Update on ZZ->llnunu Analysis and Sensitivity to Anomalous Couplings

Tom Barber, Richard Batley, Pat Ward
University of Cambridge
Update on ZZ->llnunu analysis using CSC11 datasets (Tom Barber)

- V12 ZZ->llnunu with 1mm bug fixed is not yet available
- V12 sample with 1mm bug has shifted Z mass peak for electrons

Very preliminary investigation of limits on anomalous couplings from ZZ->llnunu

- Very large backgrounds from Z+jets and ttbar
- Sensitivity of limits to these backgrounds
Update on ZZ-\rightarrow ll
unu Event Selection

- Last meeting: cuts used in fast simulation study (S.Hassani ATL-PHYS-2003-022) applied to full simulation (csc11)
 - 2 leptons with pT>20GeV in |\eta|<2.5
 - |M(ll) – 91.2 GeV| < 10 GeV (opp charge)
 - MET_final_et > 50 GeV
 - No jet with pT>30 GeV in |\eta|<3
 - pT(ll) > 150 GeV
- Expected signal smaller than fast sim study, background very much higher (B/S ~ 15)
- Look for new cuts to remove background
pT Matching

- In signal events missing ET is balanced by pT of observed Z
- Jet veto, necessary to remove Z+jets background, removes signal events with hard gluon
- Require Z(II) transverse momentum to match the missing ET in magnitude and direction
 - $(\text{MET}-\text{Zpt})/\text{Zpt}$
 - $\phi(\text{MET}) - \phi(Z)$
- Magnitude of MET match discriminates against background
- Angle less powerful
pT Matching

- Apply pT matching cuts:
 \[|\text{MET}-Zpt| / Zpt < 0.1 \]
 \[170 < \phi(\text{MET}) - \phi(Z) < 190 \text{ deg} \]
 (These rather tight – probably need loosening)
- Also veto events with 3rd lepton (reduce WZ)
- Reduce pT(ll) cut from 150 GeV to 100 GeV
- Obtain signal/background ratio of 2.7
- Signal efficiency (for Z(ll) > 100 GeV, 2 leptons in |\eta| < 2.5 with pT > 20 GeV) \(\sim 23\% \)
- Largest remaining background is WZ
Events Passing New Cuts

<table>
<thead>
<tr>
<th>Channel</th>
<th># selected</th>
<th># for 100 fb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ → ℓℓνννν</td>
<td>1192</td>
<td>649</td>
</tr>
<tr>
<td>ttbar</td>
<td>0</td>
<td>< 439 (95%CL)</td>
</tr>
<tr>
<td>Z → ee, high p_T</td>
<td>0</td>
<td>< 107 (95%CL)</td>
</tr>
<tr>
<td>Z → μμ, high p_T</td>
<td>0</td>
<td>< 67 (95%CL)</td>
</tr>
<tr>
<td>W⁻Z → ℓ⁻νll</td>
<td>34</td>
<td>68</td>
</tr>
<tr>
<td>W⁺Z → ℓ⁺νll</td>
<td>97</td>
<td>140</td>
</tr>
</tbody>
</table>
Production of on-shell ZZ probes ZZZ and ZZg anomalous couplings: f_4Z, f_5Z, f_4g f_5g (all = 0 in SM)

- f_4 violate CP; helicity amplitudes do not interfere with SM; cross-sections depend on f_4^{**2} and sign cannot be determined
- f_5 violate P; do interfere with SM

Forbidden in SM
Sensitivity to Anomalous Couplings

- Couplings depend on energy. Usual to introduce a form factor to avoid violation of unitarity:
 \[f(s') = \frac{f_0}{(1 + s'/\Lambda^2)^n} \]
- Studies below use \(n=3 \), \(\Lambda = 2 \) TeV
- Also assume couplings are real and only one non-zero
- Study AC using LO Monte Carlo of Baur and Rainwater
- N.B. jet veto removes hard gluons, so LO not so bad
Comparison with Pythia

- Check BR MC: compare with Pythia for SM
Anomalous couplings produce increase in ZZ invariant mass, Z pT and lepton pT distributions.

For ZZ->llnunu can use high pT(Z) cross-section to obtain limit, or fit Z pT distribution.

e.g above for ZZ->eenunu with pT(e) > 15 GeV, |eta(e)| < 2.5
Limits from Cross-section Measurement

- First consider measurement of $ZZ \rightarrow ll\nu\nu$ cross-section for $p_T(l) > 20$ GeV, $|\eta(l)| < 2.5$, $Z(p_T) > 100$ GeV
- Calculate cross-section, hence expected events as function of f_{4Z}
- Use chi-squared comparison between expected and ‘observed’ (=SM) numbers of events to determine 95% c.l. on coupling
- Calculate limit as function of ratio of background to SM signal
- First assume statistical errors only, then consider effect of a systematic error on the background
Statistical errors only
Little dependence on background fraction
20% systematic error on background

Strong dependence on background: limits independent of luminosity for high background
Limits from Fits to pT Distribution

- Limits from a simple cross-section measurement depend on pT cut – harder pT cut can give better limit despite much lower statistics
- Therefore better to fit pT distribution
- Results below are for ZZ→llnunu with pT(l)>20 GeV, |eta(l)|<2.5
- Use BR program to generate pT distributions for several values of couplings (only one non-zero at a time)
- In each pT bin fit cross-section to quadratic in coupling to obtain distribution at arbitrary value
Cross-section v f4Z in pT bins

50 < pT(Z) < 100 GeV

100 < pT(Z) < 150 GeV

150 < pT(Z) < 200 GeV

200 < pT(Z) < 300 GeV

300 < pT(Z) < 500 GeV

500 < pT(Z) < 1000 GeV

4th June 2007

C.P. Ward
Create ‘fake data’ sample:
- Calculate expected SM events in each pT bin
- Add background – constant fraction of SM
- Apply Gaussian smearing

Construct error matrix
- Statistical errors plus systematic error on background assumed fully correlated

Fit fake data sample
- One parameter fit to f4Z**2 or f5Z
- 95% c.l. from $X^2 - X^2_{\text{min}} = 3.84$
Limits from Fits to pT Distribution

- Generate 1000 fake data samples for each value of background fraction and each value of background systematic
- Mean $X^2/dof = 1$
- Mean $f4^2 = 0$
 As expected
Results for 100 fb⁻¹, eff = 1.0 from Different Fit Ranges (statistical errors only)

- Lower pT cut has ~no effect on limits
- Important to go to as high pT as possible
Results for 100 fb-1, eff = 0.3 from Fit in Range
100 GeV < pT < 1000 GeV

With uniform background, systematic error has little effect
Effect of Different Background Assumptions

- Assuming 100 fb⁻¹, eff = 30%
 (systematic error 0 – 30%)

<table>
<thead>
<tr>
<th>Background Form</th>
<th>95% c.l. on f4Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>No background</td>
<td>0.0035</td>
</tr>
<tr>
<td>Uniform 30%</td>
<td>0.0037 – 0.0038</td>
</tr>
<tr>
<td>Rising from 30% to 80%</td>
<td>0.0040 – 0.0041</td>
</tr>
<tr>
<td>25% + 0.1 event/GeV</td>
<td>0.0052 – 0.0059</td>
</tr>
</tbody>
</table>
Summary and Plans

• Cut on pT match gives good background rejection
 • Need to optimise cuts
 • Investigate remaining background – e.g. missing lepton in WZ?
 • Investigate estimation of background from data / Atlfast
 • Redo study with 12.0.6 when signal sample available

• First look at sensitivity to anomalous couplings:
 • Uniform background not a problem if it is well-known
 • More realistic background will give some degradation in limits
 • Optimal binning of pT distribution will depend on luminosity
 • Need to think how to predict expected pT distribution for serious analysis (reweighting, fast MC etc.)

• Finally: John Chapman has started feasibility study of ZZ->lltautau channel
Missing Pt Background

- Check correlations by making 2D histograms of angle and magnitude match for signal and background.
- Lines at:
 - $|\text{MET-Zpt}/Zpt| < 0.1$
 - $170 < \phi(\text{MET}) - \phi(Z) < 190$
 - Very effective at Z+jets removal.
 - WZ has peak in same region, but wider distribution.
<table>
<thead>
<tr>
<th>Channel</th>
<th>Run</th>
<th>Nevents</th>
<th>Neffective</th>
<th>sigma/fb</th>
<th>Nelectrons</th>
<th>100fb-1</th>
<th>Nmuons</th>
<th>100fb-1</th>
<th>Total</th>
<th>100f-1</th>
<th>(90% cl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZnull</td>
<td>5981</td>
<td>48700</td>
<td>48700</td>
<td>265</td>
<td>599</td>
<td>325.95</td>
<td>593</td>
<td>322.68</td>
<td>1192</td>
<td>648.62</td>
<td>648.6</td>
</tr>
<tr>
<td>ZZnull</td>
<td>5932</td>
<td>118018</td>
<td>79238</td>
<td>265</td>
<td>306</td>
<td>102.34</td>
<td>619</td>
<td>207.02</td>
<td>925</td>
<td>309.35</td>
<td>309.4</td>
</tr>
<tr>
<td>ZZllll</td>
<td>5931</td>
<td>25367</td>
<td>15221</td>
<td>66.8</td>
<td>13</td>
<td>5.71</td>
<td>10</td>
<td>4.39</td>
<td>23</td>
<td>10.09</td>
<td>10.1</td>
</tr>
<tr>
<td>Z(tautau)+jets</td>
<td>5187</td>
<td>28000</td>
<td>28000</td>
<td>22150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>181.9</td>
</tr>
<tr>
<td>Z(tautau)</td>
<td>5146</td>
<td>12114</td>
<td>12114</td>
<td>74500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1414.5</td>
</tr>
<tr>
<td>Z(nunu)+jets</td>
<td>5183</td>
<td>47300</td>
<td>47300</td>
<td>715000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3476.7</td>
</tr>
<tr>
<td>Z(mumu)+jets</td>
<td>5186</td>
<td>95500</td>
<td>95500</td>
<td>21340</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>51.4</td>
</tr>
<tr>
<td>Z(mumu)</td>
<td>5151</td>
<td>83557</td>
<td>69451</td>
<td>1.66E+06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4574.8</td>
</tr>
<tr>
<td>Z(ee)+jets</td>
<td>5185</td>
<td>58700</td>
<td>58700</td>
<td>21000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82.3</td>
</tr>
<tr>
<td>Z(ee)</td>
<td>5152</td>
<td>69558</td>
<td>58290</td>
<td>1.61E+06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5317.0</td>
</tr>
<tr>
<td>WWv12</td>
<td>5921</td>
<td>58006</td>
<td>39512</td>
<td>1300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.2</td>
</tr>
<tr>
<td>WWtaunultaunu</td>
<td>5927</td>
<td>45850</td>
<td>31138</td>
<td>1300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.5</td>
</tr>
<tr>
<td>WWmunumunu</td>
<td>5924</td>
<td>10950</td>
<td>7454</td>
<td>1300</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>17.44</td>
<td>1</td>
<td>17.44</td>
<td>17.4</td>
</tr>
<tr>
<td>WWenuenu</td>
<td>5921</td>
<td>43102</td>
<td>29360</td>
<td>1300</td>
<td>1</td>
<td>4.43</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4.43</td>
<td>4.4</td>
</tr>
<tr>
<td>Wtop</td>
<td>5500</td>
<td>71250</td>
<td>71250</td>
<td>26700</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>86.2</td>
</tr>
<tr>
<td>WpZ</td>
<td>5941</td>
<td>41770</td>
<td>29550</td>
<td>427</td>
<td>55</td>
<td>79.48</td>
<td>42</td>
<td>60.69</td>
<td>97</td>
<td>140.17</td>
<td>140.2</td>
</tr>
<tr>
<td>WmZ</td>
<td>5971</td>
<td>19154</td>
<td>13400</td>
<td>267</td>
<td>17</td>
<td>33.87</td>
<td>17</td>
<td>33.87</td>
<td>34</td>
<td>67.75</td>
<td>67.7</td>
</tr>
<tr>
<td>ttbar</td>
<td>5200</td>
<td>428879</td>
<td>313435</td>
<td>461000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>247.2</td>
</tr>
</tbody>
</table>

Total: 156

S/B = 2.7, signal efficiency 2.45%

4th June 2007
C.P. Ward