Towards an all-orders calculation of the electroweak bubble wall velocity

Jessica Turner

Institute of Particle Physics Phenomenology, Durham University

Cambridge HEP phenomenology seminar 29th April 2020

- Motivations for first-order electroweak phase transition
- Relativistic bubble wall velocity calculations: 1-to-1
- Relativistic bubble wall velocity calculations: 1-to-2
- Relativistic bubble wall velocity to all orders
- Summary

Outline

First order electroweak phase transition

Within the Standard Model the EWPT is a crossover D'Onofrio & Rummukainen (2015) Minimal new physics \rightarrow first order PT Anderson & Hall (1992)

- Matter-antimatter asymmetry
- **Topological defects** \bullet
- Primordial magnetic fields
- Stochastic gravitational wave background

Kuzmin, Rubakov & Shaposhnikov (1985)

Achucarro & Vachaspati (2000)

Vachaspati (1991)

Kamionkowski, Kosowsky & Turner (1993)

Jessica Turner

4

Vacuum pressure from symmetry breaking Higgs potential

Model dependent

Jessica Turner

Thermal pressure, resulting from interactions of wall with the plasma particles

Model independent(ish)

Institute of Particle Physics Phenomenology

5

Jessica Turner

Gravitational waves generated from 1st order PT

From David Weir's website

- GW sourced from **three** contributions:
- Collision bubble walls Ω_{env}
- Sound waves as bubble push through plasma $\Omega_{
 m sw}$
- Turbulence Ω_{turb}

• bubbles "runaway" ($v_w \rightarrow c$) latent heat of PT \rightarrow KE of the bubble walls bubble wall slow \rightarrow more energy goes into sound waves and turbulence

Gravitational waves generated from 1st order PT

Velocity affects SGWB spectrum
EWBG and SGWB in tension

Jessica Turner

1-to-1 pressure calculation for relativistic bubble walls

Jessica Turner

1-to-1 calculation handwaving argument

Friction \rightarrow scattering particles that couple to Higgs condensate

$$\gamma=rac{1}{\sqrt{1-v^2}}$$
 , Lorentz factor of the wall Z

$$E_a^2 \sim p_{a,z, s}^2 \sim \gamma^2 T^2 \gg m_{a, s}^2, m_{b, h}^2, \vec{p}_{a, \perp}^2 \Longrightarrow \Delta$$

$$\mathcal{P}_{1 \to 1} \sim \frac{[\text{ force }]}{[\text{ area }]} \sim \frac{\Delta[\text{ momenty}]}{[\text{ area }] \times []}$$

Jessica Turner

Institute of Particle Physics Phenomenology

Bodeker & Moore (2009)

10

• 1-to-1: no flavour change

$$\mathcal{P}_{1\to 1} = \sum_{a} \int \mathrm{d}\mathcal{F}_{a} \sum_{b} \int \mathrm{d}\mathbb{P}_{a\to b} \Delta p_{z} \left(1 \pm f_{b}\right)$$
$$\mathrm{d}\mathbb{P}_{a\to b} = \frac{\mathrm{d}^{3}\vec{p_{b}}}{(2\pi)^{3}} \frac{1}{2E_{b}} \times (2\pi)^{3} \delta^{2} \left(\vec{p_{a,\perp}} - \vec{p_{b,\perp}}\right) \delta \left(E_{a} - E_{b}\right) \left(2p_{b,z}, \mathrm{h}\right) \delta_{ab}$$

Integrate over phase space

ce of "b" noting that
$$\frac{d^3 p_b}{(2\pi)^3 2E_b} = \frac{d^2 \vec{p}_{b,\perp}}{(2\pi)^3} \frac{dE_b}{2E_b} \frac{E_b}{p_{b,z}}$$

 $\mathcal{P}_{1\to 1} \approx \sum_a \nu_a \frac{T^2}{4\pi^2} \left(m_{b,h}^2 - m_{a,s}^2 \right)$

•
$$\mathcal{P} \sim \propto \gamma^0 \Delta m^2 T^2$$

 $\mathcal{P}_{\text{vacuum}} > \mathcal{P}_{\text{thermal}}$ or

• Bubble can "runaway"

Jessica Turner

1-to-1 calculation

Arnold (1993)

Bodeker & Moore (2009)

$$\Delta V_{T=0} \equiv V_{T=0}|_{\text{out}} - V_{T=0}|_{\text{in}} > \mathcal{P}_{1\to 1}$$

Institute of Particle Physics Phenomenology

11

Some eight years later

1-to-2 pressure calculation for relativistic bubble walls

Jessica Turner

1-to-2 calculation

Incident particle's energy \rightarrow mass second particle + transverse momentum $\Delta p_{1 \to 1} < \Delta p_{1 \to 2}$ unless $p_T = 0$ and $m_c = 0$

Jessica Turner

Kinematics

$$\vec{p}_a = \vec{p}_{a,\perp} + p_{a,z,s} \hat{\boldsymbol{z}}$$
 and

$$\vec{p}_b = \vec{p}_{b,\perp} + p_{b,z,s} \hat{\boldsymbol{z}}$$
 and

$$\vec{p_c} = \vec{p_{c,\perp}} + p_{c,z,s} \hat{\boldsymbol{z}}$$
 and

The transverse component of momentum is conserved, implying \vec{p}_{a} ,

Energy is also conserved during the scattering

E

Institute of Particle Physics Phenomenology

Jessica Turner

$$E_{a} = \sqrt{|\vec{p}_{a,\perp}|^{2} + p_{a,z,s}^{2} + m_{a}^{2}}$$
$$E_{b} = \sqrt{|\vec{p}_{b,\perp}|^{2} + p_{b,z,s}^{2} + m_{b}^{2}}$$
$$E_{c} = \sqrt{|\vec{p}_{c,\perp}|^{2} + p_{c,z,s}^{2} + m_{c}^{2}}$$

$$\perp = \vec{p}_{b,\perp} + \vec{p}_{c,\perp}$$

$$_a = E_b + E_c$$

14

1-to-2 calculation

$$\mathcal{P}_{1\to2} = \sum_{a,bc} \nu_a \int [dp_a] [dp_b] [dp_c] f(p_a, p_b, p_c) \Delta p_z (2\pi)^3 \delta^2 \left(\vec{p}_{a,\perp} - \vec{p}_{c,\perp} - \vec{p}_{b,\perp} \right) \delta \left(p_a^0 - p_c^0 - p_b^0 \right) |\mathcal{M}|^2$$

$$\frac{d^3 p_b}{d^2 \vec{p}_{b,\perp}} \frac{d^2 \vec{p}_{b,\perp}}{dp_b^0} \frac{dp_b^0}{p_b^0} p_b^0$$

Integrate over
$$p_b$$
 using $\frac{d^3 p_b}{(2\pi)^3 2p_b^0} = \frac{d^2 \overrightarrow{p}_{b,\perp}}{(2\pi)^3} \frac{dp_b^0}{2p_b^0} \frac{p_b^0}{p_{b,z}}$

$$\mathcal{P}_{1\to2} = \sum_{abc} \nu_a \int \frac{d^3 p_a}{(2\pi)^3 (2p_a^0)} \int \frac{d^2 \vec{p}_{c,\perp}}{(2\pi)^2} \frac{dp_c^0}{(2\pi)^2 p_c^0} f_{p,a} \left[1 \pm f_{p,c}\right] \left[1 \pm f_{p,b}\right] \left(p_{a,z,s} - p_{b,z,h} - p_{c,z,h}\right) \frac{1}{2p_{b,z}} \frac{p_c^0}{p_{c,z}}$$

B&M region of interest:

Ingoing hard Outgoing hard Outgoing soft

$$\begin{aligned} \boldsymbol{p}_{a,\perp} \sim T & p_{a,z,s} \sim \gamma_w T, \ E_a \sim \gamma_w T & m_{a,s}, m_{a,h} \ll \gamma_w T \\ \boldsymbol{p}_{b,\perp} \sim \max \begin{bmatrix} T, m_c \end{bmatrix} & p_{b,z,s} \sim \gamma_w T, \ E_b \sim \gamma_w T & m_{b,s}, m_{b,h} \ll \gamma_w T \\ \boldsymbol{p}_{c,\perp} \sim \max \begin{bmatrix} T, m_c \end{bmatrix} & p_{c,z,s} \sim m_c, \ E_c \sim \max \begin{bmatrix} T, m_c \end{bmatrix} & m_{c,s}, m_{c,h} \ll \gamma_w T \end{aligned}$$

Jessica Turner

Institute of Particle Physics Phenomenology

Combination of PS + "observable"

1-to-2 calculation

$$\mathcal{P}_{1\to2} = \sum_{abc} \nu_a \int \frac{d^3 p_a}{(2\pi)^3 (2p_a^0)} \int \frac{d^2 \vec{p}_{c,\perp}}{(2\pi)^2} \frac{dp_c^0}{(2\pi)^2 p_c^0} f_{p,a} \left[1 \pm f_{p,c}\right] \left[1 \pm f_{p,b}\right] \left(p_{a,z,s} - p_{b,z,h} - p_{c,z,h}\right) \frac{1}{2p_{b,z}} \frac{p_c^0}{p_{c,z}} |p_{b,z}|^2 \left[1 + \frac{1}{2p_{b,z}} \frac{p_c^0}{p_{c,z}}\right] |p_{b,z}|^2 \left[1 + \frac{1}{2$$

B&M region of interest:

$$p_{c,z} = \sqrt{1 - 2 \frac{m_c^2(z) + \vec{p}_{c,\perp}^2}{2(p_c^0)^2}}_{\epsilon} \simeq p_c^0(1 - \epsilon)$$

$$p_{b,z} = \sqrt{p_b^{0^2} - \vec{p}_{\perp,b}^2 - m_b^2(z)} \approx p_a^0(1-x)$$

Jessica Turner

Institute of Particle Physics Phenomenology

ϵ parametrises collinearity "c" also the region of PS $\overrightarrow{p}_{c,\perp}^2 \sim m_{c,s}^2 \ll p_{c,z,s} m_{c,s}$

x parametrises softness "c" $x = p_c^0 / p_a^0$

$$(p_{a,z,s} - p_{c,z,h} - p_{b,z,h}) = \frac{1}{2}$$

B&M 1-to-2 master equation:

$$\mathcal{P}_{1\to 2} = \sum \nu_a \int \frac{d^3 p_a}{(2\pi)^3 (2p_\alpha^0)^2} \int \frac{d^2 \vec{p}_{c,\perp}}{(2\pi)^2} \frac{d^2}{(2\pi)^2} \frac{d^2}{(2\pi)^2}$$

Jessica Turner

Institute of Particle Physics Phenomenology

Bodeker & Moore (2017)

 $(p_{b}) \frac{1}{2p_{b,z}} \frac{p_{c,z}^{0}}{p_{c,z}} \approx \frac{1}{2p_{a}^{0}} \frac{m_{c}^{2}(z) + \vec{p}_{c,\perp}^{2}}{2p_{c}^{0}}$ $\sim x \epsilon + \mathcal{O}(\epsilon^2 x) + \dots$

Differential probability:

$$dP_{a\to bc} = \frac{d^3 p_b}{(2\pi)^3} \frac{1}{2E_b} \frac{d^3 p_c}{(2\pi)^3} \frac{1}{2E_c} \left| \langle p_b p_c | \mathcal{T} | \phi_a (p_a) \rangle \right|^2$$

The bubble wall is invariant in time and the transverse directions

$$egin{aligned} &\langle p_c p_b | \mathcal{T} | p_a
angle = \int d^4 x \, \langle p_c p_b \, | \mathcal{H}_{ ext{int}} | \, p_a
angle = (2\pi)^3 \delta^2 \left(p_{a,\perp} - p_{c,\perp} - p_{b,\perp}
ight) \delta \left(p^0 - k^0 - q^0
ight) \mathcal{M} \ &\mathcal{M} \equiv \int dz \chi^*_{p_c}(z) \chi^*_{p_b}(z) V(z) \chi_{p_a}(z) \end{aligned}$$

Mode functions are treated in the WKB approximation:

$$\chi_{p_c}(z) \simeq \sqrt{\frac{p_{c,z,z}}{p_{c,z}(z)}}$$

Jessica Turner

Bodeker & Moore (2017)

 $\overline{\frac{z,s}{(z)}} \exp\left(i\int_{0}^{z} p_{c,z}\left(z'\right)dz'\right)$

Institute of Particle Physics Phenomenology

Mode function quick summary

KG field equation

solve with an **homogeneous** mass parameter, solutions can be can labeled by a 3-vector \overrightarrow{p}

$$\chi_f(\vec{p}, x) = e^{-iE_f(\vec{p})t} e^{i\vec{p}\cdot\vec{x}} \quad \text{with} \quad E_f(\vec{p}) \equiv \sqrt{|\vec{p}|^2 + m_f^2}$$
$$\phi_f(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \tilde{\phi}_f(\vec{p}) \chi_f(\vec{p}, x)$$

Jessica Turner

$$\int_{b,c} \left[\frac{1}{2} \left(\partial_{\mu} \phi_{f} \right)^{2} - \frac{1}{2} m_{f}^{2}(z) \phi_{f}^{2} \right]$$

$$\int_{b,c} \left[\frac{1}{2} \left(\partial_{\mu} \phi_{f} \right)^{2} - \frac{1}{2} m_{f}^{2}(z) \phi_{f}^{2} \right]$$

$$\int_{ass varying in z parametrises spatial inhomegenity}$$

Mode function quick summary

But we have **inhomogeneous** mass term, make ansatz for solution to KG equation

$$\phi_f(x) = \int \frac{\mathrm{d}^2 \vec{p}_{\perp}}{(2\pi)^2} \frac{\mathrm{d} p_{z, \mathrm{s}}}{(2\pi)} \tilde{\phi}_f(\vec{p}_{\perp}, p_{z, \mathrm{s}}) \chi_f(p_{z, \mathrm{s}}, z) \, e^{-iE_f(\vec{p}_{\perp}, p_z, \mathrm{s})t} e^{i\vec{p}_{\perp} \cdot \vec{x}_{\perp}}$$

Sub \rightarrow KG \rightarrow WKB solution for a particle with inhomogeneous mass

$$\chi_f(p_{z, s}, z) \approx \sqrt{\frac{p_{z, s}}{\tilde{p}_z(z)}} \exp\left(i \int_0^z \mathrm{d}z' \tilde{p}_{f, z}(z')\right)$$

Amplitude ~ 1

Analogous 1D scattering off a potential well. Normally there would be a wave function with a negative phase (reflected) Here all particles transmitted

Institute of Particle Physics Phenomenology

Jessica Turner

Phase

Mode functions don't tell us anything about the nature of the interaction

V(z) the contraction of the interaction Hamiltonian density with all other state information \equiv interaction matrix element if we were considering simple plane wave states.

$$\mathcal{M} \equiv \int dz \chi_k^*(z) \chi_q^*(z) V(z) \chi_p(z)$$

$$\mathcal{A} = V_{\rm s} \int_{-\infty}^0 dz \exp\left[iz \frac{A_{\rm s}}{2p^0}\right] + V_{\rm h} \int_0^\infty dz \exp\left[iz \frac{A_{\rm h}}{2p^0}\right] = 2ip^0 \left(\frac{V_{\rm h}}{A_{\rm h}} - \frac{V_{\rm s}}{A_{\rm s}}\right)$$

$$A_s = E_A \left(p_{a,z,s} - p_{b,z,s} - p_{c,z,s}\right) \quad A_h = E_a \left(p_{a,z,h} - p_{b,z,h} - p_{c,z,h}\right)$$

$$\overset{z=-\infty}{\leftarrow}$$

A's resemble propagators, but they only propagate in the z-direction!

Jessica Turner

Vertex Function

 $|\mathcal{M}|^2 \simeq 4p_0^2 |V|^2$

$a(p) \to b(k)c(p-k)$	$ V^2 $
$S \to V_T S$	
$F \to V_T F$	$4g^2C_2[R]\frac{1}{x^2}k_{\perp}^2$
$V \to V_T V$	~~ —
$S \to V_L S$	
$F \to V_L F$	$4g^2C_2[R]\frac{1}{x^2}m^2$
$V \to V_L V$	
$F \to FV_T$	$2g^2C_2[R]\frac{1}{x}\left(k_{\perp}^2+m_b^2\right)$
$V \to FF$	$2g^2T[R]\frac{1}{x}\left(k_{\perp}^2+m_b^2\right)$
$S \to SV_T$	$4g^2C_2[R]k_{\perp}^2$
$F \to SF$	$y^2 \left(k_\perp^2 + 4m_a^2\right)$
$S \to SS$	$\lambda^2 arphi^2$

$$\frac{\left(A_{\rm h} - A_{\rm s}\right)^2}{A_{\rm h}^2 A_{\rm s}^2}$$

$$k_{\perp} \equiv p_{c,\perp}$$

These are splitting functions up to the normalisation $P_{b\leftarrow a}(x) = |V|^2 x(1-x)/16\pi^2 k_{\perp}^2$

Quick Recap on splitting functions

 $\operatorname{cess} B + D \to f.$

$$P_{BA}(z) = \frac{1}{2}z(1-z)\overline{\sum_{\text{spins}}}\frac{|V_{A\to B+C}|^{2}}{p_{\perp}^{2}}$$
$$\overline{\sum_{\text{spin}}}|V_{A\to B+C}|^{2} = \frac{1}{2}C_{2}(R)\operatorname{Tr}(k_{C}\gamma_{\mu}k_{A}\gamma_{\nu})\overline{\sum_{\text{pol}}}\epsilon^{*\mu}\epsilon$$
$$\overline{\sum_{\text{spin}}}|V_{A\to B+C}|^{2} = \frac{2p_{\perp}^{2}}{z(1-z)}\frac{1+(1-z)^{2}}{z}C_{2}(R)$$

Jessica Turner

Fig. 1. (a) Contribution of the B intermediate state to the process $A + D \rightarrow C + f$. (b) The pro-

 $\mathrm{d}\sigma_a = \mathrm{d}\mathcal{P}_{\mathrm{BA}}(z)\mathrm{d}z \,\mathrm{d}\sigma_b$

$$k_A = (P, P, \mathbf{0})$$

$$k_B = \left(zP + \frac{p_{\perp}^2}{2zP}, zP, \mathbf{p}_{\perp}\right)$$

$$k_C = \left((1-z)P + \frac{p_{\perp}^2}{2(1-z)P}, (1-z)P, -\mathbf{p}_{\perp}\right)$$

 μ

Treat z as Small parameter Light like Axial gauge

$$p_{f,z, \text{ s}} \approx E_f - \frac{|\vec{p}_{f,\perp}|^2 + m_{f, \text{ s}}^2}{2E_f}$$

 $p_{f,z, \text{ h}} \approx E_f - \frac{|\vec{p}_{f,\perp}|^2 + m_{f, \text{ h}}^2}{2E_f}$

$$A_{\rm s} \approx 2E_a \times \left(-\frac{|\vec{p}_{a,\perp}|^2 + m_{a,\rm s}^2}{2E_a} + \frac{|\vec{p}_{b,\perp}|^2 + m_{b,\rm s}^2}{2E_b} + \frac{|\vec{p}_{c,\perp}|^2 + m_{c,\rm s}^2}{2E_c} \right) \approx \frac{|\vec{p}_{c,\perp}|^2 + m_{c,\rm s}^2}{E_c/E_a}$$
$$A_{\rm h} \approx 2E_a \times \left(-\frac{|\vec{p}_{a,\perp}|^2 + m_{a,\rm h}^2}{2E_a} + \frac{|\vec{p}_{b,\perp}|^2 + m_{b,\rm h}^2}{2E_b} + \frac{|\vec{p}_{c,\perp}|^2 + m_{c,\rm h}^2}{2E_c} \right) \approx \frac{|\vec{p}_{c,\perp}|^2 + m_{c,\rm h}^2}{E_c/E_a}$$

$$\begin{aligned} |\mathcal{M}|^2 &\approx 4E_a^2 |V_{\rm s}|^2 \frac{\left(A_{\rm s} - A_{\rm h}\right)^2}{A_{\rm s}^2 A_{\rm h}^2} \\ &\approx 4E_a^2 \frac{|V_{\rm s}|^2}{\left(E_c/E_a\right)^{-2}} \frac{\left(m_{c,\ \rm h}^2 - m_{c,\ \rm s}^2\right)^2}{\left(|\vec{p}_{c,\perp}|^2 + m_{c,\ \rm s}^2\right)^2 \left(|\vec{p}_{c,\perp}|^2 + m_{c,\ \rm h}^2\right)^2} \end{aligned}$$

Jessica Turner

Institute of Particle Physics Phenomenology

h

Lets keep track of what cancels where...

$$\begin{split} |\mathcal{M}|^{2} &\approx 4E_{a}^{2} \left|V_{\rm s}\right|^{2} x^{2} \frac{m_{c,\ \rm h}^{4}}{\left|\vec{p}_{c,\perp}\right|^{4} \left(\left|\vec{p}_{c,\perp}\right|^{2} + m_{c,\ \rm h}^{2}\right)^{2}} \right) \bigvee V \to V_{T} F \\ &\approx 4E_{a}^{2} 4 \ {\rm g}^{2} C_{2}[R] \frac{\left|\vec{p}_{c,\perp}\right|^{2}}{x^{2}} x^{2} \frac{m_{c,\ \rm h}^{4}}{\left|\vec{p}_{c,\perp}\right|^{4} \left(\left|\vec{p}_{c,\perp}\right|^{2} + m_{c,\ \rm h}^{2}\right)^{2}} \\ &\approx 4E_{a}^{2} 4 \ {\rm g}^{2} C_{2}[R] \frac{m_{c,\ \rm h}^{4}}{\left|\vec{p}_{c,\perp}\right|^{2} \left(\left|\vec{p}_{c,\perp}\right|^{2} + m_{c,\ \rm h}^{2}\right)^{2}} \end{split}$$

$$\approx 4E_{a}^{2} |V_{\rm s}|^{2} x^{2} \frac{m_{c, \rm h}^{4}}{|\vec{p}_{c,\perp}|^{4} \left(|\vec{p}_{c,\perp}|^{2} + m_{c, \rm h}^{2}\right)^{2}} \bigvee VF \rightarrow V_{T} F$$

$$\approx 4E_{a}^{2} 4 g^{2} C_{2}[R] \frac{|\vec{p}_{c,\perp}|^{2}}{x^{2}} x^{2} \frac{m_{c, \rm h}^{4}}{|\vec{p}_{c,\perp}|^{4} \left(|\vec{p}_{c,\perp}|^{2} + m_{c, \rm h}^{2}\right)^{2}}$$

$$\approx 4E_{a}^{2} 4 g^{2} C_{2}[R] \frac{m_{c, \rm h}^{4}}{|\vec{p}_{c,\perp}|^{2} \left(|\vec{p}_{c,\perp}|^{2} + m_{c, \rm h}^{2}\right)^{2}}$$

In the pressure expression, there is the "observable" which is the momentum transfer (from plasma to wall) in the z-direction:

$$\begin{split} |\mathcal{M}|^2 \times \Delta p_z &\approx 16E_a^2 \ \mathrm{g}^2 C_2[R] \frac{m_{c,\ \mathrm{h}}^4}{\left|\vec{p}_{c,\perp}\right|^2 \left(\left|\vec{p}_{c,\perp}\right|^2 + m_{c,\ \mathrm{h}}^2\right)^2} \times \frac{m_{c,h}^2 + p_{c,\perp}^2}{2p_c^0} \\ &\approx 8E_a^2 \ \mathrm{g}^2 C_2[R] \frac{m_{c,\ \mathrm{h}}^4}{\left|\vec{p}_{c,\perp}\right|^2 \left(\left|\vec{p}_{c,\perp}\right|^2 + m_{c,\ \mathrm{h}}^2\right)} \times \frac{1}{p_c^0} \end{split}$$

$$\approx 16E_a^2 \text{ g}^2 C_2[R] \frac{m_{c,\text{ h}}^4}{\left|\vec{p}_{c,\perp}\right|^2 \left(\left|\vec{p}_{c,\perp}\right|^2 + m_{c,\text{ h}}^2\right)^2} \times \frac{m_{c,\text{h}}^2 + p_{c,\perp}^2}{2p_c^0} \\ \approx 8E_a^2 \text{ g}^2 C_2[R] \frac{m_{c,\text{ h}}^4}{\left|\vec{p}_{c,\perp}\right|^2 \left(\left|\vec{p}_{c,\perp}\right|^2 + m_{c,\text{ h}}^2\right)} \times \frac{1}{p_c^0}$$

Two pieces left: the integration of PS of incoming "a" gives the flux. We also need to integrate over phase space of particle "c" our soft emission

$$\int_{g^2 T^2}^{m^2} \frac{dp_{c,\perp}^2}{(2\pi)^2 |\vec{p}_{c,\perp}|^2 \left(|\vec{p}_{c,\perp}|^2 + m_{c,\mathrm{h}}^2\right)} \approx \frac{1}{24}$$

$$\int \frac{dp_c^0}{p_c^{0^2}} \approx \frac{1}{m}$$

Transverse momentum integration

Lorentz contracted flux

Jessica Turner

Institute of Particle Physics Phenomenology

 $4\pi m^2$

B&M assume $g^2T^2 \ll m^2$ i.e. supercooled PT. Drop this assumption the thermal mass would cut of the integral and you'd get some (possibly large) $\log\left(\frac{m_{c,h}^2}{m_{c,s}^2}\right)$

- $\mathscr{P}_{1\to 2} \propto \gamma^2$ while $\mathscr{P}_{1\to 1} \propto \gamma$. Since, vacuum pressure does not grow in λ , a terminal velocity will be reached.
- $\mathscr{P} \propto m^2 \implies$ no phase change pressure goes to zero.
- *M*: WKB and vertex. The vertex part is dominated in the soft regime.
- B&M cut off the \vec{k}_{\perp} and k^0 integration by gauge boson mass.
- This interaction looks like a collider/scattering experiment where the collision occurs between the ingoing particle and the wall \implies the centre of mass energy will be large \implies many soft emission.

 $\mathcal{P}_{1\to 2} \sim m\gamma T^3$

1-to-n pressure calculation for relativistic bubble walls 2007.10343 (JCAP 2103 (2021) 009)

Jessica Turner

Stefan Höche

Jonathan Kozaczuk

Andrew Long

Splitting functions typically used to resum soft radiation.

Only have a few scale in the problem. Incoming particle energy γT (UV scale) and bare mass/thermal mass particles in the bubble (IR scale).

Reformulation of matrix element

Recall B&M used the mode functions from solving KG equation:

$$\begin{split} A_{\rm s} &= -2E_a \left(p_{a,z,{\rm s}} - p_{b,z,{\rm s}} - p_{c,z,{\rm s}} \right) \approx \vec{p}_{a,\perp}^2 + m_{a,{\rm s}}^2 - \frac{\vec{p}_{b,\perp}^2 + m_{b,{\rm s}}^2}{E_b/E_a} - \frac{\vec{p}_{c,\perp}^2 + m_{c,{\rm s}}^2}{E_c/E_a} \stackrel{x \ll 1}{\longrightarrow} - \frac{\vec{k}_{\perp}^2 + m_{c,{\rm s}}^2}{x} \\ A_{\rm h} &= -2E_a \left(p_{a,z,{\rm h}} - p_{b,z,{\rm h}} - p_{c,z,{\rm h}} \right) \approx \vec{p}_{a,\perp}^2 + m_{a,{\rm h}}^2 - \frac{\vec{p}_{b,\perp}^2 + m_{b,{\rm h}}^2}{E_b/E_a} - \frac{\vec{p}_{c,\perp}^2 + m_{c,{\rm h}}^2}{E_c/E_a} \stackrel{x \ll 1}{\longrightarrow} - \frac{\vec{k}_{\perp}^2 + m_{c,{\rm h}}^2}{x} \\ \end{split}$$

We instead use:

$$\begin{aligned} A_{\rm s} &= -2p_{a,{\rm s}}p_{c,{\rm s}} \approx 2\vec{p}_{a,\perp} \cdot \vec{p}_{c,\perp} - \frac{\vec{p}_{a,\perp}^2 + m_{a,{\rm s}}^2}{E_a/E_c} - \frac{\vec{p}_{c,\perp}^2 + m_{c,{\rm s}}^2}{E_c/E_a} \xrightarrow{x\ll 1} - \frac{\vec{k}_{\perp}^2 + m_{c,{\rm s}}^2}{x} \\ A_{\rm h} &= -2p_{b,{\rm h}}p_{c,{\rm h}} \approx 2\vec{p}_{b,\perp} \cdot \vec{p}_{c,\perp} - \frac{\vec{p}_{b,\perp}^2 + m_{b,{\rm h}}^2}{E_b/E_c} - \frac{\vec{p}_{c,\perp}^2 + m_{c,{\rm h}}^2}{E_c/E_b} \xrightarrow{x\ll 1} - \frac{\vec{k}_{\perp}^2 + m_{c,{\rm s}}^2}{x} \end{aligned}$$

Note that they are **identical in the soft-limit**.

Jessica Turner

$$p_a^{\mu} \approx \left(E_a, \overrightarrow{0}, E_a \left(1 - \frac{m_a^2}{2E_a^2} \right) \right)$$
$$p_b^{\mu} \approx \left((1 - x) E_a, \vec{k}_{\perp}, (1 - x) E_a \left(1 - \frac{\vec{k}_{\perp}^2}{2(1 - x)} \right) \right)$$
$$p_c^{\mu} \approx \left(x E_a, \vec{k}_{\perp}, x E_a \left(1 - \frac{\vec{k}_{\perp}^2 + m_c^2}{2x^2 E_a^2} \right) \right)$$

$$A_{\rm s} = -2p_{a,\rm s}p_{c,\rm s} \approx 2\vec{p}_{a,\perp} \cdot \vec{p}_{c,\perp} - \frac{\vec{p}_{a,\perp}^2}{2}$$
$$A_{\rm h} = -2p_{b,\rm h}p_{c,\rm h} \approx 2\vec{p}_{b,\perp} \cdot \vec{p}_{c,\perp} - \frac{\vec{p}_{b,\perp}^2}{2}$$

Using the full propagator expression (same as B&M in soft limit) we get a gauge invariant expression.

Jessica Turner

expressions you will find that the matrix element doesn't match axial gauge. The gauge choice comes in the polarisation sum of the gauge boson.

$$\sum_{\kappa=\pm} \epsilon(p)^{\kappa}_{\mu} \epsilon^{\kappa}_{\nu}(p)^{*} = -g_{\mu\nu} + \zeta g_{\mu\rho} g_{\nu\sigma} \left(\frac{n^{\rho} p_{b}^{\sigma} + n^{\sigma} p_{b}^{\rho}}{p_{b} \cdot n} - n \cdot n \frac{p_{b}^{\rho} p_{b}^{\sigma}}{(p_{b} \cdot n)^{2}} \right)$$

In our expressions, lightlike axial gauge ($\zeta = 1$) with $n = p_{b,h}$ simplifies the matrix element*

$$\begin{split} |V_{\rm h}|^2 &= V_{\rm h}^* V_{\rm s} = V_{\rm s}^* V_{\rm h} = 0\\ |V_{\rm s}|^2 &= 4|g|^2 \left(\frac{2(p_{a,{\rm s}}p_{b,{\rm h}})(p_{a,{\rm s}}p_c)}{p_{b,{\rm h}}p_c} - \frac{p_{b,{\rm h}}^2(p_{a,{\rm s}}p_c)^2}{(p_{b,{\rm h}}p_c)^2} - p_{a,{\rm s}}^2 \right)\\ &\approx 4|g|^2 \,\vec{k}_{\perp}^2 \left(\frac{\vec{k}_{\perp}^2 + x(m_{b,{\rm h}}^2 - (1-x)m_{a,{\rm s}}^2)}{\vec{k}_{\perp}^2 + x^2 m_{b,{\rm h}}^2} \right)^2 \stackrel{m_{a,{\rm s}}^2 \ll m_{b,{\rm h}}^2}{\vec{k}_{\perp}^2 \ll x^2 m_{b,{\rm h}}^2} \, 4|g|^2 \, \frac{\vec{k}_{\perp}^2}{x^2} \end{split}$$

analogue of $\gamma^ \rightarrow q \overline{q} g$ LLA gauge switches off interference term. Total amplitude GI but sub amplitude need not be

Jessica Turner

Institute of Particle Physics Phenomenology

If you choose a different gauge (such as Feynman gauge $\zeta = 0$) in the previous "A"

Ultracollinear limit

$$\mathcal{M}_{a\to bc}^{(0)}\Big|^{2} = 4E_{a}^{2} \frac{|V_{s}|^{2}}{A_{s}^{2}}\Big|_{n^{\mu} = p_{b,h}^{\mu}} \stackrel{m_{a, s}^{2} \ll \vec{k}_{\perp}^{2}, m_{b, h}^{2}}{\longrightarrow} 8E_{a}^{2}|g|^{2} \frac{2x^{2}}{\vec{k}_{\perp}^{2}} \left(\frac{\vec{k}_{\perp}^{2} + xm_{b, h}^{2}}{\vec{k}_{\perp}^{2} + x^{2}m_{b, h}^{2}}\right)^{2}$$

$$\left|\mathcal{M}_{a\to bc}^{(0)}\right|^{2} = 4E_{a}^{2} \frac{\left|V_{s}\right|^{2}}{A_{s}^{2}} \bigg|_{n^{\mu} = p_{b,h}^{\mu}} \overset{m_{a,s}^{2}, m_{b,h}^{2} \to \mathbb{K}^{2}}{\overset{K^{2}}{\longrightarrow}} 8E_{a}^{2}|g|^{2} \frac{2x^{2}}{\vec{k}_{\perp}^{2}}$$

$$\frac{1}{\left|\mathcal{M}_{a\to b}^{(0)}\right|^{2}} \int \frac{\mathrm{d}^{3}\vec{p_{c}}}{(2\pi)^{3}2E_{c}} \left|\mathcal{M}_{a\to bc}^{(0)}\right|^{2} \approx \begin{cases} \frac{\alpha}{2\pi} \int \frac{\mathrm{d}\vec{k}_{\perp}^{2}}{\vec{k}_{\perp}^{2}} C_{abc} \log t \\ \frac{\alpha}{2\pi} \int \frac{\mathrm{d}\vec{k}_{\perp}}{\vec{k}_{\perp}} dt \end{cases}$$

- In IR regime, logarithms can be large \rightarrow invalidate fixed order calculation
- As phase change is required but this can come from the hard outgoing fermion leg.

• One thing to note, our ME squared does not have the Δm^2 suppression factor.

Our gauge invariant matrix element:

$$\left|\mathcal{M}_{a\to bc}^{(0)}\right|^{2} = 4E_{a}^{2}|g|^{2} \left(\frac{2p_{a,s}p_{b,h}}{p_{a,s}p_{c}p_{b,h}p_{c}} - \frac{m_{a,s}^{2}}{\left(p_{a,s}p_{c}\right)^{2}} - \frac{m_{b,h}^{2}}{\left(p_{b,h}p_{c}\right)^{2}}\right)$$

First need to cancel poles: allows for the meaningful resummation. IR divergent parts in the real and virtual diagrams computed using dim reg

Jessica Turner

Radiative corrections as branching processes

Marchesini & Webber (1983) Sjöstrand (1985)

Sudakov factor \rightarrow no-emission probability Survival probability at time "t": $e^{-\lambda t}$ where $t \leftrightarrow$ energy scale (log(1/v)) Change in population analogous to boson emission probability

$$\lambda N dt = \int [dk] M^2(k) \Theta(v - V(\{\tilde{p}\}, k))$$

Probability not emitting bosons above v

Institute of Particle Physics Phenomenology

Jessica Turner

$$P_{\rm no\,em} + P_{em} = 1$$

N =population $dN = -\lambda N dt$ $\lambda = \text{decay constant}$

[virt. + unres.] =
$$e^{-\int [dk]M^2(k)\Theta(V(\{\tilde{p}\},k)-v)}$$

of

Analytic Resummation

we require that it did not produce a large momentum transfer before.

$$R(v) = \int [dk] \left| M^{2}(k) \right| \Theta[V(\{p\}, k) - v] \qquad V(p_{a}, p_{b}, p_{c}) = \frac{\Delta p_{z}}{\gamma T} \approx \frac{\vec{k}_{\perp}^{2} / (2E_{a}^{2})}{x(1-x)}$$

$$R_{abc}(V) = C_{abc} |g|^{2} \int \frac{\mathrm{d}^{3} \vec{p_{c}}}{(2\pi)^{3} 2E_{c}} \left(\frac{2p_{b, h} p_{a, s}}{p_{a, s} p_{c} p_{b, h} p_{c}} + \mathcal{O}\left(\frac{m_{a, s}^{2}}{\vec{k}_{\perp}^{2}}, \frac{m_{b, h}^{2}}{\vec{k}_{\perp}^{2}}\right) \right) \Theta(V(p_{a}, p_{b}, p_{c}) - V) \Theta(p_{b, z, h}) \Theta(p_{c, z, h}) \Theta(p$$

Rewrite phase space and matrix element squared in terms of observable V

$$R_{abc}(V) = C_{abc} \frac{\alpha}{2\pi} \int_{V}^{1} \frac{\mathrm{d}V'}{V'} \int_{0}^{1} \mathrm{d}x 2x \Theta \left(\frac{1}{1+V'} - x\right) \Theta \left(x - \frac{V'}{1+V'}\right)$$
$$R_{abc}(V) = \frac{\alpha}{2\pi} C_{abc} \left(L + 2\log\left(1 + e^{-L}\right)\right) \text{ where } L = \log\frac{1}{V}$$

Jessica Turner

Institute of Particle Physics Phenomenology

R(v) probability for decay $a \rightarrow bc$. For this splitting to produce momentum transfer of v

Single log as we focus on $\vec{k}_{\perp}^2 \gg m_{b,h}^2$ region

h on

$$\Delta_a(V) = \exp\left\{-\sum_b R_{ab}(V)\right\},\,$$

$$\left\langle \frac{\Delta p_z}{\gamma T} \right\rangle = \int_0^1$$

Average mom transfer per incoming particle @ fixed coupling

$$\left\langle \frac{\Delta p_z}{\gamma T} \right\rangle_{\rm FC} = \int_0^\infty \mathrm{d}L e^{-L} \frac{(\alpha C)_{\Sigma}}{2\pi} \frac{e^L - 1}{e^L + 1} \exp\left\{ -\frac{(\alpha C)_{\Sigma}}{2\pi} \left(L + 2\log\left(1 + e^{-L}\right) \right) \right\} \approx \zeta(\log 4 - 1)$$

$$\langle \Delta p_z \rangle \sim \gamma T$$

Importantly:

Jessica Turner

where
$$R_{ab}(V) = \sum_{c} R_{abc}(V)$$

$$= \int_0^1 \, \mathrm{d}VV \frac{\mathrm{d}}{\mathrm{d}V} \prod_{a \in \mathcal{S}} \Delta_a(V)$$

Numerical Resummation

 $\left\langle \frac{\Delta p_z}{\gamma T} \right\rangle = 0.89(17) \,\% - 0.14(3) \,\% \log_{10} \gamma \implies P \propto \gamma^2 T^4$

Institute of Particle Physics Phenomenology

Jessica Turner

Summary

- 1st order EWPT is plausible and has many interesting physical consequences such as baryogenesis & GW production. Both quantitatively depend on the velocity of the bubble wall. Faster walls \implies bigger waves!
- versus frictional pressure from plasma.
- We reformulated the calculation of the latter in a GI way and calculated the average pressure to all orders.
- Pressure $\propto \gamma^2$ also massless GB contribute the largest pressure of all SM. Numerical and analytic resumption agree to 10% level.
- interest to connect parton shower \leftrightarrow entropy

• Bubble wall velocity is a force balancing exercise: pressure from Higgs potential

Prokopec et al found the same scaling using an entropy argument, it would be

Carlos and a statement

Thank you for your time!

H H H

Backup slides

Backup slide: kinematics

$$|M|^{2} = \frac{2p_{a,s}p_{c,h}}{(kp_{a,s})(kp_{c,h})} - \frac{m_{a,s}^{2}}{(kp_{a,s})^{2}} - \frac{m_{c,h}^{2}}{(kp_{c,h})^{2}}$$

$$\stackrel{h}{\longrightarrow} (kp_{c,h}) - \frac{m_{a,s}}{(kp_{a,s})^{2}} - \frac{m_{c,h}}{(kp_{c,h})^{2}} \Theta(k_{z}) \Theta(p_{c,z}) \Theta(V-v)$$

$$\stackrel{h}{\longrightarrow} \frac{m_{a,s}}{(kp_{c,h})} - \frac{m_{a,s}}{(kp_{a,s})^{2}} - \frac{m_{c,h}}{(kp_{c,h})^{2}} \Theta(k_{z}) \Theta(p_{c,z}) \Theta(V-v)$$

$$\stackrel{h}{\longrightarrow} \frac{dx}{x} \left(\frac{2(p_{a,s}p_{c,h})}{(kp_{a,s})(kp_{c,h})} - \frac{m_{a,s}}{(kp_{a,s})^{2}} - \frac{m_{c,h}}{(kp_{a,s})^{2}} \right) \Theta(k_{z}) \Theta(p_{c,z}) \Theta(V-v)$$

$$e^{h} dx \left(\frac{2(p_{a,s}p_{c,h})}{(kp_{a,s})(kp_{c,h})} - \frac{m_{a,s}}{(kp_{a,s})^{2}} - \frac{m_{c,h}}{(kp_{c,h})^{2}} \right) \Theta(k_{z}) \Theta(p_{c,z}) \Theta(V-v)$$

$$V = \frac{\Delta p_z}{E_a} \approx \frac{k_t^2}{2 \times (1-x)E_a^2} \implies dk_t^2 = 2x(1-x)E_a^2 dV$$
$$\eta_k = \log\left(\frac{x}{k_t/(\gamma T)}\right) = \frac{1}{x}\log\left(\frac{x}{V}\right)$$
$$k_z = xE_a\left(1 - \frac{k_t^2 + m_b^2}{2x^2 E_a^2}\right) \ge 0 \implies x - \frac{v}{1+V} \ge 0$$

$$V_{a}^{2} dV \qquad V = \frac{\Delta p_{z}}{E_{a}} \approx \frac{k_{t}^{2}}{2 \times (1-x)E_{a}^{2}} \implies dk_{t}^{2} = 2x(1-x)E_{a}^{2}dV$$

$$k_{z} = xE_{a}\left(1 - \frac{k_{t}^{2}}{2x^{2}E_{a}^{2}}\right) \ge 0 \implies x - \frac{v}{1+V} \ge 0$$

$$p_{c,z} = (1-x)E_{a}\left(1 - \frac{k_{t}^{2}}{2(1-x)^{2}E_{a}^{2}}\right) \ge 0 \implies x + \frac{1}{1+V} \ge 0$$

· ()

$D \rightarrow 4 - 2\epsilon$ then $\epsilon \rightarrow 0$ Infrared divergences cancel amongst VC and RE