI model)

Bose-Einstein Correlations

- Study using two-particle correlations, normalized to 'no BEC'
- Use $W^+W^- \to q \overline{q} \ell \overline{\nu}_\ell$ events to estimate intra-W correlations, mixed events (or MC) for kinematic correlations

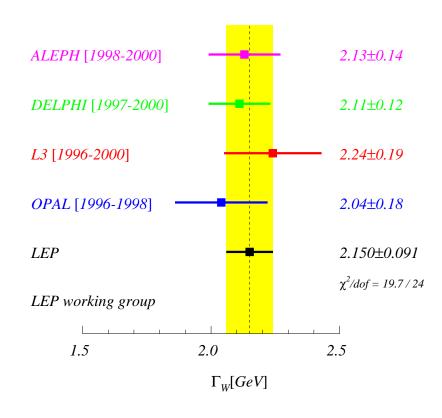

$$\Delta \rho(Q) = \rho_2^{\text{WW}}(Q) - 2 \rho_2^{\text{W}}(Q) - 2 \rho_{\text{mix}}^{\text{WW}}(Q)$$


LEP combined data:

$$\frac{\text{data-noBE}}{\text{fullBE-noBE}} = 0.23 \pm 0.13$$

L3, OPAL compatible with no inter-W BEC, DELPHI sees significant effect

Prospects for Final $m_{ m W}$ Measurement


- ullet LEP measurements of $m_{
 m W}$ should be finalized soon
- Expect improvements over preliminary measurement
- LEP beam energy uncertainty will decrease from 21 MeV to ∼10 MeV
 Final LEP beam energy paper recently submitted for publication
- Analyses in $q\overline{q}q\overline{q}$ channel will be optimized to reduce total error
- Hadronization and detector effects will be better understood
- In absence of systematics, LEP statistical precision \sim 21 MeV With reduced weight for $q\overline{q}q\overline{q}$ channel, probably \sim 25 MeV
- Final total error will probably be in range 32–40 MeV, depending on FSI results

W Width Measurement

Summer 2003 - LEP Preliminary

- \bullet Fits to W mass distributions also determine Γ_W
- Preliminary LEP average:

$$\Gamma_{\rm W}$$
 = 2.150±0.091 GeV

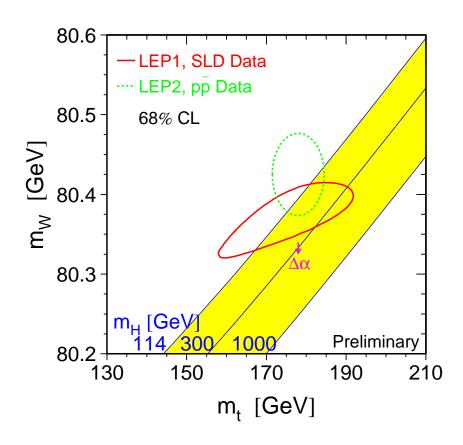
Standard Model Fit

Standard Model fit by LEPEWWG uses 17 inputs from LEP, SLD, Tevatron:

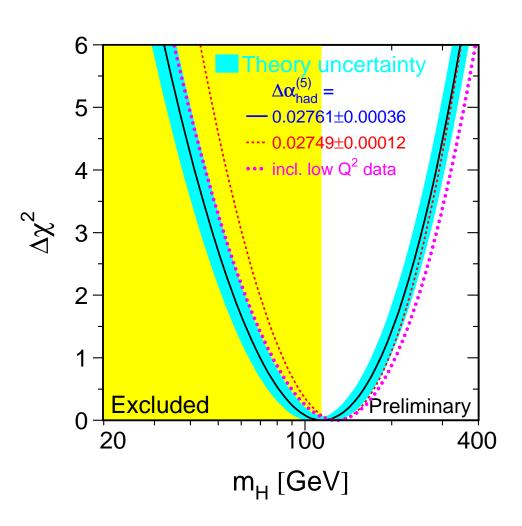
```
Z lineshape: m_{\rm Z}, \Gamma_{\rm Z}, \sigma_{\rm had}^0, R_{\ell}, A_{\rm fb}^{0,\ell} \tau polarisation: P_{\tau} Polarised lepton asymmetry: \mathcal{A}_{\ell}({\rm SLD}) Heavy flavour: R_{\rm b}, R_{\rm c}, A_{\rm FB}^{0,b}, A_{\rm FB}^{0,c}, \mathcal{A}_{\rm b}, \mathcal{A}_{\rm c} Inclusive hadronic charge asymmetry
```

 $m_{\rm t}$, $m_{\rm W}$, $\Gamma_{\rm W}$

- Updates since summer 2003:
 - Tevatron m_t : 178.0 \pm 2.7 \pm 3.3 GeV
 - LEP1 heavy flavours
 - Theory calculations including full two-loop corrections for $m_{\rm W}$ and $\sin^2 \theta_{\rm eff}^{\rm lept}$ (Awramik, Czakon, Freitas, Weiglein)
 Shifts predicted value of $m_{\rm H}$ from $\sin^2 \theta_{\rm eff}^{\rm lept}$ alone by \sim 19 GeV


Standard Model Fit

Summer 2004

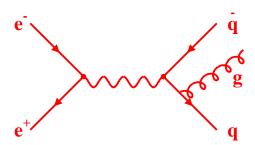

- Fit $\chi^2/\text{dof} = 15.8/13$
- ullet 67% correlation between $m_{
 m t}$ and $\log m_{
 m H}$
- Largest contribution to χ^2 from $A_{\rm FB}^{0,{
 m b}}$ (2.4 σ)
- ullet $A_{
 m FB}^{0,{
 m b}}$ prefers large $m_{
 m H}$, whereas R_ℓ , $m_{
 m W}$ and lepton asymmetries prefer small $m_{
 m H}$

Standard Model Fit

Good agreement between measured m_{W} , m_{t} and values predicted by fit excluding direct measurements

 $m_{
m H} <$ 260 GeV 95% c.l.

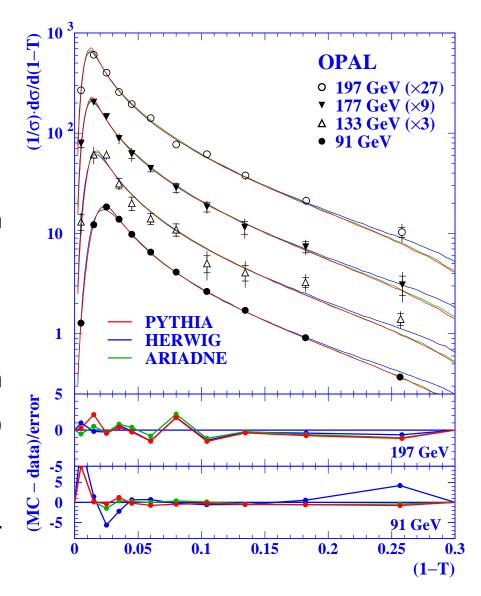
QCD and Two-photon Physics


Will discuss:

- ullet $lpha_{
 m s}$ from event shapes
- $\alpha_{\rm s}$ from 4-jet rate
- Unbiased gluon jets
- Coherence effects in Z→3 jets
- Dead cone effect
- Inclusive jet/hadron production in two-photon events

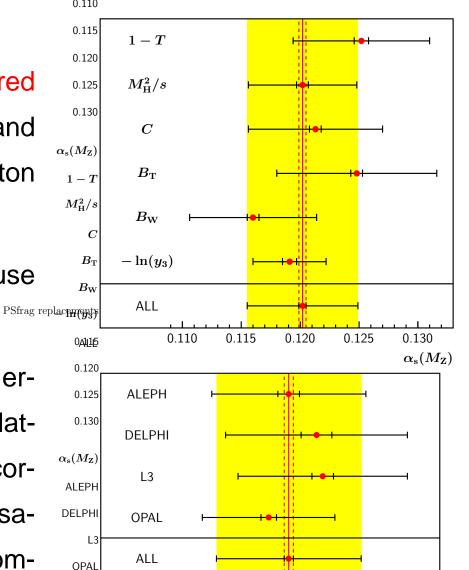
No time to cover

- Fragmentation functions and scaling violation
- Fermi-Dirac and Bose-Einstein correlations in Z decays
- b-quark mass effects
- Production of Ξ_c^0 , Ξ_b in Z decays
- Pentaquark searches


$lpha_{ m s}$ from Event Shapes

 Event shapes sensitive to gluon emission, e.g. thrust:

$$T = \max_{\vec{n}} \left(\frac{\sum_{i} |p_i \cdot \vec{n}|}{\sum_{i} |p_i|} \right)$$


- Fit event shape distributions with $\mathcal{O}(\alpha_{\mathrm{s}}^2)$ + NLLA ($\log R$ matching) QCD predictions $\Rightarrow \alpha_{\mathrm{s}}$
- Final measurements from all experiments

$lpha_{ m s}$ from Event Shapes

- Combinations by LEPQCD group
- Use variables which are infra-red safe (soft gluon emission) and collinear stable (collinear parton branchings)
- Combination requires care because of large correlated errors
- Treat hadronization and theory errors as uncorrelated when calculating weights, but include 100% correlation when calculating hadronisation and theory uncertainties on combined $\alpha_{\rm S}$

September 2004

0.115

ALL

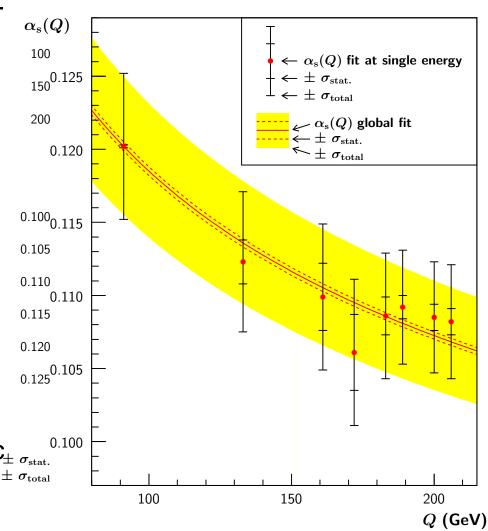
0.120

0.125

0.130

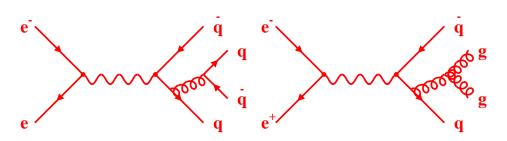
 $\alpha_{
m s}(M_{
m Z})$

$lpha_{ m S}$ from Event Shapes

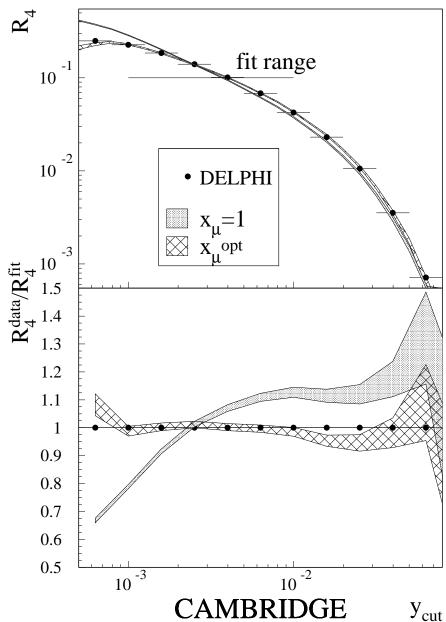

Q (GeV)

 Preliminary combiation of final results from all experiments

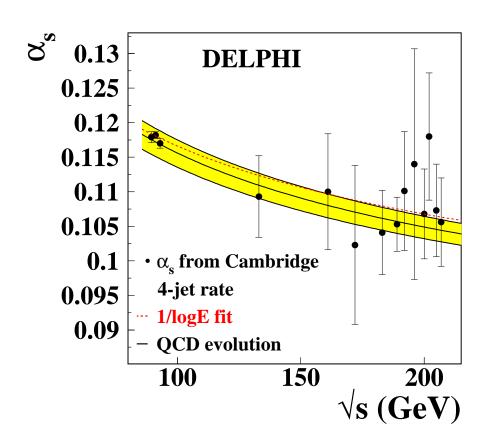
Relative weights in global fit:
 LEP1 46%
 LEP2 54%

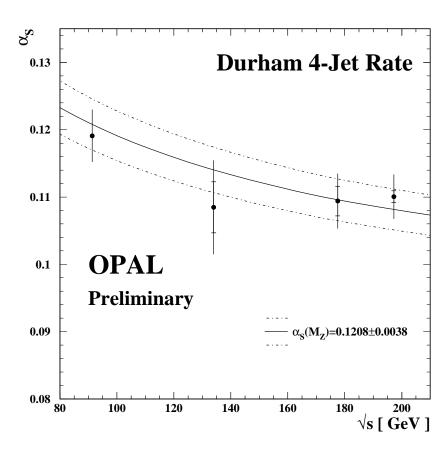

- ullet $lpha_{
 m s}$ runs as expected from QCD
- Theory error includes variation of renorm. scale: 0.5< x_{μ} <2, log rescaling fact.: 2/3< $x_{\rm L}$ <3/2, matching scheme and kinematic $\sigma_{\rm stat.}$

cutoffs



 $\alpha_{\rm s}(m_{\rm Z})$ = 0.1202 \pm 0.0003(stat) \pm 0.0007(exp) \pm 0.0015(hadr) \pm 0.0044(theo)

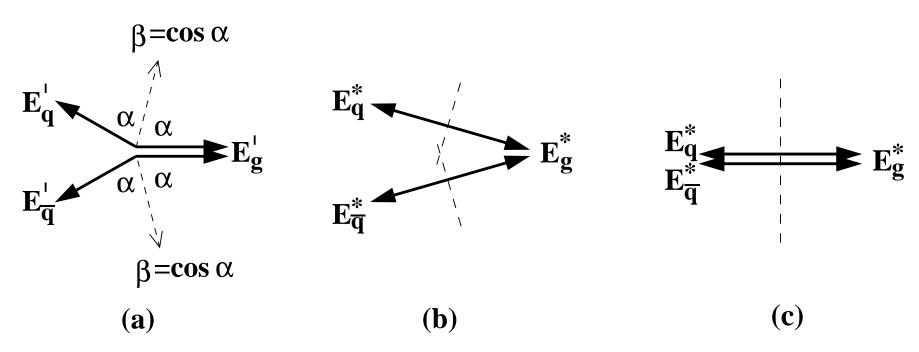

$lpha_{ m s}$ from 4-jet Rate



- ullet New meas. of $lpha_{s}$ from 4-jet rate
- DELPHI: Cambridge jet algorithm
- Fit to $\mathcal{O}(\alpha_s^3)$ QCD prediction of DE-BRECEN (Nagy, Trocsanyi) using experimentally optimized renormalization scale
- OPAL: Durham jet finder
- \bullet Fit to $\mathcal{O}(\alpha_{\mathrm{s}}^3)$ + NLLA QCD prediction with $x_\mu \text{=} \text{1}$

$lpha_{ m s}$ from 4-jet Rate

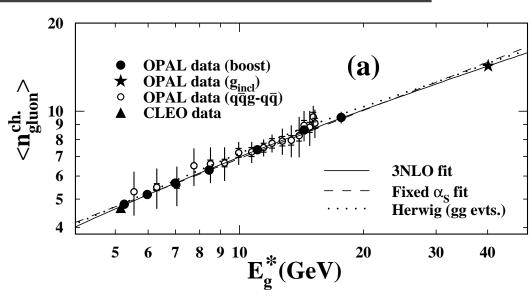
DELPHI

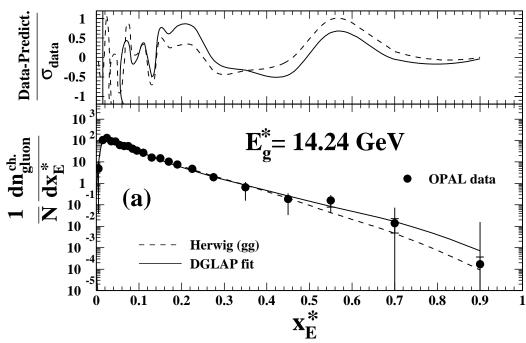

$$\alpha_{\rm s}(m_{\rm Z})$$
= 0.1175 \pm 0.0030

OPAL

$$\alpha_{\rm s}(m_{\rm Z})$$
= 0.1208 \pm 0.0038

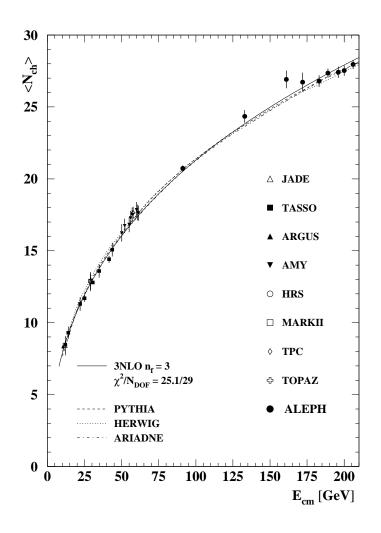
Unbiased Gluon Jets with Jet Boost Algorithm

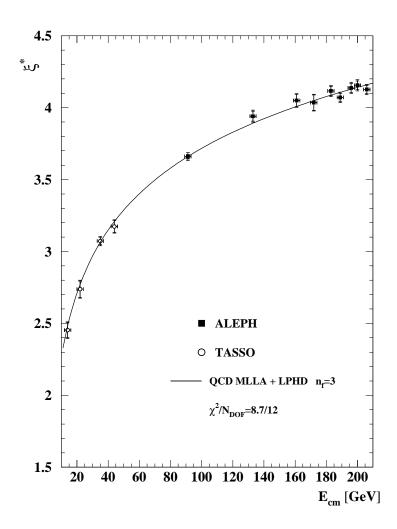

• Jet boost algorithm (Eden, Gustafson) relates gluon jets in $q\overline{q}g$ events to gg system \Rightarrow unbiased gluon jets



- Decompose into colour dipoles
- Boost each dipole into back-to-back frame
- Recombine to give event with gg structure

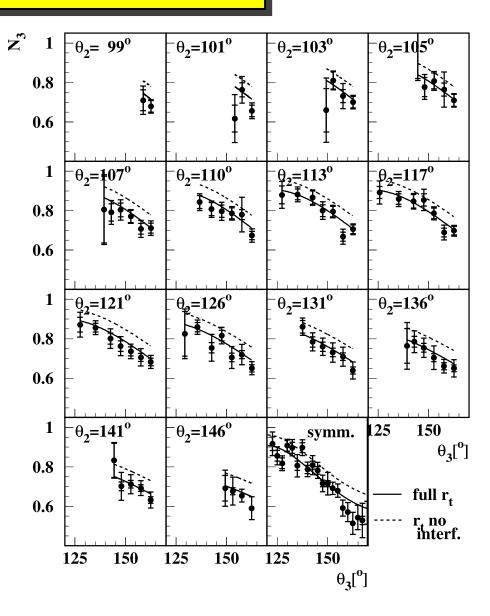
Unbiased Gluon Jets with Jet Boost Algorithm


- Method used by OPAL to measure gluon charged multiplicity for 5< $E_{\rm g}$ <20 GeV
- Results consistent with other measurements, and most precise for this energy range
- Theoretical fits OK
- Also measure gluon fragmentation function



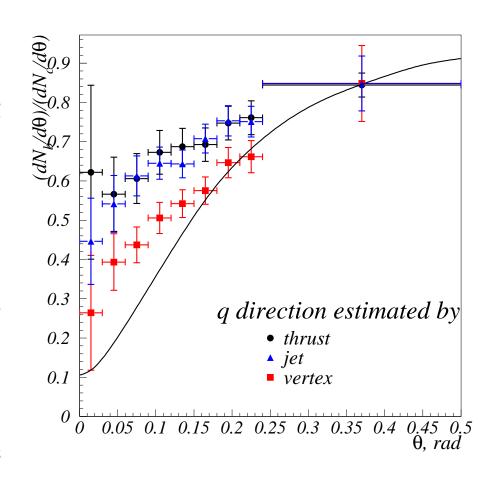
Pat Ward September 2004

Inclusive Charged Particle Distributions



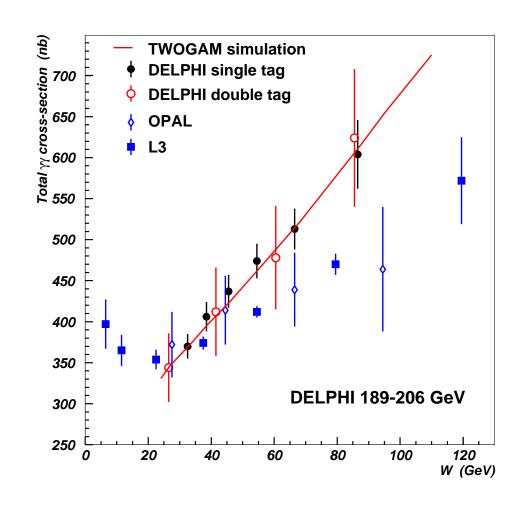
Mean charged multiplicity
 Well-described by theory or MC

• Peak of $\xi = -\ln x_p$ distribution Sensitive to coherence effects


Coherence Effects in 3-jet Events

- New results from DELPHI
- Measure multiplicity in 30° cone perpendicular to event plane in 3jet events
- Compare with corresponding quantity in 2-jet events
- Direct evidence for coherence effects in soft particle production

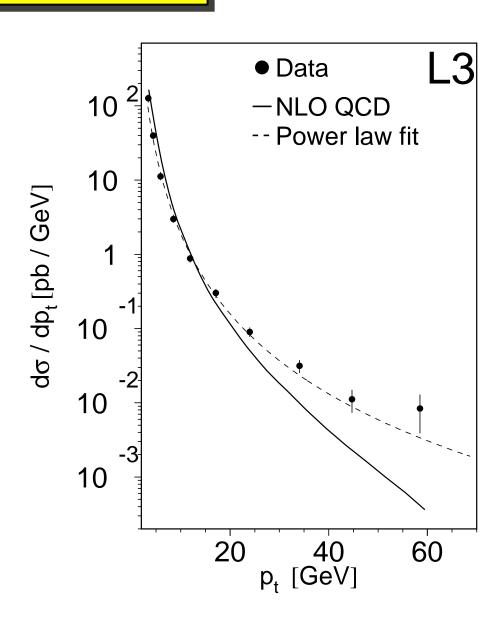
Dead Cone Effect


- QCD predicts gluon radiation off heavy quark suppressed at small angles
- DELPHI study using 2-jet $Z \to b\overline{b} \text{ and } Z \to c\overline{c} \text{ events}$
- Remove particles associated with b- or c-quark
- Compare angular distribution of fragmentation particles in b- and c-jets
- First DIRECT observation of 'dead cone' effect

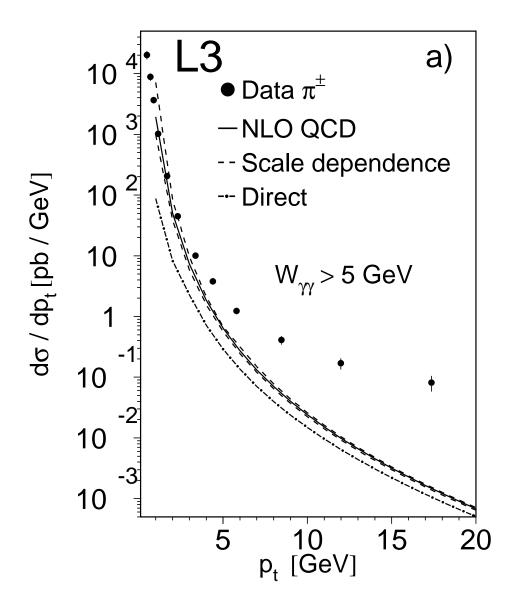
Pat Ward

Two-photon Physics

- Active area with many new measurements ⇒ test QCD
- e.g. new DELPHI measurement of total hadronic crosssection at low Q^2 uses Very Small Angle Tagger at $\theta \sim$ 3-15 mrad
- Direct event-by-event reconstruction of $W_{\gamma\gamma}$ for double-tagged events without unfolding \Rightarrow small systematic errors


 DELPHI measurements somewhat higher than L3 and OPAL

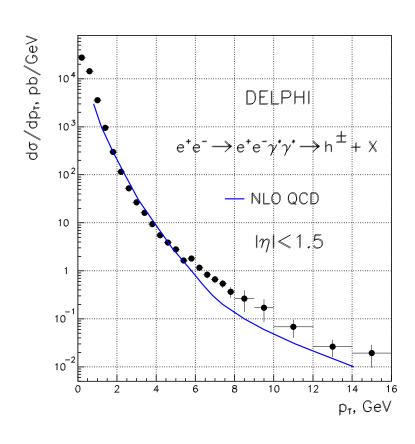
Inclusive jet production


 L3 measurements of inclusive jet production in two-photon collisions for

$$|\eta|<$$
 1 $<$ $W_{\gamma\gamma}>\sim$ 30 GeV $<$ $Q^2>\sim$ 0.2 GeV 2

- ullet p_t spectrum well-represented by power law
- Data higher than NLO QCD prediction (Frixione, Bertora)

Inclusive hadron production

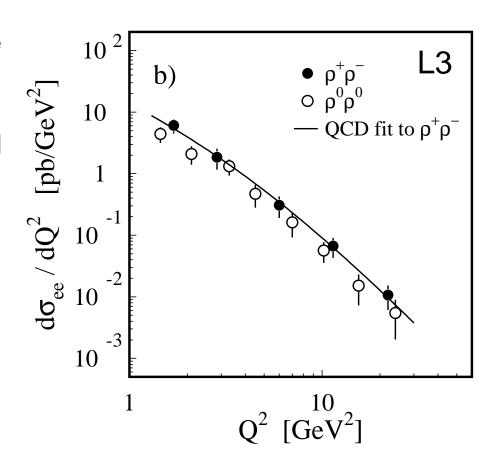

• L3 measurements of inclusive π^\pm production in two-photon collisions for $|\eta| <$ 1

$$<$$
W $_{\gamma\gamma}>>$ 5 GeV

- Also see excess at high p_t compared with NLO QCD calculations (Binnewies, Kniehl, Kramer)
- ullet Similar disagreement seen in π^0

Inclusive hadron production

- New DELPHI measurement of inclusive hadron production $|\eta| < \text{1.5}$ $5 < W_{\gamma\gamma} < \text{203 GeV}$
- Good agreement with NLO QCD for $p_t <$ 6 GeV
- Some excess of data over NLO QCD at high p_t , but not at L3 level



Exclusive Particle Production

- Several measurements of exclusive particle production
- \bullet e.g. L3 have measured $\rho^0\rho^0$ and $\rho^+\rho^-$
- In range 1.1< $W_{\gamma\gamma}$ <2.1 GeV, 1.2< Q^2 < 8.5 GeV 2

$$\frac{\sigma(\rho^{+}\rho^{-})}{\sigma(\rho^{0}\rho^{0})}$$
 = 1.81±0.47±0.22

expect 2 from isospin

• Fit to QCD expectation $\frac{\mathrm{d}\sigma_{\mathrm{ee}}}{\mathrm{d}Q^2}\sim\frac{1}{Q^n(Q^2+<\mathrm{W}_{\gamma\gamma}>^2)^2}$ gives $n=2.4\pm0.3$ (2.5 ±0.4) for $\rho^0\rho^0(\rho^+\rho^-)$ (expect n=2)

Summary

- Since LEP finished running in 2000, the experiments have continued to produce lots of new physics results covering a wide range of topics:
 Fermion- and boson-pair cross-sections, gauge boson couplings, QCD, two-photon physics....
- ullet Some important LEP2 measurements still to be finalized, especially $m_{
 m W}$
- Important to utilize fully the plentiful, high-quality data produced at LEP