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178 Topology on the lattice

Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c

decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡, KK, ⌘⌘, KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.

!"#!2g$!
8%&s

2!'"0$!2

3mc
2 " 1"4.4

&s

% # . "25$

Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.
The calculation proceeds along the same lines as the glue-

ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is

LI"A!% dz% d0"*$
d*

*5
1

Nc
2$1
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&S
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%"d̄ ta+5d$"s̄+5s$$
3
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)

INSTANTON CONTRIBUTION TO SCALAR CHARMONIUM . . . PHYSICAL REVIEW D 67, 114003 "2003$

114003-7

Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.
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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).
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Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998
…

A snapshot of lattice G-dual G
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c

decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡, KK, ⌘⌘, KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.
The calculation proceeds along the same lines as the glue-

ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

But no pi,pi,pi or other 3-body decays

…
A snapshot of lattice G-dual G
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.

December 4, 2020 11:58 WSPC/Book Trim Size for 9.75in x 6.5in all˙in˙one

170 Gauge field topology and instantons

Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c

decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡, KK, ⌘⌘, KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.
The calculation proceeds along the same lines as the glue-

ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is
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%"d̄ ta+5d$"s̄+5s$$
3
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

But no pi,pi,pi or other 3-body decays

…
A snapshot of lattice G-dual G
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c

decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡, KK, ⌘⌘, KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.
The calculation proceeds along the same lines as the glue-

ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

Not seen in the control group 
The J/psi decaysBut no pi,pi,pi or other 3-body decays

…
A snapshot of lattice G-dual G
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c

decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡, KK, ⌘⌘, KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.
The calculation proceeds along the same lines as the glue-

ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is
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The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

Not seen in the control group 
The J/psi decaysBut no pi,pi,pi or other 3-body decays

Zetocha, V. and Schafer, T. (2003). Instanton contribution to scalar charmonium and  
glueball decays. Phys. Rev., D67:114003. hep-ph/0212125.

…
A snapshot of lattice G-dual G



Instantons in the QCD VACUUM and HADRONS

December 4, 2020 11:58 WSPC/Book Trim Size for 9.75in x 6.5in all˙in˙one

Fermionic transitions during changes of gauge topology 169

6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c

decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡, KK, ⌘⌘, KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.
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Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.
The calculation proceeds along the same lines as the glue-

ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is
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""ū ta,-.u$"d̄ tb,-.d$"s̄ tc+5s$""ū ta,-.+5u$"d̄ tb,-.+5d$"s̄ tc+5s$)""2 cyclic permutations u$d$s$(
$
9
40d

abc("ū ta+5u$"d̄ tbd$"s̄ tcs$""ū tau$"d̄ tb+5d$"s̄ tcs$""ū tau$"d̄ tbd$"s̄+5tcs$""ū ta+5u$"d̄ tb+5d$"s̄ tc+5s$)

$
9
32 i f

abc("ū ta,-.+5u$"d̄ tb,.+d$"s̄ tc,+-s$""ū ta,-.u$"d̄ tb,.++5d$"s̄ tc,+-s$""ū ta,-.u$"d̄ tb,.+d$

%"s̄ tc,+-+5s$""ū ta,-.+5u$"d̄ tb,.++5d$"s̄ tc,+-+5s$)) . "26$

The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

Not seen in the control group 
The J/psi decaysBut no pi,pi,pi or other 3-body decays

Zetocha, V. and Schafer, T. (2003). Instanton contribution to scalar charmonium and  
glueball decays. Phys. Rev., D67:114003. hep-ph/0212125.

…
Light-front wave functions of mesons, baryons, and pentaquarks with topology-induced local four-quark interaction 

ES,Phys.Rev.D 100 (2019) 11, 114018 • e-Print: 1908.10270

A snapshot of lattice G-dual G
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6.4.5 Instanton-induced diquark- quark configurations in the nu-

cleon

This subsection just introduce this important subject: more detailed discussion of
it will be continued in chapter 9.9 devoted to hadronic wave functions on the light
front.

In Fig.6.12 we show the simplest valence-quark nucleon configuration (a), to-
gether with the lowest-order instanton-induced e↵ects. The diagram (b) illustrate
the ud diquark correlation, appearing in the first order in ’t Hooft Lagrangian. Since
the diquark has spin zero, the d quark in it does not contribute to the total spin of
the nucleon. This conclusion is supported by lattice studies.

The attention to the last diagram (c) comes from the paper [Dorokhov and
Kochelev, 1993], where it was noted that “sea quarks” produced by instantons,
and resulting in the 5-quark configuration, are highly polarized both in spin and
isospin. Indeed, the valence u quark can only produce d, s ones (flavor polarization).
Furthermore, if this quark happens to be right-handed, the sea quark pair would be
left-handed (and vice versa). In that paper this configuration was proposed as an
explanation of observed deviations from Ellis-Ja↵e and Gottfried sum rules, related
to the famous “spin crisis” of the nucleon.

Note that the instanton-induced production of sea quarks is very di↵erent from
the usual one-gluon vertex creating q̄q pairs, which is obviously flavor and chirality-
blind. Thus the usual pQCD evolution of structure functions, while dominant at
very small x, cannot start from simple valence quark distributions and needs asym-
metric phenomenological input.

6.4.6 Instanton-induced decays of ⌘c and scalar/pseudoscalar glue-

balls

Fig. 6.13 The instanton-induced decay of the pseudoscalar ⌘c.
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Let me here provide one example (which we would not discuss in detail). It
was noticed by Bjorken [Bjorken, 2000] that decays of ⌘c has 3 large 3-body modes,
about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or many other decay modes one may think
of: that is because ’t Hooft vertex must have all light quark flavors including
the s̄s, see Fig.6.13. More generally, in fact the average multiplicity of J/ , ⌘c

decays is significantly larger than 3, so large probability of these 3-body decays is
a phenomenon by itself. Bjorken pointed out that the vertex seems to be ūud̄ds̄s
and suggested that these decays proceed via ’t Hooft vertex.

The actual calculations were done by [Zetocha and Schafer, 2003], it included
the following two and three mesons decays channels of the lowest charmonium state

⌘c ! ⇡⇡, KK, ⌘⌘, KK⇡, ⌘⇡⇡, ⌘0⇡⇡ (6.71)

using the 3-flavor Lagrangian shown in Fig.6.14.

!"#!2g$!
8%&s

2!'"0$!2

3mc
2 " 1"4.4

&s

% # . "25$

Here, '(0) is the 1S0 ground state wave function at the
origin. Using mc!1.25 GeV and &s(mc)!0.25 we get
!'(0)!$0.19 GeV3/2, which is consistent with the expecta-
tion from phenomenological potential models. Exclusive de-
cays cannot be reliably computed in perturbative QCD. As
discussed in the Introduction, Bjorken pointed out that #c
decays into three pseudoscalar Goldstone bosons suggest that
instanton effects are important (10). The relevant decay
channels and branching ratios are B(KK̄%)!(5.5
#1.7)%, B(#%%)!(4.9#1.8)% and B(#!%%)!(4.1
#1.7%). These three branching ratios are anomalously large

for a single exclusive channel, especially given the small
multiplicity. The total decay rate into these three channels is
(14.5#5.2)% which is still a small fraction of the total
width. This implies that the assumption that the three-
Goldstone bosons channels are instanton dominated is con-
sistent with our expectation that the total width is given by
perturbation theory. For comparison, the next most important
decay channels are B(2(%"%$))!(1.2#0.4)% and B(**)
!(2.6#0.9)%. These channels do not receive direct instan-
ton contributions.
The calculation proceeds along the same lines as the glue-

ball decay calculation. Since the #c is a pseudoscalar only
the GG̃ term in Eq. "4$contributes. The relevant interaction
is

LI"A!% dz% d0"*$
d*

*5
1

Nc
2$1

" %3*4

&S
#GG̃" 14 # " 43 %2*3# 3&("ū+5u$"d̄d$"s̄s$""ūu$"d̄+5d$"s̄s$""ūu$"d̄d$"s̄+5s$

""ū+5u$"d̄+5d$"s̄+5s$)"
3
8 '"ū ta+5u$"d̄ tad$"s̄s$""ū tau$"d̄ ta+5d$"s̄s$""ū tau$"d̄ tad$"s̄+5s$""ū ta+5u$

%"d̄ ta+5d$"s̄+5s$$
3
4 ("ū ta,-.+5u$"d̄ ta,-.d$"s̄s$""ū ta,-.u$"d̄ ta,-.+5d$"s̄s$""ū ta,-.u$"d̄ ta,-.d$"s̄+5s$

""ū ta,-.+5u$"d̄ ta,-.+5d$"s̄+5s$)$
9
20d

abc("ū ta,-.+5u$"d̄ tb,-.d$"s̄ tcs$""ū ta,-.u$"d̄ tb,-.+5d$"s̄ tcs$

""ū ta,-.u$"d̄ tb,-.d$"s̄ tc+5s$""ū ta,-.+5u$"d̄ tb,-.+5d$"s̄ tc+5s$)""2 cyclic permutations u$d$s$(
$
9
40d

abc("ū ta+5u$"d̄ tbd$"s̄ tcs$""ū tau$"d̄ tb+5d$"s̄ tcs$""ū tau$"d̄ tbd$"s̄+5tcs$""ū ta+5u$"d̄ tb+5d$"s̄ tc+5s$)

$
9
32 i f

abc("ū ta,-.+5u$"d̄ tb,.+d$"s̄ tc,+-s$""ū ta,-.u$"d̄ tb,.++5d$"s̄ tc,+-s$""ū ta,-.u$"d̄ tb,.+d$

%"s̄ tc,+-+5s$""ū ta,-.+5u$"d̄ tb,.++5d$"s̄ tc,+-+5s$)) . "26$

The strategy is the same as in the glueball case. We Fierz-
rearrange the Lagrangian "26$and apply the vacuum domi-
nance and PCAC "partial conservation of axial vector cur-
rent$approximations. The coupling of the #c bound state to
the instanton involves the matrix element

/#c
!0#c!g2GG̃!01. "27$

We can get an estimate of this matrix element using a simple
two-state mixing scheme for the #c and pseudoscalar glue-
ball. We write

!#c1!cos"2$! c̄c1"sin"2$!gg1, "28$

!0$"1!$sin"2$! c̄c1"cos"2$!gg1. "29$

The matrix element f #c
!00!2mcc̄+5c!#c1$2.8 GeV3 is re-

lated to the charmonium wave function at the origin. The
coupling of the topological charge density to the pseudo-
scalar glueball was estimated using QCD spectral sum rules,
/0$"!00!g2GG̃!0$"1$22.5 GeV3 (31). Using the two-
state mixing scheme the two ‘‘off-diagonal’’ matrix elements
f 0$"!00!2mcc̄+5c!0$"1and /#c

!00!g2GG̃!#c1are given
in terms of one mixing angle 2 . We can estimate this mixing
angle by computing the charm content of the pseudoscalar
glueball using the heavy quark expansion. Using (41)
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Fig. 6.14 The form of the Nf = 3 e↵ective ’t Hooft Lagrangian

Their results contain rather high power of the instanton radius and therefore
strongly depend on its value. So the authors used the inverted logic, evaluating
from each data point the corresponding value of the mean instanton size ⇢̄. The
results reasonably well reproduced the ratios between the channels and even the
absolute width. Furthermore, these calculations provide about the most accurate
evaluation of the average instanton size available, in the range of ⇢̄ = 0.29�0.30 fm.

Bjorken, J. D hep-ph/0008048.  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Fig. 7.3 The topological structure revealed by “cooling” of lattice gauge configurations. Four
upper plots are from the MIT group by Negele et al, they show the distributions of the action
⇠ GG and topological charge ⇠ GG̃ (left and right). The upper plots are before and the lower
ones after cooling. The lower 3d picture of the topological charge is from the Adelaide group
(Leinweber et al) (lower).

repulsion between instantons and antiinstantons: we will return to it in section on
the instanton liquid.

Another one, proposed in ref.[Shuryak, 1999] already mentioned, is that the
coe�cient is proportional to the dual magnetic condensate, that of Bose-condensed
monopoles. It has been further argued there that it can be related to the string
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nucleons!

Fig. 9.1 The pion (left) and the proton (right), depicted as a sequence of tunneling events. The
blue circle indicate mass insertions. Note ud diquarks inside the proton.

Note that, because of topological index theorem, quark zero modes have specific
chiralities: therefore ’ t Hooft interaction has very specific chiral structure. For
example, the picture above cannot hold for vector or tensor mesons. So, the aim of
this section is to elucidate – using phenomenological or lattice correlation functions
– the role of the topology in the vacuum and hadronic structure.

In fact, one could have done it even simpler, without quarks and their zero
modes, in pure gauge theories. Indeed, the topological solitons themselves – being
selfdual or antiselfdual – are made of so-to-say “chirally polarized gluonic fields.
Scalar and pseudoscalar glueballs are strongly a↵ected by tunneling events, while
other ones – e.g. tensor ones – are not.

Correlation functions are the main tools used in studies of structure of the QCD
vacuum. They can be obtained in several ways. First, they can in many cases be de-
duced phenomenologically, using vast set of data accumulated in hadronic physics.
Second, they can be directly calculated ab initio using quantum field theory meth-
ods, such as lattice gauge theory, or semiclassical methods. Significant amount
of work has also been done in order to understand their small-distance behavior,
based on the Operator Product Expansion (OPE). The large distance limit can
also be understood using e↵ective hadronic approaches or various quark models of
hadronic structure. In this section we focus on available phenomenological informa-
tion about the correlation functions, emphasizing the most important observations,
which are then compared with predictions of various theoretical approaches; lattice
numerical simulations, the operator product expansion and interacting instantons
approximation. As a “common denominator” for our discussion we have chosen the
point-to-point correlation functions in coordinate representations.

“Instanton liquid model” , Shuryak, 1981 
n=1/fm^4, rho=1/3 fm => chiral symmetry breaking

Interacting ensemble of instantons  - 1990’s 
Multiple correlation functions

Diquark formation inside nucleons 
 (but not Deltas) 

Color superconductivity 1998

Not seen in the control group 
The J/psi decaysBut no pi,pi,pi or other 3-body decays

Zetocha, V. and Schafer, T. (2003). Instanton contribution to scalar charmonium and  
glueball decays. Phys. Rev., D67:114003. hep-ph/0212125.

…

Nonperturbative quark-antiquark interactions in mesonic form factors ES, Ismail Zahed , 2008.06169

Light-front wave functions of mesons, baryons, and pentaquarks with topology-induced local four-quark interaction 
ES,Phys.Rev.D 100 (2019) 11, 114018 • e-Print: 1908.10270

A snapshot of lattice G-dual G
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Forced Tunneling and Turning State Explosion in Pure Yang-Mills Theory
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We consider forced tunneling in QCD, described semiclassically by instanton-antiinstanton field
configurations. By separating topologically different minima we obtain details of the effective po-
tential and study the turning states, which are similar to the sphaleron solution in electroweak
theory. These states are alternatively derived as minima of the energy under the constraints of
fixed size and Chern-Simons number. We study, both analytically and numerically, the subsequent
evolution of such states by solving the classical Yang-Mills equations in real time, and find that the
gauge field strength is quickly localized into an expanding shell of radiating gluons. The relevance
to high-energy collisions of hadrons and nuclei is briefly discussed.

I. INTRODUCTION

A. Instanton-Induced Scattering in QCD

The existence of topologically distinct non-abelian
gauge fields, with tunneling between corresponding clas-
sical vacua described semiclassically by instantons [1], is
one of the most spectacular nonperturbative effects of
field theory. Significant progress has been made in under-
standing instanton-induced effects in Quantum Chromo-
dynamics (QCD), explaining both explicit UA(1) chiral
symmetry breaking at the single-instanton level [2] and
spontaneous SU(Nf ) chiral symmetry breaking by the
instanton ensemble [3]. Euclidean correlation functions,
studied phenomenologically and on the lattice, have been
explained to a significant extent by instantons as well [4].

With tunneling phenomena apparently so important in
virtual quark and gluon propagation, it is reasonable to
think them also relevant in real processes such as scatter-
ing or particle production in Minkowski space. We thus
seek contributions to parton scattering amplitudes from
the theory of instanton-related objects, and supporting
experimental evidence.

With this as our motivation, we concentrate in this
paper on the theoretical basis of such effects from pure
Yang-Mills theory. Specific applications to high-energy
processes with hadrons or nuclei are left for papers to
follow, although we will discuss phenomenological gener-
alities where relevant.

Progress in understanding of the role of tunneling in
high energy processes has been tempered by technical
problems for years. Significant insights were obtained in
the 1980’s [5] and further developed in the early 1990’s
[6,7] through work in electroweak theory. In this case,
the instanton-induced cross section is readily identified
by baryon number violation and many noteworthy fea-
tures of these processes were found. However, quantita-
tive estimates of the associated cross sections proved to
be far below observable limits and interest quickly waned.
Similar ideas have also been developed in QCD [8], no-
tably the search for hard processes induced by small-sized

instantons which continues at HERA [9].
Another role for instanton-induced processes has re-

cently been proposed by Kharzeev, Kovchegov, and Levin
[10] and Nowak, Shuryak, and Zahed [11]. These works
focus on typical QCD instantons, of size ρ ∼ 1/3 fm
[3], which determine the semi-hard scale of Q ∼ 1 − 2
GeV. It was proposed that topological tunneling is be-
hind the well-known features of high energy scatter-
ing described phenomenologically by the so-called “soft”
pomeron. These ideas were further tested in Ref. [12],
where they were demonstrated to be reasonably consis-
tent with experimental data.

Since the 1960’s attempts have been made to explain
high-energy hadronic collisions with multi-peripheral
models, with various ladder diagrams describing hadron
production. It was realized that in order to get cross-
sections which are not falling at high energies, one needed
vector field exchange in the t-channel. With the dis-
covery of QCD, gluons naturally play this role. Generic
pQCD-inspired models appeared with processes like that
shown in Fig. 1(a). Eventually this development led to
the BFKL gluon ladder [13], which produces an (approx-
imately) supercritical pomeron, a “hard” pomeron with
the intercept well above 1. Recent studies of high en-
ergy hard processes, especially at HERA, have indeed
found strong growth of the cross section with energy for
truly hard processes (Q2 ≫ 1 GeV2), consistent with the
BFKL treatment.

But various data at the semi-hard scale of Q2 ∼ 1 GeV2

demonstrate rather different growth with energy, consis-
tent with a “soft” pomeron. Whatever it might be, the
pomeron should be an object of a particular size deduced
from the slope of its Regge trajectory, α′ ∼ 1/(2 GeV)2.
This size of course cannot be explained by basically scale-
invariant pQCD, and thus calls for a nonperturbative
derivation.

Existing models for the soft pomeron also include lad-
ders made of t-channel gluons, and the differences be-
tween them lie mainly in the construction of their rungs.
Each of the various models has a unique answer for what
is actually produced in gluon-gluon partonic collisions.

1

Their scalar product is

B⃗ · E⃗ = −393216tR(R2 + 2 + 4r2 + 4t2)(16t4

+24t2R2 + 32r2t2 + 32t2 + R4 + 16r4

+8r2R2)/(16r4 + 32r2t2 + 8r2R2 + 16t4

−8t2R2 + R4 + 32r2 + 32t2 + 8R2)4 , (20)

where we have set ρ = 1 and R = T is the intercenter
distance.

One can see that, in the simplest case of identical sizes
and orientations for the I and Ī, time reflection symmetry
t → −t of the problem is indeed manifest, so that

Aa
0(r⃗, t = 0) = 0 , Ea

m(x⃗, t = 0) = 0 . (21)

This is illustrated in Fig. 2(b). Since configurations of
this type interpolate between a mostly dual region, with
Ea

m(zI) = Ba
m(zI), to an anti-dual region, where Ea

m(zĪ) =
−Ba

m(zĪ), it is intuitive that the electric field vanishes in
the center.

T

t
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FIG. 2. Instanton-antiinstanton configurations. (a) A
schematic picture in Euclidean space-time. The thick vertical
line, t = 0, corresponds to the location of the turning state.
The definition of the inter-center distance T is also shown.
(b) Distribution along the time axis of 2B⃗2,2E⃗2, and 2B⃗ · E⃗ for
the ratio ansatz with T = ρ, shown by the solid, dashed, and
short-dashed lines respectively. The curve for B⃗ · E⃗ is the only
one which is t-odd.

This situation can be readily interpreted in the A0 = 0
gauge, in which the electric field is simply the time deriva-
tive of the gauge field – the canonical momentum in
Yang-Mills field quantization. Thus the t = 0 magnetic
state is indeed identified as a turning state, in which mo-
tion is momentarily stopped. For separation T compa-
rable to the size ρ the energy is finite, with a maximum
E ∼ 1/(gρ).

The energy E and Chern-Simons number NCS for ei-
ther the sum or ratio ansatz can be calculated as a func-
tion of separation T directly, with the hope that a para-
metric plot of E(NCS) will reveal a useful profile of the
barrier as a function of this topological coordinate.

Alas, for the sum ansatz this idea produces reasonable
results only for very large separation, T ≥ 2ρ. When T
is of the order ρ, the energy E(T ) of the turning state (as
well as the action for the entire configuration) becomes
very large, while the topological coordinate NCS(T ) re-
mains fixed. It is therefore obvious that this set of paths
does not describe the travel across the ridge separating
classical vacua which we want to study. Instead, this path
rises with the barrier but continues to increase as the
origin is approached, following a direction apparently or-
thogonal to the topological coordinate we want to study.

The ratio ansatz yields somewhat better results, with
finite (and even simple) field structure at all T , including
the point T = 0. However the results, shown in Fig. 3, in-
dicate that this set of trial functions can only accomplish
about one third of the journey we would like to make, in
terms of the topological quantity NCS. This inadequacy
will become apparent after comparison with the results
to follow.
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FIG. 3. The normalized energy, ER, versus the
Chern-Simons number for the ratio ansatz.

5

Their scalar product is
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+8r2R2)/(16r4 + 32r2t2 + 8r2R2 + 16t4

−8t2R2 + R4 + 32r2 + 32t2 + 8R2)4 , (20)

where we have set ρ = 1 and R = T is the intercenter
distance.

One can see that, in the simplest case of identical sizes
and orientations for the I and Ī, time reflection symmetry
t → −t of the problem is indeed manifest, so that

Aa
0(r⃗, t = 0) = 0 , Ea

m(x⃗, t = 0) = 0 . (21)

This is illustrated in Fig. 2(b). Since configurations of
this type interpolate between a mostly dual region, with
Ea

m(zI) = Ba
m(zI), to an anti-dual region, where Ea

m(zĪ) =
−Ba

m(zĪ), it is intuitive that the electric field vanishes in
the center.
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FIG. 2. Instanton-antiinstanton configurations. (a) A
schematic picture in Euclidean space-time. The thick vertical
line, t = 0, corresponds to the location of the turning state.
The definition of the inter-center distance T is also shown.
(b) Distribution along the time axis of 2B⃗2,2E⃗2, and 2B⃗ · E⃗ for
the ratio ansatz with T = ρ, shown by the solid, dashed, and
short-dashed lines respectively. The curve for B⃗ · E⃗ is the only
one which is t-odd.

This situation can be readily interpreted in the A0 = 0
gauge, in which the electric field is simply the time deriva-
tive of the gauge field – the canonical momentum in
Yang-Mills field quantization. Thus the t = 0 magnetic
state is indeed identified as a turning state, in which mo-
tion is momentarily stopped. For separation T compa-
rable to the size ρ the energy is finite, with a maximum
E ∼ 1/(gρ).

The energy E and Chern-Simons number NCS for ei-
ther the sum or ratio ansatz can be calculated as a func-
tion of separation T directly, with the hope that a para-
metric plot of E(NCS) will reveal a useful profile of the
barrier as a function of this topological coordinate.

Alas, for the sum ansatz this idea produces reasonable
results only for very large separation, T ≥ 2ρ. When T
is of the order ρ, the energy E(T ) of the turning state (as
well as the action for the entire configuration) becomes
very large, while the topological coordinate NCS(T ) re-
mains fixed. It is therefore obvious that this set of paths
does not describe the travel across the ridge separating
classical vacua which we want to study. Instead, this path
rises with the barrier but continues to increase as the
origin is approached, following a direction apparently or-
thogonal to the topological coordinate we want to study.

The ratio ansatz yields somewhat better results, with
finite (and even simple) field structure at all T , including
the point T = 0. However the results, shown in Fig. 3, in-
dicate that this set of trial functions can only accomplish
about one third of the journey we would like to make, in
terms of the topological quantity NCS. This inadequacy
will become apparent after comparison with the results
to follow.
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FIG. 3. The normalized energy, ER, versus the
Chern-Simons number for the ratio ansatz.
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We consider forced tunneling in QCD, described semiclassically by instanton-antiinstanton field
configurations. By separating topologically different minima we obtain details of the effective po-
tential and study the turning states, which are similar to the sphaleron solution in electroweak
theory. These states are alternatively derived as minima of the energy under the constraints of
fixed size and Chern-Simons number. We study, both analytically and numerically, the subsequent
evolution of such states by solving the classical Yang-Mills equations in real time, and find that the
gauge field strength is quickly localized into an expanding shell of radiating gluons. The relevance
to high-energy collisions of hadrons and nuclei is briefly discussed.

I. INTRODUCTION

A. Instanton-Induced Scattering in QCD

The existence of topologically distinct non-abelian
gauge fields, with tunneling between corresponding clas-
sical vacua described semiclassically by instantons [1], is
one of the most spectacular nonperturbative effects of
field theory. Significant progress has been made in under-
standing instanton-induced effects in Quantum Chromo-
dynamics (QCD), explaining both explicit UA(1) chiral
symmetry breaking at the single-instanton level [2] and
spontaneous SU(Nf ) chiral symmetry breaking by the
instanton ensemble [3]. Euclidean correlation functions,
studied phenomenologically and on the lattice, have been
explained to a significant extent by instantons as well [4].

With tunneling phenomena apparently so important in
virtual quark and gluon propagation, it is reasonable to
think them also relevant in real processes such as scatter-
ing or particle production in Minkowski space. We thus
seek contributions to parton scattering amplitudes from
the theory of instanton-related objects, and supporting
experimental evidence.

With this as our motivation, we concentrate in this
paper on the theoretical basis of such effects from pure
Yang-Mills theory. Specific applications to high-energy
processes with hadrons or nuclei are left for papers to
follow, although we will discuss phenomenological gener-
alities where relevant.

Progress in understanding of the role of tunneling in
high energy processes has been tempered by technical
problems for years. Significant insights were obtained in
the 1980’s [5] and further developed in the early 1990’s
[6,7] through work in electroweak theory. In this case,
the instanton-induced cross section is readily identified
by baryon number violation and many noteworthy fea-
tures of these processes were found. However, quantita-
tive estimates of the associated cross sections proved to
be far below observable limits and interest quickly waned.
Similar ideas have also been developed in QCD [8], no-
tably the search for hard processes induced by small-sized

instantons which continues at HERA [9].
Another role for instanton-induced processes has re-

cently been proposed by Kharzeev, Kovchegov, and Levin
[10] and Nowak, Shuryak, and Zahed [11]. These works
focus on typical QCD instantons, of size ρ ∼ 1/3 fm
[3], which determine the semi-hard scale of Q ∼ 1 − 2
GeV. It was proposed that topological tunneling is be-
hind the well-known features of high energy scatter-
ing described phenomenologically by the so-called “soft”
pomeron. These ideas were further tested in Ref. [12],
where they were demonstrated to be reasonably consis-
tent with experimental data.

Since the 1960’s attempts have been made to explain
high-energy hadronic collisions with multi-peripheral
models, with various ladder diagrams describing hadron
production. It was realized that in order to get cross-
sections which are not falling at high energies, one needed
vector field exchange in the t-channel. With the dis-
covery of QCD, gluons naturally play this role. Generic
pQCD-inspired models appeared with processes like that
shown in Fig. 1(a). Eventually this development led to
the BFKL gluon ladder [13], which produces an (approx-
imately) supercritical pomeron, a “hard” pomeron with
the intercept well above 1. Recent studies of high en-
ergy hard processes, especially at HERA, have indeed
found strong growth of the cross section with energy for
truly hard processes (Q2 ≫ 1 GeV2), consistent with the
BFKL treatment.

But various data at the semi-hard scale of Q2 ∼ 1 GeV2

demonstrate rather different growth with energy, consis-
tent with a “soft” pomeron. Whatever it might be, the
pomeron should be an object of a particular size deduced
from the slope of its Regge trajectory, α′ ∼ 1/(2 GeV)2.
This size of course cannot be explained by basically scale-
invariant pQCD, and thus calls for a nonperturbative
derivation.

Existing models for the soft pomeron also include lad-
ders made of t-channel gluons, and the differences be-
tween them lie mainly in the construction of their rungs.
Each of the various models has a unique answer for what
is actually produced in gluon-gluon partonic collisions.
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We consider forced tunneling in QCD, described semiclassically by instanton-antiinstanton field
configurations. By separating topologically different minima we obtain details of the effective po-
tential and study the turning states, which are similar to the sphaleron solution in electroweak
theory. These states are alternatively derived as minima of the energy under the constraints of
fixed size and Chern-Simons number. We study, both analytically and numerically, the subsequent
evolution of such states by solving the classical Yang-Mills equations in real time, and find that the
gauge field strength is quickly localized into an expanding shell of radiating gluons. The relevance
to high-energy collisions of hadrons and nuclei is briefly discussed.

I. INTRODUCTION

A. Instanton-Induced Scattering in QCD

The existence of topologically distinct non-abelian
gauge fields, with tunneling between corresponding clas-
sical vacua described semiclassically by instantons [1], is
one of the most spectacular nonperturbative effects of
field theory. Significant progress has been made in under-
standing instanton-induced effects in Quantum Chromo-
dynamics (QCD), explaining both explicit UA(1) chiral
symmetry breaking at the single-instanton level [2] and
spontaneous SU(Nf ) chiral symmetry breaking by the
instanton ensemble [3]. Euclidean correlation functions,
studied phenomenologically and on the lattice, have been
explained to a significant extent by instantons as well [4].

With tunneling phenomena apparently so important in
virtual quark and gluon propagation, it is reasonable to
think them also relevant in real processes such as scatter-
ing or particle production in Minkowski space. We thus
seek contributions to parton scattering amplitudes from
the theory of instanton-related objects, and supporting
experimental evidence.

With this as our motivation, we concentrate in this
paper on the theoretical basis of such effects from pure
Yang-Mills theory. Specific applications to high-energy
processes with hadrons or nuclei are left for papers to
follow, although we will discuss phenomenological gener-
alities where relevant.

Progress in understanding of the role of tunneling in
high energy processes has been tempered by technical
problems for years. Significant insights were obtained in
the 1980’s [5] and further developed in the early 1990’s
[6,7] through work in electroweak theory. In this case,
the instanton-induced cross section is readily identified
by baryon number violation and many noteworthy fea-
tures of these processes were found. However, quantita-
tive estimates of the associated cross sections proved to
be far below observable limits and interest quickly waned.
Similar ideas have also been developed in QCD [8], no-
tably the search for hard processes induced by small-sized

instantons which continues at HERA [9].
Another role for instanton-induced processes has re-

cently been proposed by Kharzeev, Kovchegov, and Levin
[10] and Nowak, Shuryak, and Zahed [11]. These works
focus on typical QCD instantons, of size ρ ∼ 1/3 fm
[3], which determine the semi-hard scale of Q ∼ 1 − 2
GeV. It was proposed that topological tunneling is be-
hind the well-known features of high energy scatter-
ing described phenomenologically by the so-called “soft”
pomeron. These ideas were further tested in Ref. [12],
where they were demonstrated to be reasonably consis-
tent with experimental data.

Since the 1960’s attempts have been made to explain
high-energy hadronic collisions with multi-peripheral
models, with various ladder diagrams describing hadron
production. It was realized that in order to get cross-
sections which are not falling at high energies, one needed
vector field exchange in the t-channel. With the dis-
covery of QCD, gluons naturally play this role. Generic
pQCD-inspired models appeared with processes like that
shown in Fig. 1(a). Eventually this development led to
the BFKL gluon ladder [13], which produces an (approx-
imately) supercritical pomeron, a “hard” pomeron with
the intercept well above 1. Recent studies of high en-
ergy hard processes, especially at HERA, have indeed
found strong growth of the cross section with energy for
truly hard processes (Q2 ≫ 1 GeV2), consistent with the
BFKL treatment.

But various data at the semi-hard scale of Q2 ∼ 1 GeV2

demonstrate rather different growth with energy, consis-
tent with a “soft” pomeron. Whatever it might be, the
pomeron should be an object of a particular size deduced
from the slope of its Regge trajectory, α′ ∼ 1/(2 GeV)2.
This size of course cannot be explained by basically scale-
invariant pQCD, and thus calls for a nonperturbative
derivation.

Existing models for the soft pomeron also include lad-
ders made of t-channel gluons, and the differences be-
tween them lie mainly in the construction of their rungs.
Each of the various models has a unique answer for what
is actually produced in gluon-gluon partonic collisions.

1

Their scalar product is

B⃗ · E⃗ = −393216tR(R2 + 2 + 4r2 + 4t2)(16t4

+24t2R2 + 32r2t2 + 32t2 + R4 + 16r4

+8r2R2)/(16r4 + 32r2t2 + 8r2R2 + 16t4

−8t2R2 + R4 + 32r2 + 32t2 + 8R2)4 , (20)

where we have set ρ = 1 and R = T is the intercenter
distance.

One can see that, in the simplest case of identical sizes
and orientations for the I and Ī, time reflection symmetry
t → −t of the problem is indeed manifest, so that

Aa
0(r⃗, t = 0) = 0 , Ea

m(x⃗, t = 0) = 0 . (21)

This is illustrated in Fig. 2(b). Since configurations of
this type interpolate between a mostly dual region, with
Ea

m(zI) = Ba
m(zI), to an anti-dual region, where Ea

m(zĪ) =
−Ba

m(zĪ), it is intuitive that the electric field vanishes in
the center.

T

t

x,y,z

–200

–100

100

200

–2 –1 1 2
t

FIG. 2. Instanton-antiinstanton configurations. (a) A
schematic picture in Euclidean space-time. The thick vertical
line, t = 0, corresponds to the location of the turning state.
The definition of the inter-center distance T is also shown.
(b) Distribution along the time axis of 2B⃗2,2E⃗2, and 2B⃗ · E⃗ for
the ratio ansatz with T = ρ, shown by the solid, dashed, and
short-dashed lines respectively. The curve for B⃗ · E⃗ is the only
one which is t-odd.

This situation can be readily interpreted in the A0 = 0
gauge, in which the electric field is simply the time deriva-
tive of the gauge field – the canonical momentum in
Yang-Mills field quantization. Thus the t = 0 magnetic
state is indeed identified as a turning state, in which mo-
tion is momentarily stopped. For separation T compa-
rable to the size ρ the energy is finite, with a maximum
E ∼ 1/(gρ).

The energy E and Chern-Simons number NCS for ei-
ther the sum or ratio ansatz can be calculated as a func-
tion of separation T directly, with the hope that a para-
metric plot of E(NCS) will reveal a useful profile of the
barrier as a function of this topological coordinate.

Alas, for the sum ansatz this idea produces reasonable
results only for very large separation, T ≥ 2ρ. When T
is of the order ρ, the energy E(T ) of the turning state (as
well as the action for the entire configuration) becomes
very large, while the topological coordinate NCS(T ) re-
mains fixed. It is therefore obvious that this set of paths
does not describe the travel across the ridge separating
classical vacua which we want to study. Instead, this path
rises with the barrier but continues to increase as the
origin is approached, following a direction apparently or-
thogonal to the topological coordinate we want to study.

The ratio ansatz yields somewhat better results, with
finite (and even simple) field structure at all T , including
the point T = 0. However the results, shown in Fig. 3, in-
dicate that this set of trial functions can only accomplish
about one third of the journey we would like to make, in
terms of the topological quantity NCS. This inadequacy
will become apparent after comparison with the results
to follow.
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FIG. 3. The normalized energy, ER, versus the
Chern-Simons number for the ratio ansatz.
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metric plot of E(NCS) will reveal a useful profile of the
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We consider forced tunneling in QCD, described semiclassically by instanton-antiinstanton field
configurations. By separating topologically different minima we obtain details of the effective po-
tential and study the turning states, which are similar to the sphaleron solution in electroweak
theory. These states are alternatively derived as minima of the energy under the constraints of
fixed size and Chern-Simons number. We study, both analytically and numerically, the subsequent
evolution of such states by solving the classical Yang-Mills equations in real time, and find that the
gauge field strength is quickly localized into an expanding shell of radiating gluons. The relevance
to high-energy collisions of hadrons and nuclei is briefly discussed.

I. INTRODUCTION

A. Instanton-Induced Scattering in QCD

The existence of topologically distinct non-abelian
gauge fields, with tunneling between corresponding clas-
sical vacua described semiclassically by instantons [1], is
one of the most spectacular nonperturbative effects of
field theory. Significant progress has been made in under-
standing instanton-induced effects in Quantum Chromo-
dynamics (QCD), explaining both explicit UA(1) chiral
symmetry breaking at the single-instanton level [2] and
spontaneous SU(Nf ) chiral symmetry breaking by the
instanton ensemble [3]. Euclidean correlation functions,
studied phenomenologically and on the lattice, have been
explained to a significant extent by instantons as well [4].

With tunneling phenomena apparently so important in
virtual quark and gluon propagation, it is reasonable to
think them also relevant in real processes such as scatter-
ing or particle production in Minkowski space. We thus
seek contributions to parton scattering amplitudes from
the theory of instanton-related objects, and supporting
experimental evidence.

With this as our motivation, we concentrate in this
paper on the theoretical basis of such effects from pure
Yang-Mills theory. Specific applications to high-energy
processes with hadrons or nuclei are left for papers to
follow, although we will discuss phenomenological gener-
alities where relevant.

Progress in understanding of the role of tunneling in
high energy processes has been tempered by technical
problems for years. Significant insights were obtained in
the 1980’s [5] and further developed in the early 1990’s
[6,7] through work in electroweak theory. In this case,
the instanton-induced cross section is readily identified
by baryon number violation and many noteworthy fea-
tures of these processes were found. However, quantita-
tive estimates of the associated cross sections proved to
be far below observable limits and interest quickly waned.
Similar ideas have also been developed in QCD [8], no-
tably the search for hard processes induced by small-sized

instantons which continues at HERA [9].
Another role for instanton-induced processes has re-

cently been proposed by Kharzeev, Kovchegov, and Levin
[10] and Nowak, Shuryak, and Zahed [11]. These works
focus on typical QCD instantons, of size ρ ∼ 1/3 fm
[3], which determine the semi-hard scale of Q ∼ 1 − 2
GeV. It was proposed that topological tunneling is be-
hind the well-known features of high energy scatter-
ing described phenomenologically by the so-called “soft”
pomeron. These ideas were further tested in Ref. [12],
where they were demonstrated to be reasonably consis-
tent with experimental data.

Since the 1960’s attempts have been made to explain
high-energy hadronic collisions with multi-peripheral
models, with various ladder diagrams describing hadron
production. It was realized that in order to get cross-
sections which are not falling at high energies, one needed
vector field exchange in the t-channel. With the dis-
covery of QCD, gluons naturally play this role. Generic
pQCD-inspired models appeared with processes like that
shown in Fig. 1(a). Eventually this development led to
the BFKL gluon ladder [13], which produces an (approx-
imately) supercritical pomeron, a “hard” pomeron with
the intercept well above 1. Recent studies of high en-
ergy hard processes, especially at HERA, have indeed
found strong growth of the cross section with energy for
truly hard processes (Q2 ≫ 1 GeV2), consistent with the
BFKL treatment.

But various data at the semi-hard scale of Q2 ∼ 1 GeV2

demonstrate rather different growth with energy, consis-
tent with a “soft” pomeron. Whatever it might be, the
pomeron should be an object of a particular size deduced
from the slope of its Regge trajectory, α′ ∼ 1/(2 GeV)2.
This size of course cannot be explained by basically scale-
invariant pQCD, and thus calls for a nonperturbative
derivation.

Existing models for the soft pomeron also include lad-
ders made of t-channel gluons, and the differences be-
tween them lie mainly in the construction of their rungs.
Each of the various models has a unique answer for what
is actually produced in gluon-gluon partonic collisions.
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fixed size and Chern-Simons number. We study, both analytically and numerically, the subsequent
evolution of such states by solving the classical Yang-Mills equations in real time, and find that the
gauge field strength is quickly localized into an expanding shell of radiating gluons. The relevance
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I. INTRODUCTION

A. Instanton-Induced Scattering in QCD

The existence of topologically distinct non-abelian
gauge fields, with tunneling between corresponding clas-
sical vacua described semiclassically by instantons [1], is
one of the most spectacular nonperturbative effects of
field theory. Significant progress has been made in under-
standing instanton-induced effects in Quantum Chromo-
dynamics (QCD), explaining both explicit UA(1) chiral
symmetry breaking at the single-instanton level [2] and
spontaneous SU(Nf ) chiral symmetry breaking by the
instanton ensemble [3]. Euclidean correlation functions,
studied phenomenologically and on the lattice, have been
explained to a significant extent by instantons as well [4].

With tunneling phenomena apparently so important in
virtual quark and gluon propagation, it is reasonable to
think them also relevant in real processes such as scatter-
ing or particle production in Minkowski space. We thus
seek contributions to parton scattering amplitudes from
the theory of instanton-related objects, and supporting
experimental evidence.

With this as our motivation, we concentrate in this
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Yang-Mills theory. Specific applications to high-energy
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the instanton-induced cross section is readily identified
by baryon number violation and many noteworthy fea-
tures of these processes were found. However, quantita-
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hind the well-known features of high energy scatter-
ing described phenomenologically by the so-called “soft”
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vector field exchange in the t-channel. With the dis-
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invariant pQCD, and thus calls for a nonperturbative
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Existing models for the soft pomeron also include lad-
ders made of t-channel gluons, and the differences be-
tween them lie mainly in the construction of their rungs.
Each of the various models has a unique answer for what
is actually produced in gluon-gluon partonic collisions.
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−8t2R2 + R4 + 32r2 + 32t2 + 8R2)4 , (20)

where we have set ρ = 1 and R = T is the intercenter
distance.

One can see that, in the simplest case of identical sizes
and orientations for the I and Ī, time reflection symmetry
t → −t of the problem is indeed manifest, so that

Aa
0(r⃗, t = 0) = 0 , Ea

m(x⃗, t = 0) = 0 . (21)

This is illustrated in Fig. 2(b). Since configurations of
this type interpolate between a mostly dual region, with
Ea

m(zI) = Ba
m(zI), to an anti-dual region, where Ea

m(zĪ) =
−Ba

m(zĪ), it is intuitive that the electric field vanishes in
the center.
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FIG. 2. Instanton-antiinstanton configurations. (a) A
schematic picture in Euclidean space-time. The thick vertical
line, t = 0, corresponds to the location of the turning state.
The definition of the inter-center distance T is also shown.
(b) Distribution along the time axis of 2B⃗2,2E⃗2, and 2B⃗ · E⃗ for
the ratio ansatz with T = ρ, shown by the solid, dashed, and
short-dashed lines respectively. The curve for B⃗ · E⃗ is the only
one which is t-odd.

This situation can be readily interpreted in the A0 = 0
gauge, in which the electric field is simply the time deriva-
tive of the gauge field – the canonical momentum in
Yang-Mills field quantization. Thus the t = 0 magnetic
state is indeed identified as a turning state, in which mo-
tion is momentarily stopped. For separation T compa-
rable to the size ρ the energy is finite, with a maximum
E ∼ 1/(gρ).

The energy E and Chern-Simons number NCS for ei-
ther the sum or ratio ansatz can be calculated as a func-
tion of separation T directly, with the hope that a para-
metric plot of E(NCS) will reveal a useful profile of the
barrier as a function of this topological coordinate.

Alas, for the sum ansatz this idea produces reasonable
results only for very large separation, T ≥ 2ρ. When T
is of the order ρ, the energy E(T ) of the turning state (as
well as the action for the entire configuration) becomes
very large, while the topological coordinate NCS(T ) re-
mains fixed. It is therefore obvious that this set of paths
does not describe the travel across the ridge separating
classical vacua which we want to study. Instead, this path
rises with the barrier but continues to increase as the
origin is approached, following a direction apparently or-
thogonal to the topological coordinate we want to study.

The ratio ansatz yields somewhat better results, with
finite (and even simple) field structure at all T , including
the point T = 0. However the results, shown in Fig. 3, in-
dicate that this set of trial functions can only accomplish
about one third of the journey we would like to make, in
terms of the topological quantity NCS. This inadequacy
will become apparent after comparison with the results
to follow.
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FIG. 3. The normalized energy, ER, versus the
Chern-Simons number for the ratio ansatz.
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We consider forced tunneling in QCD, described semiclassically by instanton-antiinstanton field
configurations. By separating topologically different minima we obtain details of the effective po-
tential and study the turning states, which are similar to the sphaleron solution in electroweak
theory. These states are alternatively derived as minima of the energy under the constraints of
fixed size and Chern-Simons number. We study, both analytically and numerically, the subsequent
evolution of such states by solving the classical Yang-Mills equations in real time, and find that the
gauge field strength is quickly localized into an expanding shell of radiating gluons. The relevance
to high-energy collisions of hadrons and nuclei is briefly discussed.

I. INTRODUCTION

A. Instanton-Induced Scattering in QCD

The existence of topologically distinct non-abelian
gauge fields, with tunneling between corresponding clas-
sical vacua described semiclassically by instantons [1], is
one of the most spectacular nonperturbative effects of
field theory. Significant progress has been made in under-
standing instanton-induced effects in Quantum Chromo-
dynamics (QCD), explaining both explicit UA(1) chiral
symmetry breaking at the single-instanton level [2] and
spontaneous SU(Nf ) chiral symmetry breaking by the
instanton ensemble [3]. Euclidean correlation functions,
studied phenomenologically and on the lattice, have been
explained to a significant extent by instantons as well [4].

With tunneling phenomena apparently so important in
virtual quark and gluon propagation, it is reasonable to
think them also relevant in real processes such as scatter-
ing or particle production in Minkowski space. We thus
seek contributions to parton scattering amplitudes from
the theory of instanton-related objects, and supporting
experimental evidence.

With this as our motivation, we concentrate in this
paper on the theoretical basis of such effects from pure
Yang-Mills theory. Specific applications to high-energy
processes with hadrons or nuclei are left for papers to
follow, although we will discuss phenomenological gener-
alities where relevant.

Progress in understanding of the role of tunneling in
high energy processes has been tempered by technical
problems for years. Significant insights were obtained in
the 1980’s [5] and further developed in the early 1990’s
[6,7] through work in electroweak theory. In this case,
the instanton-induced cross section is readily identified
by baryon number violation and many noteworthy fea-
tures of these processes were found. However, quantita-
tive estimates of the associated cross sections proved to
be far below observable limits and interest quickly waned.
Similar ideas have also been developed in QCD [8], no-
tably the search for hard processes induced by small-sized

instantons which continues at HERA [9].
Another role for instanton-induced processes has re-

cently been proposed by Kharzeev, Kovchegov, and Levin
[10] and Nowak, Shuryak, and Zahed [11]. These works
focus on typical QCD instantons, of size ρ ∼ 1/3 fm
[3], which determine the semi-hard scale of Q ∼ 1 − 2
GeV. It was proposed that topological tunneling is be-
hind the well-known features of high energy scatter-
ing described phenomenologically by the so-called “soft”
pomeron. These ideas were further tested in Ref. [12],
where they were demonstrated to be reasonably consis-
tent with experimental data.

Since the 1960’s attempts have been made to explain
high-energy hadronic collisions with multi-peripheral
models, with various ladder diagrams describing hadron
production. It was realized that in order to get cross-
sections which are not falling at high energies, one needed
vector field exchange in the t-channel. With the dis-
covery of QCD, gluons naturally play this role. Generic
pQCD-inspired models appeared with processes like that
shown in Fig. 1(a). Eventually this development led to
the BFKL gluon ladder [13], which produces an (approx-
imately) supercritical pomeron, a “hard” pomeron with
the intercept well above 1. Recent studies of high en-
ergy hard processes, especially at HERA, have indeed
found strong growth of the cross section with energy for
truly hard processes (Q2 ≫ 1 GeV2), consistent with the
BFKL treatment.

But various data at the semi-hard scale of Q2 ∼ 1 GeV2

demonstrate rather different growth with energy, consis-
tent with a “soft” pomeron. Whatever it might be, the
pomeron should be an object of a particular size deduced
from the slope of its Regge trajectory, α′ ∼ 1/(2 GeV)2.
This size of course cannot be explained by basically scale-
invariant pQCD, and thus calls for a nonperturbative
derivation.

Existing models for the soft pomeron also include lad-
ders made of t-channel gluons, and the differences be-
tween them lie mainly in the construction of their rungs.
Each of the various models has a unique answer for what
is actually produced in gluon-gluon partonic collisions.

1
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configurations. By separating topologically different minima we obtain details of the effective po-
tential and study the turning states, which are similar to the sphaleron solution in electroweak
theory. These states are alternatively derived as minima of the energy under the constraints of
fixed size and Chern-Simons number. We study, both analytically and numerically, the subsequent
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With tunneling phenomena apparently so important in
virtual quark and gluon propagation, it is reasonable to
think them also relevant in real processes such as scatter-
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seek contributions to parton scattering amplitudes from
the theory of instanton-related objects, and supporting
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the instanton-induced cross section is readily identified
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Each of the various models has a unique answer for what
is actually produced in gluon-gluon partonic collisions.
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+8r2R2)/(16r4 + 32r2t2 + 8r2R2 + 16t4

−8t2R2 + R4 + 32r2 + 32t2 + 8R2)4 , (20)

where we have set ρ = 1 and R = T is the intercenter
distance.

One can see that, in the simplest case of identical sizes
and orientations for the I and Ī, time reflection symmetry
t → −t of the problem is indeed manifest, so that

Aa
0(r⃗, t = 0) = 0 , Ea

m(x⃗, t = 0) = 0 . (21)

This is illustrated in Fig. 2(b). Since configurations of
this type interpolate between a mostly dual region, with
Ea

m(zI) = Ba
m(zI), to an anti-dual region, where Ea

m(zĪ) =
−Ba

m(zĪ), it is intuitive that the electric field vanishes in
the center.
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FIG. 2. Instanton-antiinstanton configurations. (a) A
schematic picture in Euclidean space-time. The thick vertical
line, t = 0, corresponds to the location of the turning state.
The definition of the inter-center distance T is also shown.
(b) Distribution along the time axis of 2B⃗2,2E⃗2, and 2B⃗ · E⃗ for
the ratio ansatz with T = ρ, shown by the solid, dashed, and
short-dashed lines respectively. The curve for B⃗ · E⃗ is the only
one which is t-odd.

This situation can be readily interpreted in the A0 = 0
gauge, in which the electric field is simply the time deriva-
tive of the gauge field – the canonical momentum in
Yang-Mills field quantization. Thus the t = 0 magnetic
state is indeed identified as a turning state, in which mo-
tion is momentarily stopped. For separation T compa-
rable to the size ρ the energy is finite, with a maximum
E ∼ 1/(gρ).

The energy E and Chern-Simons number NCS for ei-
ther the sum or ratio ansatz can be calculated as a func-
tion of separation T directly, with the hope that a para-
metric plot of E(NCS) will reveal a useful profile of the
barrier as a function of this topological coordinate.

Alas, for the sum ansatz this idea produces reasonable
results only for very large separation, T ≥ 2ρ. When T
is of the order ρ, the energy E(T ) of the turning state (as
well as the action for the entire configuration) becomes
very large, while the topological coordinate NCS(T ) re-
mains fixed. It is therefore obvious that this set of paths
does not describe the travel across the ridge separating
classical vacua which we want to study. Instead, this path
rises with the barrier but continues to increase as the
origin is approached, following a direction apparently or-
thogonal to the topological coordinate we want to study.

The ratio ansatz yields somewhat better results, with
finite (and even simple) field structure at all T , including
the point T = 0. However the results, shown in Fig. 3, in-
dicate that this set of trial functions can only accomplish
about one third of the journey we would like to make, in
terms of the topological quantity NCS. This inadequacy
will become apparent after comparison with the results
to follow.
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FIG. 3. The normalized energy, ER, versus the
Chern-Simons number for the ratio ansatz.
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tive estimates of the associated cross sections proved to
be far below observable limits and interest quickly waned.
Similar ideas have also been developed in QCD [8], no-
tably the search for hard processes induced by small-sized

instantons which continues at HERA [9].
Another role for instanton-induced processes has re-

cently been proposed by Kharzeev, Kovchegov, and Levin
[10] and Nowak, Shuryak, and Zahed [11]. These works
focus on typical QCD instantons, of size ρ ∼ 1/3 fm
[3], which determine the semi-hard scale of Q ∼ 1 − 2
GeV. It was proposed that topological tunneling is be-
hind the well-known features of high energy scatter-
ing described phenomenologically by the so-called “soft”
pomeron. These ideas were further tested in Ref. [12],
where they were demonstrated to be reasonably consis-
tent with experimental data.

Since the 1960’s attempts have been made to explain
high-energy hadronic collisions with multi-peripheral
models, with various ladder diagrams describing hadron
production. It was realized that in order to get cross-
sections which are not falling at high energies, one needed
vector field exchange in the t-channel. With the dis-
covery of QCD, gluons naturally play this role. Generic
pQCD-inspired models appeared with processes like that
shown in Fig. 1(a). Eventually this development led to
the BFKL gluon ladder [13], which produces an (approx-
imately) supercritical pomeron, a “hard” pomeron with
the intercept well above 1. Recent studies of high en-
ergy hard processes, especially at HERA, have indeed
found strong growth of the cross section with energy for
truly hard processes (Q2 ≫ 1 GeV2), consistent with the
BFKL treatment.

But various data at the semi-hard scale of Q2 ∼ 1 GeV2

demonstrate rather different growth with energy, consis-
tent with a “soft” pomeron. Whatever it might be, the
pomeron should be an object of a particular size deduced
from the slope of its Regge trajectory, α′ ∼ 1/(2 GeV)2.
This size of course cannot be explained by basically scale-
invariant pQCD, and thus calls for a nonperturbative
derivation.

Existing models for the soft pomeron also include lad-
ders made of t-channel gluons, and the differences be-
tween them lie mainly in the construction of their rungs.
Each of the various models has a unique answer for what
is actually produced in gluon-gluon partonic collisions.
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Energy density is E^2+B^2 
In Euclidean time E^2=> -E^2 

So e.g. in instantons the energy 
density (and all T_\mu\nu) 

 vanishes at every point, since E=iB

But in our 3d turning configurations E=0 
 and therefore energy >0 
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Between the centers of the instantons 

When we made a parametric plot, 
Energy versus their Chern-Simons number, 

We observed the profile of the sphaleron pass 
Across the topological mountain

Sphaleron production cross section 
Is given by action : see below 

We now proceed with a more detailed study of the
static turning states, residing on the t = 0 3-plane. The
simplest observable is the shape of the corresponding
magnetic field squared, or the energy density distribu-
tion, shown in Fig. 5 for few selected values of ĪI dis-
tance T . Note that the curve for T = 2 (the most like
the sphaleron) show indeed the largest magnitude of the
magnetic field. The shape is however rather uniform.
Note also that, unlike the case of the faulty sum and ratio
trial functions, for smaller T the field strength decreases,
ultimately disappearing at T = 0.
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FIG. 5. The B(r)2 profile, not normalized, for the four
values of the ĪI distance T (in units of ρ) indicated in the
legend.

The energy and energy density of the turning state
configurations is therefore rather different for different T .
However, as seen from Fig. 5, the physical sizes of these
objects are different as well. As classic Yang-Mills theory
has scale invariance, one may wish to make the more
natural comparison of a scale-invariant combination, the
energy times the r.m.s. radius, R, defined as

R2 =

∫

d3r r2B2

∫

d3rB2
. (25)

In these terms, the normalized energy is

ER =
1

2

[
∫

d3rr2B2 ×
∫

d3rB2

]1/2

. (26)

This quantity is plotted versus the topological charge dif-
ference in Fig. 6, and indeed displays a parabolic-looking
maximum near NCS = 1/2.
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FIG. 6. The normalized energy, ER, versus the
Chern-Simons number for the Yung ansatz. Plot (a) shows
the positions of the turning states for various T , while (b)
combines many points along the path (t ̸= 0); their small
spread means that Yung ansatz is nearly going directly up-
hill, thus passing via the same points for different T .

Instead of only looking at the static t = 0 (and zero
electric field) turning states, one can instead follow the
(scale invariant) energy ER and the Chern-Simons num-
ber as a function of time t along each each path. As
expected, all the paths in Fig. 6(b), for any T , actually
climb nearly exactly the same cliff, as they propagate into
larger values of our topological coordinate.

III. TURNING STATES FROM CONSTRAINED

MINIMIZATION

We will now define turning states in terms of the gauge
field, which connect the Euclidean and Minkowski do-
mains of the field’s path. The turning state is character-
ized by the condition that the generalized momentum,
which in the A0 = 0 gauge coincides with the chromo-
electric field, vanishes or, equivalently, that all first time
derivatives of the spatial field components are zero. Us-
ing the notation introduced in Section IB, this in turn

7
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FIG. 1. The potential energy E (in units of 1/g2⇢) versus the Chern-Simons number NCS with 0    1,
for the “sphaleron path”

VEV must vanish at the radial origin r = 0 to keep the topology of the gauge field intact. Therefore,

the sphaleron configurations are “semi-empty bags” inside the Higgs vacuum. Let us mention just

the leading term in their energy at large ⇢, proportional to the bag volume and the highest power

of the Higgs VEV

UHiggs ⇠ ⇢3v4

The terms with a positive power of the size creates a “Higgs-indiced ridge” at large ⇢. Together with

“the gauge ridge” Umin ⇠ 1/⇢, this leads to a minimum at a certain ⇢⇤, which fixes the configuration

uniquely. The mass of the electroweak sphaleron is therefore about 9 TeV. Thus, going from one

topological valley of the electroweak theory to another, one needs at least that much energy. All

of that was clear since 1984.

Proceeding to our main object of interest, the sphaleron path in QCD, note that at quantum

level it is di↵erent from the classical YM, not being scale invariant. In fact the QCD vacuum also

has a rather complicated structure, with nontrivial VEV of many operators (known as “vacuum

condensates”). Contrary to popular opinion, there are lattice data and models of the QCD vacuum

structure, that provides some understanding of what happens at large ⇢. It will be discussed below,

and here we just state that they too indicate that the minimal energy Umin(1/2, ⇢) at large ⇢ is

growing with a positive power of ⇢. Therefore in QCD too there exists some optimal size ⇢⇤.

III. THE TUNNELING PATHS

The first “tunneling path” was the original BPST instanton discovered in 1975. It is the solution

of the Euclidean YM equation. In terms of the landscape illustrated in Fig. 1, it is a horizontal
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Fig. 7.4 (left) The instanton size ⇢ [fm] distribution dn/d⇢d4z. (right) The combination
⇢�6dn/d⇢d4z, in which the main one-loop behavior drops out for Nc = 3, Nf = 0. The points
are from the lattice work for this theory, with �=5.85 (diamonds), 6.0 (squares) and 6.1 (circles).
Their comparison should demonstrate that results are lattice-independent. The line corresponds
to the proposed expression , see text.

tension �, so that the suppression factor should be

dn

d⇢
=

dn

d⇢
|semiclassical · e�2⇡�⇢2

(7.7)

If this idea is correct, this suppression factor should be missing at T > Tc, in
which the dual magnetic condensate is absent. But, on the other hand, here quan-
tum/thermal fluctuations generate at high T a similar factor [Pisarski and Ya↵e,
1980]

dn

d⇢
=

dn

d⇢
|T=0 · e�(

2Nc+N
f

3 )(⇡⇢T )
2

(7.8)

related to scattering of quarks and gluons of QGP on the instanton [Shuryak and
Velkovsky, 1994]. Empirically, the suppression factor at all temperature looks Gaus-
sian in ⇢, interpolating between those limiting cases.

Another example of lattice study focusing on instanton contribution to certain
Green functions, is Ref.[Athenodorou et al., 2018], in full quantum vacuum and
with cooling. The original motivation has been extraction of the gluon coupling
↵s(k), so the observable on which this work was focused id the following ratio of
3-point to 2-point Green function (in configurations transformed to Landau gauge)

↵MOM (k) =
k6

4⇡

hG(3)(k2)i2

hG(2)(k2)i3
(7.9)

In Fig.7.5 the results are plotted versus the momentum scale k. At the lower
curve (corresponding to uncooled quantum vacuum with gluons) at large k > 1 GeV
the e↵ective coupling starts running downward, as asymptotic freedom requires.
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emerging quarks onto the distribution amplitudes (DAs) of the outgoing mesons at any momenta

as illustrated in Fig.4(upper). More specifically, we have

h~k1,~k2|~pi ⇠
Z

dk2

1?dk1ldk2

1?dk1l (~k1) (~k2)f(p2?)'(x = k1l/P )�(k2

1?�p2?)�(k2

2?�p2?)�(k1l+k2l�P )

(20)

where  (k) is the outgoing quark wave (19), and the functions '(x)f(p2?) are the DAs of the

corresponding mesons with longitudinal fraction (x) and transverse (p?) momenta. For simplicity,

we take a Gaussian f(p?) ⇠ exp(�const ⇤ p2?) and a flat '(x) = 1 which approximate well say a

pion. The squared projection for a sphaleron of size ⇢ = 0.3 fm = 1/(0.6 GeV) is shown in the lower

plot, as a function of the outgoing meson momentum p?.

(Note that in this estimate we ignored all the other particles produced. In reality the total mass

of the cluster put its own kinematical restrictions. For example, for three-meson decay modes to

be discussed, the tail at large momenta is cuto↵ above M/3.)

V. THE INSTANTON SIZE DISTRIBUTION IN THE QCD VACUUM

By now, the subject of instantons in the QCD vacuum is well established and broad, and clearly

goes beyond the scope of this review. For us, the only relevant issue is the instanton size distribution

dn/d⇢ in the vacuum. It has been evaluated in various models and on the lattice. For definiteness

we use the lattice results from [25]. The average size was found to be h⇢i ⇡ 0.30 ± 0.01 fm, a bit

smaller than in the ILM. The mean distance was found instead to be 0.61 ± 0.02 fm. The data on

the instanton size distribution are shown in Fig.5. (The figure is taken from [26] and the lattice

data from Hasenfratz et al [25]). The left plot shows the size distribution itself. Recall that the

semiclassical theory predicts to be dn/d⇢ ⇠ ⇢b�5 at small sizes, with b = 11Nc/3 = 11 for pure

gauge Nc = 3 theory. The right plot – in which this power is taken out –is constant at small ⇢,

which agrees with the semiclassical prediction.

The other feature is a peak at ⇢ ⇡ 0.3 fm – the value first proposed phenomenologically in

[27], decades before the lattice data. The peak is due to a suppression at large sizes. Trying to

understand its origin, one may factor out all known e↵ects. The right plot shows that after this is

done, a rather simple suppression factor ⇠ exp(�const ⇤ ⇢2) describes it well, for about 3 decades.

What is the physical origin of this suppression?

There are two answers to that question, which are perhaps “Poisson dual” to each other [28].

The first is that it is due to the mutual repulsion between an instanton and the rest of the instanton-

antiinstanton ensemble. (It is described in the mean field approximation and numerically, see the

review [29]).

Another one, proposed in [26], is that the coe�cient is proportional to the dual magnetic con-

densate, that of Bose-condensed monopoles. It has been further argued there that it can be related

to the string tension �, so that the suppression factor should be

dn

d⇢
=

✓
dn

d⇢

◆

semiclassical

⇤ e�2⇡�⇢2
(21)

where the Higgs VEV is traded for the string tension � inside the dual Higgs model of confinement.

If this idea is correct, this suppression factor should be missing at T > Tc, in which the dual
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The first is that it is due to the mutual repulsion between an instanton and the rest of the instanton-

antiinstanton ensemble. (It is described in the mean field approximation and numerically, see the

review [29]).

Another one, proposed in [26], is that the coe�cient is proportional to the dual magnetic con-

densate, that of Bose-condensed monopoles. It has been further argued there that it can be related

to the string tension �, so that the suppression factor should be
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where the Higgs VEV is traded for the string tension � inside the dual Higgs model of confinement.

If this idea is correct, this suppression factor should be missing at T > Tc, in which the dual
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Fig. 7.4 (left) The instanton size ⇢ [fm] distribution dn/d⇢d4z. (right) The combination
⇢�6dn/d⇢d4z, in which the main one-loop behavior drops out for Nc = 3, Nf = 0. The points
are from the lattice work for this theory, with �=5.85 (diamonds), 6.0 (squares) and 6.1 (circles).
Their comparison should demonstrate that results are lattice-independent. The line corresponds
to the proposed expression , see text.
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If this idea is correct, this suppression factor should be missing at T > Tc, in
which the dual magnetic condensate is absent. But, on the other hand, here quan-
tum/thermal fluctuations generate at high T a similar factor [Pisarski and Ya↵e,
1980]

dn

d⇢
=

dn

d⇢
|T=0 · e�(

2Nc+N
f

3 )(⇡⇢T )
2

(7.8)

related to scattering of quarks and gluons of QGP on the instanton [Shuryak and
Velkovsky, 1994]. Empirically, the suppression factor at all temperature looks Gaus-
sian in ⇢, interpolating between those limiting cases.

Another example of lattice study focusing on instanton contribution to certain
Green functions, is Ref.[Athenodorou et al., 2018], in full quantum vacuum and
with cooling. The original motivation has been extraction of the gluon coupling
↵s(k), so the observable on which this work was focused id the following ratio of
3-point to 2-point Green function (in configurations transformed to Landau gauge)

↵MOM (k) =
k6

4⇡

hG(3)(k2)i2

hG(2)(k2)i3
(7.9)

In Fig.7.5 the results are plotted versus the momentum scale k. At the lower
curve (corresponding to uncooled quantum vacuum with gluons) at large k > 1 GeV
the e↵ective coupling starts running downward, as asymptotic freedom requires.

both lines correspond to the following formula distribution of instanton sizes rho (fm)  in the QCD vacuum 
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where  (k) is the outgoing quark wave (19), and the functions '(x)f(p2?) are the DAs of the

corresponding mesons with longitudinal fraction (x) and transverse (p?) momenta. For simplicity,

we take a Gaussian f(p?) ⇠ exp(�const ⇤ p2?) and a flat '(x) = 1 which approximate well say a

pion. The squared projection for a sphaleron of size ⇢ = 0.3 fm = 1/(0.6 GeV) is shown in the lower

plot, as a function of the outgoing meson momentum p?.

(Note that in this estimate we ignored all the other particles produced. In reality the total mass

of the cluster put its own kinematical restrictions. For example, for three-meson decay modes to

be discussed, the tail at large momenta is cuto↵ above M/3.)
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goes beyond the scope of this review. For us, the only relevant issue is the instanton size distribution

dn/d⇢ in the vacuum. It has been evaluated in various models and on the lattice. For definiteness

we use the lattice results from [25]. The average size was found to be h⇢i ⇡ 0.30 ± 0.01 fm, a bit

smaller than in the ILM. The mean distance was found instead to be 0.61 ± 0.02 fm. The data on

the instanton size distribution are shown in Fig.5. (The figure is taken from [26] and the lattice

data from Hasenfratz et al [25]). The left plot shows the size distribution itself. Recall that the

semiclassical theory predicts to be dn/d⇢ ⇠ ⇢b�5 at small sizes, with b = 11Nc/3 = 11 for pure

gauge Nc = 3 theory. The right plot – in which this power is taken out –is constant at small ⇢,

which agrees with the semiclassical prediction.
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[27], decades before the lattice data. The peak is due to a suppression at large sizes. Trying to

understand its origin, one may factor out all known e↵ects. The right plot shows that after this is

done, a rather simple suppression factor ⇠ exp(�const ⇤ ⇢2) describes it well, for about 3 decades.

What is the physical origin of this suppression?

There are two answers to that question, which are perhaps “Poisson dual” to each other [28].

The first is that it is due to the mutual repulsion between an instanton and the rest of the instanton-

antiinstanton ensemble. (It is described in the mean field approximation and numerically, see the

review [29]).

Another one, proposed in [26], is that the coe�cient is proportional to the dual magnetic con-

densate, that of Bose-condensed monopoles. It has been further argued there that it can be related
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Their comparison should demonstrate that results are lattice-independent. The line corresponds
to the proposed expression , see text.
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done, a rather simple suppression factor ⇠ exp(�const ⇤ ⇢2) describes it well, for about 3 decades.

What is the physical origin of this suppression?
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How to observe instanton/sphaleron processes at LHC and RHIC

How to observe the QCD instanton/sphaleron processes at hadron colliders?

Edward Shuryak and Ismail Zahed
Center of Nuclear Theory, Department of Physics and Astronomy,

Stony Brook University, Stony Brook, NY 11794, USA

The instanton/sphaleron processes involve gauge fields with changing topology through
a nonzero variation of the Chern-Simons number �NCS = ±1. In QCD this leads to the
production of 2Nf�NCS units of axial charge, and in the electroweak theory to the production
of 12 fermions, with �B = �L = 3 units of baryon and lepton number, a key mechanism
in baryogenesis. While this is all known for a long time, and is one of the pillars of the
nonperturbative theory of the QCD vacuum, to see these phenomena directly in colliders
remains an unfulfilled promise. Motivated by the recent CERN workshop on the topic,
we review the field. We also put forward our own suggestions to utilize double-di↵ractive
(or Pomeron-Pomeron) collisions to this goal, which maximizes the entrance factor and
minimizes the backgrounds. We consider separately clusters of small (M = 3 � 10 GeV),
medium (10 � 30 GeV) and high M ⇠ 100 GeV invariant masses. Among the proposed
signals are specific flavor combination of channels, originating from well-defined 6-, 8- and
10-quark-antiquark operators, as well as correlation of quark chiralities to be potentially
detected via ⇤ hyperon decays.

I. INTRODUCTION

A. The instanton/sphaleron processes

In going to the mountains, one needs a reliable map, better done by a variety of sources. Building

a tunnel is expensive, so one needs to think a lot. Should it be horizontal or reclined? Where should

the entrance be, and where should the exit be? As we will see, all such questions also appear when

we think of optimal paths producing topologically nontrivial final states in a collision.

Some questions had been answered in theory decades ago, some require further calculations. We

have a vast number of applications of instanton-induced e↵ects in vacuum and hadronic structure.

The instanton-sphaleron processes, producing certain topologically nontrivial gluonic clusters, are

only seen in low-mass domain, like ⌘c decays. This paper is about possible ways to see such objects

at hadron colliders, with variable masses.

One can split the expected cross section into three distinct parts, (i) tunneling action; (ii) the

semiclassical prefactor; (iii) the entrance factor; and, last but not least, (iv) branching ratios into

particular exclusive channel, or sequentially

� ⇠

entrance

factor

�
semiclassical

prefactor

�
e�Scl

�
B(final state)

�
(1)

As we will discuss below, the classical part is well under control, the semiclassical prefactor is not

yet calculated in gauge theory but is done in relevant toy models, so it can evaluated relatively

soon. The entrance factor is really the di�cult part still in deliberation.

The produced magnetic objects, or“sphalerons”, explode. This part of the path is described

by a solution of the classical YM equation, see section IV. Quark pair production is described by

the solution of the Dirac equation in this background. For all light quark flavors one has the same



Now, when we understand the mountain landscape,  
 we need to carefully select the place for a tunnel6
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Thanks to organizers, I have not seen/discussed with many of all these uses since 1990’s…

•Do we have quantitative (or qualitative) formulae for cross sections? 
•Do we understand what is to be produced?
� ⇠ (entrance factor)(semiclassical prefactor)exp(�Scl)
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Their scalar product is

~B · ~E = �393216tR(R2 + 2 + 4r2 + 4t2)(16t4

+24t2R2 + 32r2t2 + 32t2 + R4 + 16r4

+8r2R2)/(16r4 + 32r2t2 + 8r2R2 + 16t4

�8t2R2 + R4 + 32r2 + 32t2 + 8R2)4 , (20)

where we have set ⇢ = 1 and R = T is the intercenter
distance.

One can see that, in the simplest case of identical sizes
and orientations for the I and Ī, time reflection symmetry
t ! �t of the problem is indeed manifest, so that

Aa
0(~r, t = 0) = 0 , Ea

m(~x, t = 0) = 0 . (21)

This is illustrated in Fig. 2(b). Since configurations of
this type interpolate between a mostly dual region, with
Ea

m(zI) = Ba
m(zI), to an anti-dual region, where Ea

m(zĪ) =
�Ba

m(zĪ), it is intuitive that the electric field vanishes in
the center.
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FIG. 2. Instanton-antiinstanton configurations. (a) A
schematic picture in Euclidean space-time. The thick vertical
line, t = 0, corresponds to the location of the turning state.
The definition of the inter-center distance T is also shown.
(b) Distribution along the time axis of 2 �B2,2�E2, and 2 �B · �E for
the ratio ansatz with T = ⇢, shown by the solid, dashed, and
short-dashed lines respectively. The curve for �B · �E is the only
one which is t-odd.

This situation can be readily interpreted in the A0 = 0
gauge, in which the electric field is simply the time deriva-
tive of the gauge field – the canonical momentum in
Yang-Mills field quantization. Thus the t = 0 magnetic
state is indeed identified as a turning state, in which mo-
tion is momentarily stopped. For separation T compa-
rable to the size ⇢ the energy is finite, with a maximum
E ⇠ 1/(g⇢).

The energy E and Chern-Simons number NCS for ei-
ther the sum or ratio ansatz can be calculated as a func-
tion of separation T directly, with the hope that a para-
metric plot of E(NCS) will reveal a useful profile of the
barrier as a function of this topological coordinate.

Alas, for the sum ansatz this idea produces reasonable
results only for very large separation, T � 2⇢. When T
is of the order ⇢, the energy E(T ) of the turning state (as
well as the action for the entire configuration) becomes
very large, while the topological coordinate NCS(T ) re-
mains fixed. It is therefore obvious that this set of paths
does not describe the travel across the ridge separating
classical vacua which we want to study. Instead, this path
rises with the barrier but continues to increase as the
origin is approached, following a direction apparently or-
thogonal to the topological coordinate we want to study.

The ratio ansatz yields somewhat better results, with
finite (and even simple) field structure at all T , including
the point T = 0. However the results, shown in Fig. 3, in-
dicate that this set of trial functions can only accomplish
about one third of the journey we would like to make, in
terms of the topological quantity NCS. This inadequacy
will become apparent after comparison with the results
to follow.
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FIG. 3. The normalized energy, ER, versus the
Chern-Simons number for the ratio ansatz.
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FIG. 2. The upper plot shows a schematic picture of the instanton-antiinstanton configuration. The hori-
zontal axis is (Euclidean) time t, and R is the distance between their centers. The blue triangle indicates
t = 0, a 3-d hyper-surface in which the produced magnetic object resides. The lower plot with the red arrow,
refers to the “reclined tunnel” corresponding to large R. The green arrow on the left indicates tunneling for
small R, with a Chern-Simons number of the produced object NCS < 1/2. For this last case, the classical
explosion returns the system to the original valley.

– the set itself. I have independently generated this set numerically [19] for the double well 1 .

Yung [20] proposed the “Yung ansatz” solving the streamline equation at large R.

For gauge theory instantons the problem looked more complicated. First of all, even a sum ansatz

could not be used, as special cancellations near the centers (in singular gauge) were spoiled as the

field strength gets singular. I invented a “ratio ansatz” to cure this. Furthermore, it looked that

the interaction should depend on at least 3 variables, ⇢I , ⇢A, R, even for identical color orientations.

Verbaarschot [21] however, noticed that since the classical YM theory has conformal symmetry, the

answer should depend on their single conformal-invariant combination 2

R2 + (⇢2
1
� ⇢2

2
)2

⇢1⇢2
(6)

Using an appropriate conformal map, he set the antiinstanton inside the instanton, and made the

problem similar to the double-well potential. As a general surprise, Verbaarschot’s configurations

1 We did not know then that in mathematics our “sreamlines” were known in complex analysis as “Lefschitz thim-

bles”, special lines connecting saddles in the complex plane.
2 Many years later, it was realized that this is a geodesic distance between two points in AdS5 space, if ⇢ is the extra

coordinate.
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•Do we have quantitative (or qualitative) formulae for cross sections? 
•Do we understand what is to be produced?
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Their scalar product is

~B · ~E = �393216tR(R2 + 2 + 4r2 + 4t2)(16t4

+24t2R2 + 32r2t2 + 32t2 + R4 + 16r4

+8r2R2)/(16r4 + 32r2t2 + 8r2R2 + 16t4

�8t2R2 + R4 + 32r2 + 32t2 + 8R2)4 , (20)

where we have set ⇢ = 1 and R = T is the intercenter
distance.

One can see that, in the simplest case of identical sizes
and orientations for the I and Ī, time reflection symmetry
t ! �t of the problem is indeed manifest, so that

Aa
0(~r, t = 0) = 0 , Ea

m(~x, t = 0) = 0 . (21)

This is illustrated in Fig. 2(b). Since configurations of
this type interpolate between a mostly dual region, with
Ea

m(zI) = Ba
m(zI), to an anti-dual region, where Ea

m(zĪ) =
�Ba

m(zĪ), it is intuitive that the electric field vanishes in
the center.
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FIG. 2. Instanton-antiinstanton configurations. (a) A
schematic picture in Euclidean space-time. The thick vertical
line, t = 0, corresponds to the location of the turning state.
The definition of the inter-center distance T is also shown.
(b) Distribution along the time axis of 2 �B2,2�E2, and 2 �B · �E for
the ratio ansatz with T = ⇢, shown by the solid, dashed, and
short-dashed lines respectively. The curve for �B · �E is the only
one which is t-odd.

This situation can be readily interpreted in the A0 = 0
gauge, in which the electric field is simply the time deriva-
tive of the gauge field – the canonical momentum in
Yang-Mills field quantization. Thus the t = 0 magnetic
state is indeed identified as a turning state, in which mo-
tion is momentarily stopped. For separation T compa-
rable to the size ⇢ the energy is finite, with a maximum
E ⇠ 1/(g⇢).

The energy E and Chern-Simons number NCS for ei-
ther the sum or ratio ansatz can be calculated as a func-
tion of separation T directly, with the hope that a para-
metric plot of E(NCS) will reveal a useful profile of the
barrier as a function of this topological coordinate.

Alas, for the sum ansatz this idea produces reasonable
results only for very large separation, T � 2⇢. When T
is of the order ⇢, the energy E(T ) of the turning state (as
well as the action for the entire configuration) becomes
very large, while the topological coordinate NCS(T ) re-
mains fixed. It is therefore obvious that this set of paths
does not describe the travel across the ridge separating
classical vacua which we want to study. Instead, this path
rises with the barrier but continues to increase as the
origin is approached, following a direction apparently or-
thogonal to the topological coordinate we want to study.

The ratio ansatz yields somewhat better results, with
finite (and even simple) field structure at all T , including
the point T = 0. However the results, shown in Fig. 3, in-
dicate that this set of trial functions can only accomplish
about one third of the journey we would like to make, in
terms of the topological quantity NCS. This inadequacy
will become apparent after comparison with the results
to follow.
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FIG. 2. The upper plot shows a schematic picture of the instanton-antiinstanton configuration. The hori-
zontal axis is (Euclidean) time t, and R is the distance between their centers. The blue triangle indicates
t = 0, a 3-d hyper-surface in which the produced magnetic object resides. The lower plot with the red arrow,
refers to the “reclined tunnel” corresponding to large R. The green arrow on the left indicates tunneling for
small R, with a Chern-Simons number of the produced object NCS < 1/2. For this last case, the classical
explosion returns the system to the original valley.
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For gauge theory instantons the problem looked more complicated. First of all, even a sum ansatz

could not be used, as special cancellations near the centers (in singular gauge) were spoiled as the

field strength gets singular. I invented a “ratio ansatz” to cure this. Furthermore, it looked that

the interaction should depend on at least 3 variables, ⇢I , ⇢A, R, even for identical color orientations.
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problem similar to the double-well potential. As a general surprise, Verbaarschot’s configurations

1 We did not know then that in mathematics our “sreamlines” were known in complex analysis as “Lefschitz thim-

bles”, special lines connecting saddles in the complex plane.
2 Many years later, it was realized that this is a geodesic distance between two points in AdS5 space, if ⇢ is the extra
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FIG. 8. Cross section �(M) in pb of the process gluon-gluon-instanton/sphaleron, versus the sphaleron
mass M(GeV ).The points are explained in the text, the line is the 1/M9 background dependence shown for
comparison.

XI. SPHALERON PRODUCTION IN POMERON-POMERON COLLISIONS

We start with some general remarks related to experimental setting.

Double-Pomeron production processes at LHC are only at their initial stage. A general but brief

discussion of the existing detectors was made in section IB. Let us only add that apparently in the

standard high luminocity LHC runs, one cannot access masses less than say hundreds of GeV, but

can go to any masses provided the dedicated low-luminocity runs are performed.

As we will detail below, Pomeron-Pomeron vertices are coupled to two operators, scalar G2 and

pseudoscalar GG̃. The former is maximal when electric field directions are parallel, in the second

orthogonal. Momentum kicks to two protons are directed with electric field. Therefore, locaing

roman pots in di↵erent azimuth, one can in principle “tag” and separate these two contributions.

Returning now to current experiments at LHC, we note that exclusive channel ⇡+⇡� has been

already studied by CMS [49], for invariant masses till M < 2 GeV. It shows a ⇢-meson peak, and

contains hints at some other resonances.

Heavier clusters unfortunately were only studied by the old UA8 collaboration [3] with pp̄

collisions at the SPS. The production cross section in Pomeron-Pomeron collisions at the peak

M ⇠ 3 GeV is rather large �PP ⇠ 4 mb.

Khoze, Ringwald 1991 
Shuryak, Verbaarschot 1991 

proposed  to use I bar-I valley

here is recent integration of the cross section 
versus the sphaleron mass 

(Khose et al, arXiv:1911.09726)  
the line is M^-9

How much action is compensated by usage of a “reclined” tunneling to NCS=1/2?
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correction [45]. For comparison of these predictions with HERA data see [46], and with LHC [47].

At high mass regime the theoretical predictions have reasonable uncertainties, such as in the semi-

classical prefactor, but the main di�culty in it is large background induced by ambient events. The

main observable is a spherical multi-jet events.

To illustrate the situation, we show the gluon-gluon cross section �(
p

s0) of the instanton-

sphaleron process in Fig.8. The points are from Table 1 by Khoze et al. [44]. The instanton size in

the range of the plot changes from 1/⇢ = 1GeV to 75 GeV, and the number of outgoing gluons at

the high end reaches about a dozen.

The line, shown for comparison, is 1/M9. Recall that the one-loop coe�cient of the QCD beta

function is b = (11/3)Nc � (2/3)Nf , or 9 if the number of light flavors Nf = 3. The e↵ective action

is twice that of the instanton 2Sinst minus its depletion for sphaleron production ��S. The cross

section should be, by dimension,

� ⇠ 1

M2

✓
⇤QCD

M

◆b(2��S/S0)

One can see that the original estimates

�S

S0

⇡ 1 (42)

are supported by actual multidimensional integration.

The calculation along a path including both the Euclidean and Minkowskian times has been

preformed in [48], in the electroweak setting. Their result (solid line in Fig.6 of that paper) shows

that the action is reduced from ⇡ 12.5 at the zero sphaleron mass to about ⇡ 7 at the large

sphaleron mass. It also supports the estimate (42).

The backgrounds come from multiple QCD reactions, which have cross sections

�background ⇠ ↵2
s

M2

It is therefore clear that the task of separating the signal from the background becomes much harder

as the cluster mass M grows.

As the momentum transfer scale decreases, one may naturally think of coherent contribution of

two (or more) partons. Color neutrality can be implemented starting from color dipoles. Unlike

partons, the colliding color dipoles have a natural scale given by their sizes a1, a2. Correlating

dipoles with instantons via Wilson loops has been done by us [16]. The cross sections obtained

can be directly tested in double-inelastic electron-positron (or �⇤�⇤) collisions. Unfortunately, a

description of a proton in terms of color dipoles is not yet (to our knowledge) developed.

At small momentum transfer scale – in di↵ractive processes we will focus on – the colliding

objects are described in terms of (reggeized) hadron exchanges, especially by tensor glueballs or

(their extension to the whole Regge trajectory), the Pomerons. In a number of relatively recent

works it has been shown that Pomeron exchanges require e↵ective description in terms of symmetric

tensor. These facts, together with overall development of holographic QCD models, had strengthen

the Pomeron-graviton connection.
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The main idea of this work is that gluon-gluon or (especially) Pomeron-Pomeron collisions

also couple to such operators by fusion, and through them one can possibly investigate instan-

ton/sphaleron processes of larger masses Msph at hadron colliders.

Historically, the issue of instanton-induced decays was first noticed by Bjorken [33]. He pointed

out that ⌘c decays have 3 large 3-body modes, about 5% each of the total width:

⌘c ! KK⇡; ⇡⇡⌘; ⇡⇡⌘0

Note that there is no ⇡⇡⇡ decay mode, or other decay modes we may think of without strangeness:

the ’t Hooft vertex must have all light quark flavors in it, including s̄s.

More generally, charmonium decays are especially nice since one can use the well known J/ 

decays as a 00control group00, since its three-gluon annihilation mode does not go to operators that

couple naturally to instantons. Indeed, the branchings of the 2- and 3-body decays of J/ are

much smaller, and the average multiplicity of its decays is much larger than 3. That is why the

few-percent branching of these 3-meson ⌘c decays is remarkable by itself.

The actual calculations of ⇡⇡, KK, ⌘⌘ decays of scalar and KK⇡, ⌘⇡⇡, ⌘0⇡⇡ decays of ⌘c were

made by Zetocha and Schafer [34]. Their results contain rather high power of the instanton radius

and therefore strongly depend on its value. So the authors used the inverted logic, evaluating from

each data point the corresponding value of the mean instanton size ⇢̄. The results reproduced the

decay widths reasonably well. Furthermore, these calculations provided about the most accurate

evaluation of the average instanton size available, in the range of ⇢̄ = 0.29 � 0.30 fm, common to

all decay channels.

Let us start with the flavor composition. The specific form of the e↵ective operator between

light quarks induced by instantons has been derived by ’t Hooft

(ūRuL)(d̄RdL)(s̄RsL) + (L $ R)

with the coe�cients following from the LSZ reduction of the zero modes. For the the lightest quark

clusters, of mass M ⇠ 3 GeV, we expect the production of 6 quarks in combination uuddss. Before

discussing the decay modes, we need to look closer at Nf = 3.

B. The simplified forms of the e↵ective Lagrangian

One issue is that in [34] the emitted mesons are treated in the “local approximation”, with the

vertex Lagrangian directly projected to meson “decay constants” (which are the values of the wave

functions at the origin). In reality, mesons fly with a momentum of about 1GeV, for which the

projections from the initial quasi-local state to the final state (the form factors) are not exactly

one. This issue of “projection” (which we have already addressed above) gets more important as

one considers sphalerons with larger masses.

Another (more technical) issue is the correct inclusion of all diagrams. Whatever form chosen

for the 6-q Lagrangian, there are 3! = 6 channels (various connections of quarks and antiquarks),

and they all needs to be included. While it is possible to go from one form to to another with Fierz

transformation of operators, we were not sure all 6 connections were included on equal footing, and

decided to repeat the calculation.
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Another reason for redoing it is that the 3-flavor version of the Lagrangian used in [34] (their

(26)) is very complicated, containing expressions with three color matrices and structure constants

of the SU(3) group

fabc�a�b�c, dabc�a�b�c

As we will show, these can be eliminated in favor of a simpler form, which we use. (In Appendix B 1

we will also show one more generic form of this Lagrangian based on the so called Weingarten

coe�cients of the product of unitary matrices averaged over the groups.)

We start by explaining the two main technical complications in this problem. A single instanton

(or sphaleron) is constructed in a color SU(2) setting, with the gauge fields Aa
µT a

ij with color indices

i, j = 1, 2. The quark zero modes  j
↵ in the chiral representation (�5 is diagonal) carry a matching

spin index ↵ = 1, 2 and color index j = 1, 2, coupled to each other in a “hedgehog” way.

However, the gauge group in QCD is SU(3) and in it, the instanton appears rotated from its

standard form (just described) to some arbitrary 2d plane 2 SU(3) by a unitary 3 ⇥ 3 matrix, e.g.

 a
↵ ! Ua

i  
i
↵. The ’t Hooft e↵ective Lagrangian contains 2Nf = 6 (or 8 or 10) quark zero modes,

and therefore the 6-th (or 8-th or 10-th) power of this matrix. Although the explicit expressions

for “isotropic” averaging of these powers of U have been known for some time (see e.g. appendix of

[35]) these formulae are rather complicated, and contain convolutions with the structure constants

fabc, dabc of SU(3). Schafer and Zetocha [34] used such form, see eqn(26) of their paper.

Another technical issue is as follows. Multifermion operators can be identically represented

in many di↵erent forms, since one can color-couple di↵erent q̄q pairs. (Or even qq pairs as is

convenient for color superconductivity and baryon production.) Those “Fierzing” transformations

are jus identities, but with flavor, color and Dirac indices involved, they can create a multitude

of operators. Yet, whatever form of the vertex operator is used, one still need to include it in all

possible channels. For example, for the operator structure q̄q̄q̄qqq projected onto 3 mesons, there

are obviously 3! = 6 ways to relate it to three mesonic q̄q wave functions. For 8-q operators there

are 4!, etc.

Here and in Appendix B we show how one can simplify the operator structure, by keeping its

flavor determinantal form intact, which has no structure constants as quoted in [36], and used

for heavy-light multi-quark systems [37]. We then explicitly do all possible convolutions with all

mesonic wave functions in Mathematica, avoiding Fierzing altogether. More specifically [36] (See

eq. 2.56)

VL+R
qqq =



Nc(N2
c � 1)

✓
2Nc + 1

2(Nc + 2)
det(UDS)

+
1

8(Nc + 1)

✓
det(Uµ⌫Dµ⌫S) + det(Uµ⌫DSµ⌫) + det(UDµ⌫Sµ⌫)

◆◆
+ (L $ R) (23)

with a strength

 =
nI+Ī

2

✓
4⇡2⇢3

M⇢

◆
3

(24)

and the short hand notations (Q ⌘ U, D, S)
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Q = qRqL Qµ⌫ = qR�µ⌫qL Qa = qR�aqL (25)

with �µ⌫ = 1

2
[�µ, �⌫ ]. Note that the spin contribution is sizably suppressed by 1/8Nc in the large

Nc limit, when compared to the scalar contribution. It is clear from our Fierzing arguments in

Appendix B and symmetry, that only two determinantal invariants will survive after Fierzing as

in (23), with only the structures UDS and Uµ⌫Dµ⌫S and their permutations allowed. The only

non-trivial results are their weight coe�cients. This observation holds for 4, 8 and 10 quark vertices

as well, assuming they allow for zero modes. For instance, for 4-quark vertices the general structure

is

VL+R
qq = 2 A2N

✓
det(UD) + B2N det(Uµ⌫Dµ⌫)

◆
+ (L $ R) (26)

which is readily checked to hold with

A2N =
(2Nc � 1)

2Nc(N2
c � 1)

B2N =
1

4(2Nc � 1)
(27)

Note that at large Nc, the suppression of the spin contribution is still exactly 1/8Nc, with A#q ⇡
1/N#

c . Remarkably, both the value of the A, B coe�cients and their determinantal structures are

fixed uniquely in this limit by symmetry and scaling. For completeness, the 8-quark vertices are of

the form

VL+R
qqqq = 4 A4N

✓
det(UDSC) + B4N

✓
det(Uµ⌫Dµ⌫SC) + perm.

◆

+C4N

✓
det(Uµ⌫Dµ⌫S↵�C↵�) + perm.

◆◆
+ (L $ R) (28)

although for the heavy charm the use of the L, R zero modes may not be justified.

In the Weyl basis �µ⌫ ! i⌘aµ⌫⌧
a with the 0t Hooft symbol satisfying ⌘aµ⌫⌘

b
µ⌫ = 4�ab, (23) can be

simplified if we recall that the instanton zero modes are hedgehog in color (⌧) and spin (�), i.e.

⌧a $ ��a, hence

VL+R
qqq =



Nc(N2
c � 1)

✓
2Nc + 1

2(Nc + 2)
det(UDS)

� 1

2(Nc + 1)

✓
det(UaDaS) + det(UaDSa) + det(UDaSa)

◆◆
+ (L $ R) (29)

Vqqq is only active in flavor singlet 6-quark states. The flavor determinantal interactions can be

made more explicit by using the permutation operators in flavor space as the symmetric group S3

of permutations is composed of 3! terms only, 3 cyclic-permutations with positive signature and 3

pair-permutations with negative signature. Clearly, the 3-body instanton induced interaction (29)

whatever form of the Lagrangian is used, 
one needs to include ALL diagrams 



three-meson channels including ALL diagrams  for eta_c decays
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does not vanish only in flavor singlet uds states (repulsive). Its 2-body reduction is attractive in

states with a pair of antisymmetric flavor diquarks ud, us, ds (attractive). A more explicit writing

of (29) suitable for numerical analysis in terms of explicit 3 ⇥ 3 flavor determinants is

VL+R
qqq =



Nc(N2
c � 1)

✓
2Nc + 1

2(Nc + 2)

◆
�������

uRuL uRdL uRsL
dRuL dRdL dRsL
sRuL sRdL sRsL

�������

� 1

2(Nc + 1)

3X

a=1

✓
�������

uR�auL uR�adL uRsL
dR�auL dR�adL dRsL
sRuL sRdL sRsL

�������
+

�������

uR�auL uRdL uR�asL
dRuL dRdL dRsL

sR�auL sRdL sR�asL

�������
+

�������

uRuL uRdL uRsL
dRuL dR�adL dR�asL
sRuL sR�adL sR�asL

�������

◆�

+ (L $ R) (30)

C. Mesonic decays of sphalerons

Convoluting the vertex function in the form (30) with various mesons wave functions in all

possible 3! = 6 ways we obtain the matrix elements for a number of 3-meson decay channels, listed

in the Table. The meson definitions and couplings are defined in Appendix A.

PDG2020 input [34] —M—

KK̄⇡ K+K�⇡0 7.3 ± 0.4 (all 4) 5.5 ± 1.7 (all 4) 5.07 K2
KK⇡

K+K̄0⇡� 7.27 K2
KK⇡

K0K̄0⇡0 5.07K2
KK⇡

K�K0⇡+ 7.27K2
KK⇡

⇡⇡⌘ ⇡+⇡�⌘ 1.7 ± 0.5 4.9 ± 1.8 (both) 4.92 K2
⇡Ks

⌘

⇡0⇡0⌘ 2.46K2
⇡Ks

⌘0

⇡⇡⌘0 ⇡+⇡�⌘0 4.1 ± 1.7 (both) 4.1 ± 1.7 (both) 5.20 K2
⇡Ks

⌘0

⇡0⇡0⌘ 2.60K2
⇡Ks

⌘0

K̄K⌘ K+K�⌘ 1.36 ± 0.15 (both) 3.68 K2
KF q

⌘

K0K̄0⌘ 3.68 K2
KF q

⌘

K̄K⌘0 K+K�⌘0 3.53 K2
KF q

⌘0

K0K̄0⌘0 3.53 K2
KF q

⌘0

⌘⌘⌘ 1.32(Kq
⌘)2Ks

⌘

TABLE I. The first column gives the generic names of the decay channels of ⌘c, while the second column
records the specific channels. The third column contains the corresponding branching ratio (percents)
according to the Particle Data Table 2020. For comparison, we show in the fourth column the corresponding
numbers used in [34]. The last column gives the decay matrix elements. The meson-specific constants (wave
function at the origin) are defined in Appendix A.

Our first comment on the table is that in that two decades from the work in [34], some of the

experimental branching ratios have improved their accuracy, while some are substantially modified.

This needs to be kept in mind when comparing the predictions to experiment.

Of course, we can construct many ratios out of the Table. Here, we will mention two in particular

also production of SU(3) singlet baryons…

middle columns are 
branching ratios in %

the WF at the origin 
=> K_i 

all are known from 
phenomenology 

we keep it like this  
to have clean predictions 

of the ratios 
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E. Chirality correlation in baryonic decays

The ⇤⇤̄ channel is the most interesting for two reasons:

(i) Zero isospin means that (ud) diquark has spin zero, and therefore the whole spin of ⇤ is

carried by its strange quark;

(ii) weak decays of ⇤ hyperon allows to observe its polarization. Indeed, in the decay ⇤ ! p⇡�

of polarized hyperon, the direction of the proton is mostly along the initial polarization direction.

As a measure of s quark chirality one can use

⇠⇤ ⌘ cos
�
✓(~p⇤~pp)

�
(32)

and calculate the distributions P (�
⇤⇤̄

) over the relative chiralities, the product of

�
⇤⇤̄

⌘ ⇠⇤ ⇥ ⇠
⇤̄

(33)

Ordinary perturbative diagrams with one or two gluons (or photons) leading to the production

of a strange quark pair are “vector-like”, meaning that the chiralities are the same,

(s̄LsL) + (s̄RsR)

This means either both ⇠ are positive, or both negative, leading to �
⇤⇤̄

positive.

On the other hand, the instanton/sphaleron-induced vertex is, non � diagonal in chirality

(s̄LsR) + (s̄RsL)

The produced ⇤ and ⇤̄ should therefore have the opposite chiralities, and �
⇤⇤̄

is negative. We are

not aware of such study even in any inclusive reactions, in which a pair of Lambda hyperon decays

are identified with some reasonable statistics.

As we discussed above, the exclusive production of ⇤̄⇤ from the t’ Hooft-like Lagrangian is

not possible. Yet strong chirality correlations in question would perhaps persist in channels with

other associate hadrons. For example, in the production of ⇤̄(1405)⇤(1405) with their subsequent

radiative decays into ⇤ + �, there should remain rather significant correlation of polarizations.

If observed, it would be an excellent indication of the topological origin of the vertex, pointing

to an explicit violation of the UA(1) symmetry.

VII. SPHALERON DECAYS AT MEDIUM MASSES:
M = 10 � 20 GeV AND 10-FERMION OPERATORS

A. Charm pairs and decays with 8-fermion operators

The field magnitude at the center of the instantons is comparable to m2
c . Although charm is not

usually treated as a light flavor, it must have a certain coupling to instantons. The fact of large

instanton-induced decays of ⌘c confirms this idea.

The 8-flavor operators have also a flavor-asymmetric structure

V ⇠ (ūu)(d̄d)(s̄s)(c̄c)

appearence of charm quark pairs 
produced a la Schwinger mechanism 

via radial electric field  E(x)

21
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FIG. 6. The snapshots of the electric field component E3
3(r, t) in units of 1/g⇢2, as a function of x3/⇢, for

times t/⇢ = 0.5 (dashed), t/⇢ = 1 (solid) and t/⇢ = 2 (dotted) curves.

Using 1/⇢ = 0.6 GeV , one finds the r.h.s. to be ⇡ 1 GeV . This implies that strange quarks, with

Ms ⇠ 0.14 GeV can be produced, but not the charmed ones, with Mc ⇠ 1.5 GeV . To satisfy

this estimate, one would need to decrease ⇢ by about a factor 2. To produce a b quark, with

Mb ⇡ 5 GeV , one would need to decrease ⇢ by a factor 6 or so.

In order to get quantitative semiclassical description on has to do the following: (i) convert the

expressions for the field to Euclidean time; and (ii) solve the relativistic classical EOM

M
duµ

ds
= Fµ⌫u⌫

where uµ = dxµ/ds and s is the proper time, ds2 = dt2 � d~x2. Comparable and rather complex

electric and magnetic fields make the paths quite complicated. On top of that, the result depends

on the starting location of the particle. So, at this time, we have no results on such a calculation

to report.

VIII. SPHALERON DECAYS AT LARGE MASSES, M ⇠ 100 GeV

These masses fall in the range discussed in the theoretical literature, and mostly searched at

HERA and LHC, as they promise to have O(10) well recognized gluonic and quark jets. Background

evaluation for such events were attempted, using current event generators tuned to multi-jet events.

Two comments are in order:

(i) In this mass range, it is possible to use double di↵ractive events at LHC, which are expected

to reduce backgrounds substantially in comparison to ambient pp collisions.

(ii) In the usual parton-parton collisions, the fragmentation function of O(10 GeV ) gluons is

essentially the product of string breaking. One end of these strings is on the leading gluon, the

other ends at throughgoing partons, or the origin in the transverse plane, see Fig. 7 left. But

E(x)
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O(10) gluons should lead to several  glueballs, with calculable spectrum

E(x)
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FIG. 7. Schematic picture illustrating the configuration of QCD strings in four-jet events. The left corre-
sponds to the usual case, when jets originate from collisions at the origin in the transverse plane. The right
corresponds to an exploding sphaleron in which the strings are not connected to the origin, but are close to
the expanding shell (dotted circle).

sphaleron decay leaves out the interior of the exploding shell “empty” (more precisely, with a pure

gauge configuration). As these gluons become physical and separated from each other, the strings

would go between them close to the shell, rather than extending to he origin, see Fig. 7 right.
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How to observe instanton/sphaleron process in pp collisions?

to reduce background, we proposed to use double-diffractive events 
(Pomeron-Pomeron collisions)



UA8 and double-Pomeron production
ar

X
iv

:h
ep

-e
x/

02
05

03
7v

3 
 2

1 
Ju

l 2
00

2

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

1 July, 2002

A Study of Inclusive
Double–Pomeron–Exchange

in pp̄ → pXp̄ at
√
s = 630 GeV

A. Brandt1, S. Erhana, A. Kuzucu2, M. Medinnis3,
N. Ozdes2,4, P.E. Schleinb, M.T. Zeyrek5, J.G. Zweizig6

University of California∗, Los Angeles, California 90024, U.S.A.

J.B. Cheze, J. Zsembery
Centre d’Etudes Nucleaires-Saclay, 91191 Gif-sur-Yvette, France.

(UA8 Collaboration)

Abstract

We report measurements of the inclusive reaction, pp̄ → pXp̄, in events where
either or both the beam–like final–state baryons were detected in Roman-pot spec-
trometers and the central system was detected in the UA2 calorimeter. A Double-
Pomeron-Exchange (DPE) analysis of these data and single diffractive data from the
same experiment demonstrates that, for central masses of a few GeV, the extracted
Pomeron–Pomeron total cross section, σtot

PP , exhibits an enhancement which ex-
ceeds factorization expectations by an order-of-magnitude. This may be a signature
for glueball production. The enhancement is shown to be independent of uncertain-
ties connected with possible non–universality of the Pomeron flux factor. Based on
our analysis, we present DPE cross section predictions, for unit (1 mb) Pomeron-
Pomeron total cross section, at the Tevatron, LHC and the 920 GeV fixed-target
experiment, HERA-B.

In press: European Physics Journal C

∗ Supported by U.S. National Science Foundation Grant PHY-9986703.
a email: samim.erhan@cern.ch
b email: peter.schlein@cern.ch
1 Present address: University of Texas, Arlington, U.S.A.
2 Visitor from Cukurova University, Adana, Turkey; also supported by ICSC - World Lab.
3 Present address: DESY, Hamburg, Germany
4 Present address: Muscat Technical Industrial College (MTIC), Muscat/Oman
5 Visitor from Middle East Tech. Univ., Ankara, Turkey; supported by Tubitak.
6 Present address: California Institute of Technology, Pasadena, CA, U.S.A.

ar
X

iv
:h

ep
-e

x/
02

05
03

7v
3 

 2
1 

Ju
l 2

00
2

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

1 July, 2002

A Study of Inclusive
Double–Pomeron–Exchange

in pp̄ → pXp̄ at
√
s = 630 GeV

A. Brandt1, S. Erhana, A. Kuzucu2, M. Medinnis3,
N. Ozdes2,4, P.E. Schleinb, M.T. Zeyrek5, J.G. Zweizig6

University of California∗, Los Angeles, California 90024, U.S.A.

J.B. Cheze, J. Zsembery
Centre d’Etudes Nucleaires-Saclay, 91191 Gif-sur-Yvette, France.

(UA8 Collaboration)

Abstract

We report measurements of the inclusive reaction, pp̄ → pXp̄, in events where
either or both the beam–like final–state baryons were detected in Roman-pot spec-
trometers and the central system was detected in the UA2 calorimeter. A Double-
Pomeron-Exchange (DPE) analysis of these data and single diffractive data from the
same experiment demonstrates that, for central masses of a few GeV, the extracted
Pomeron–Pomeron total cross section, σtot

PP , exhibits an enhancement which ex-
ceeds factorization expectations by an order-of-magnitude. This may be a signature
for glueball production. The enhancement is shown to be independent of uncertain-
ties connected with possible non–universality of the Pomeron flux factor. Based on
our analysis, we present DPE cross section predictions, for unit (1 mb) Pomeron-
Pomeron total cross section, at the Tevatron, LHC and the 920 GeV fixed-target
experiment, HERA-B.

In press: European Physics Journal C

∗ Supported by U.S. National Science Foundation Grant PHY-9986703.
a email: samim.erhan@cern.ch
b email: peter.schlein@cern.ch
1 Present address: University of Texas, Arlington, U.S.A.
2 Visitor from Cukurova University, Adana, Turkey; also supported by ICSC - World Lab.
3 Present address: DESY, Hamburg, Germany
4 Present address: Muscat Technical Industrial College (MTIC), Muscat/Oman
5 Visitor from Middle East Tech. Univ., Ankara, Turkey; supported by Tubitak.
6 Present address: California Institute of Technology, Pasadena, CA, U.S.A.

while, over the ISR energy range (s = 549 to 3840 GeV2):

ϵ(s) = (0.096± 0.004)− (0.019± 0.005) · log(s/549).
α′(s) = (0.215± 0.011)− (0.031± 0.012) · log(s/549).
α′′(s) = (0.064± 0.006)− (0.010± 0.006) · log(s/549).

The quadratic term[2] in α(t) corresponds to a “flattening”4, or departure from linear
behavior, of the effective Pomeron trajectory at high-|t|. Direct evidence for this flattening
of the trajectory can be obtained by looking at the behavior of the UA8 single diffractive
data [2] at large-|t|. Figure 2 shows the observed Feynman-xp distributions for different
bands of |t| between 1 and 2 GeV2. Since the geometrical acceptance[2] depends linearly
and weakly on xp in this figure, the pronounced peaks near xp = 1 reflect the physics of
diffraction and are seen to persist up to |t| of 2 GeV2. They are due to the (approximate)
1/M2

X behavior of Triple-Regge phenomenology. If the trajectory did not flatten, but
continued to drop linearly, the diffractive peak would tend to disappear. For example,
with a trajectory, α(t) = 1.08 + 0.25t, the peak would disappear at −t = 2.3 GeV2

(corresponding to: 2α(t)− 1 = 0). Thus, the persistence of the diffractive peak in Fig. 2
is the most direct evidence that the effective Pomeron trajectory flattens at large-|t|.

The question arises as to whether Pomeron–exchange is still dominant for |t| > 1 GeV2,
where most of the data in the present experiment are. The self-consistency of our Triple–
Regge analysis in describing both single–diffraction and double–Pomeron–exchange data
is one supporting argument. Another important point is that the set of all Spp̄S and
ISR high–|t| data agree [17] with a “fixed–pole” description without damping. Another
argument is that the hard Pomeron structure found in the UA8 jet event analysis [5]
is consistent with that found in the analysis of low-|t| data at HERA[23]. Thus, our
working assumption is that Pomeron–exchange dominates React. 1 in the momentum–
transfer range, 1 < −t < 2 GeV2. Based on the results of earlier studies[2] of diffraction,
we can ignore Reggeon exchange when ξ < 0.03.

The differential cross section for the DPE process, React. 1, is:

d6σDPE

dξ1dξ2dt1dt2dφ1dφ2
= FP/p(t1, ξ1) · FP/p(t2, ξ2) · σtot

PP(s
′). (5)

The variables, (ξi, ti,φi), describe each of the emitted Pomerons at the outer vertices in
Fig. 1(a), which are uniquely given by the measurement of the associated outgoing p (or
p̄) in the final state. Although there is no explicit φ–dependence on the right-hand-side
of Eq. 5 and the Pomerons are emitted independently and isotropically, φ correlations do
result, because significant regions in the 6-dimensional space, (ξ1, t1, φ1, ξ2, t2, φ2), are
unphysical and give s′ < 0. This point is discussed further in Sect. 4 in connection with
Monte–Carlo generation of events according to Eq. 5.

Using Eq. 5, our goal is to extract σtot
PP from our data on React. 1 and to determine its

energy (s′) dependence. In particular, we wish to know whether there are enhancements
4This flattening is also claimed to be seen by the ZEUS experiment [22] at DESY in photoproduction

of low-mass vector mesons (ρ0 and φ0)

3

P

P
s’

s’=M^2 is the cluster mass squared

Roman pots on both sides (AND) 
Plus UA2 central calorimeter

0

20

40

0 10 20 30

0

100

200

300

0 10 20 30
MX (GeV)

AND OR

(a) (b)
Ev

en
ts

 p
er

 Δ
M

X 
= 

2 
G

eV

Figure 18: Final event sample; number of observed events vs. corrected calorimeter
mass, MX , with 1.0 < −t < 2.0 GeV2; (a) “AND” triggered data (85 events); (b) “OR”
triggered data (586).

41

M (GeV)

Mass 
Distribution 

Has unpredicted peak 
At 2-8 GeV

0 0.5 1 0 0.5 1

MX < 5 GeV MX > 5 GeV

|cos(Θ)|

dN
 / 

d|
co

s(
Θ

)|

Figure 21: Central system decay distributions. dN/dcos(θ) for all “struck” cells, averaged
over the event sample: (a) for MX < 5 GeV; (b) for MX > 5 GeV. Histograms are the
Monte–Carlo distributions described in the text. Vertical scale is arbitrary and linear.

44

Low mass clusters 
decay isotropically 
In their rest frame

Small and large M 
Production is different 

In magnitude and  
Angular distributions



27

0 5 10 15 20
0

10

20

30

40

0 5 10 15 20

0.01

0.10

1

10

FIG. 9. Left plot: Semiclassical distribution over the cluster mass M (GeV), compared to the data points
from the UA8 experiment; Right plot is the logarithmic representation of the same curve (solid), now
compared with the dashed line representing the perturbative background.

XII. SPHALERON-GLUON-QUARK VERTEX

To make explicit the sphaleron-quark vertex, we note that the instanton density in (24) follows

from the averaging of the gluon field in the instanton vacuum

nI+Ī = nI + nĪ =
↵s

8⇡
hG2i nI�Ī = nI � nĪ =

↵s

8⇡
hGG̃i ! 0 (44)

where the second averaging is zero for ✓ = 0. The normalizations in (44) are fixed by the QCD

scale and axial anomalies in the instanton vacuum, respectively. Note that in (44) G2 and GG̃

count the number of instantons and anti-instantons.

The single instanton-six-quark vertex and anti-instanton-six-quark vertex follow by omitting the

vacuum averaging in (44), and recalling that the left-vertex is induced by an instanton, and the

right vertex by an anti-instanton. More specifically, from (23) and (44) we obtain
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The sphaleron produced in the di↵ractive process is half a tunneling process with half the

topological charge, and not self-dual. At the turning point, the sphaleron drags six quark zero modes

out of the QCD vacuum with at t = 0 the vertex mediated by G2

S = 2B2 since GG̃S = 4E · B = 0
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How can one observe sphalerons in  heavy ion collisions?
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Fig. 12.5 Upper:Evolution of the Chern-Simons number for a 0.35 single non-equilibrium config-
uration. Di↵erent curves correspond to di↵erent extraction procedures. Lower: Histograms of the
distribution over NCS at time Qst = 10.

in GLASMA Qs ⇠ 2 GeV one finds that both the absolute time and time interval
are about 1 fm/c. Taking this histogram as an example of that, we see than
r.m.s. deviation corresponds to the di↵usive motion adding �Nr.m.s.

CS ⇡ 3 new
transitions. For 3 light quark flavors, this corresponds to the added chiral charge of
the configurations to be about

Qr.m.s.
5

= 2Nf ⇤ �Nr.m.s.
CS ⇡ 20 (12.25)

Mace, Schlichting and Venugopalan [Mace et al., 2016] 
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Such a strong B field may influence the dynamics of QGP
Chirality imbalance + magnetic field = chiral magnetic e↵ect
(CME) (Kharzeev 2004, Kharzeev, Mclerran, Warringa, Fukushima 2007-2008):

JV =
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2⇡2
µAB

Phenomenology: charge-charge azimuthal correlation. Voloshin 2004,
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312 Chiral e↵ects and sphaleron production

For this idea to work it is important that ambient matter should be not ordinary
hadronic matter, but quark-gluon plasma (QGP), at T > Tc. Only in this case the
chiral symmetry is unbroken and thus chiral disbalance remains conserved9 for long
time. This suggestion has lead to significant experimental activity. We of course
cannot describe it here in detail: the e↵ect is clearly seen, but possible backgrounds
are not yet completely understood.

The experimental program continues, at both RHIC and LHC. RHIC has made
a dedicated run with two beams of nuclei,

Ru96
44 + Ru96

44 and Zr96
40 + Zr96

40

having the same number of nucleons (A=96) but rather di↵erent number of pro-
tons (Z=44 and 40, respectively). Their comparison will help to single out e↵ects
proportional to magnetic field. As of this time, the run was made but analysis of
the results is not yet completed.

Eventually we will learn the sphaleron rates, both the “primordial one”, from
nonzero topology in the vacuum wave function, as well as that in GLASMA. Ex-
perimental check of the sphaleron theory in QCD will, no doubt, strengthen also
our understanding of electroweak sphalerons in the Big Bang.

9Except for quark mass terms, leading to chirality flips. Those masses are quite small to be
important at the time scale considered.
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Fig. 12.5 Upper:Evolution of the Chern-Simons number for a 0.35 single non-equilibrium config-
uration. Di↵erent curves correspond to di↵erent extraction procedures. Lower: Histograms of the
distribution over NCS at time Qst = 10.

in GLASMA Qs ⇠ 2 GeV one finds that both the absolute time and time interval
are about 1 fm/c. Taking this histogram as an example of that, we see than
r.m.s. deviation corresponds to the di↵usive motion adding �Nr.m.s.

CS ⇡ 3 new
transitions. For 3 light quark flavors, this corresponds to the added chiral charge of
the configurations to be about

Qr.m.s.
5

= 2Nf ⇤ �Nr.m.s.
CS ⇡ 20 (12.25)

Mace, Schlichting and Venugopalan [Mace et al., 2016] 
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J. Adam,40 D. Adamová,84 M. M. Aggarwal,88 G. Aglieri Rinella,36 M. Agnello,110 N. Agrawal,48 Z. Ahammed,132 S. U. Ahn,68

S. Aiola,136,† A. Akindinov,58 S. N. Alam,132 D. Aleksandrov,80 B. Alessandro,110 D. Alexandre,101 R. Alfaro Molina,64

044903-9

�↵,� ⌘ hcos(�↵ + �� � 2 RPi
= hcos��↵ cos���i � hsin��↵ sin���i
= [hv1,↵v1,�i+Bin]� [ha1,↵a1,�i+Bout]

dN±
d�

/ 1 + 2v1 cos (��) + 2v2 cos(2��) + ...

+ 2a1,± sin(��) + ... ; �� = �� RP

Chiral magnetic e↵ect

Such a strong B field may influence the dynamics of QGP
Chirality imbalance + magnetic field = chiral magnetic e↵ect
(CME) (Kharzeev 2004, Kharzeev, Mclerran, Warringa, Fukushima 2007-2008):

JV =
Nce

2⇡2
µAB

Phenomenology: charge-charge azimuthal correlation. Voloshin 2004,

STAR@RHIC 2009-2014, ALICE@LHC 2012-2014

Signal for local parity violation of QCD?! Need more theoretical and
experimental studies on the backgrounds. (Liao, Bzdak, and Koch
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For this idea to work it is important that ambient matter should be not ordinary
hadronic matter, but quark-gluon plasma (QGP), at T > Tc. Only in this case the
chiral symmetry is unbroken and thus chiral disbalance remains conserved9 for long
time. This suggestion has lead to significant experimental activity. We of course
cannot describe it here in detail: the e↵ect is clearly seen, but possible backgrounds
are not yet completely understood.

The experimental program continues, at both RHIC and LHC. RHIC has made
a dedicated run with two beams of nuclei,

Ru96
44 + Ru96

44 and Zr96
40 + Zr96

40

having the same number of nucleons (A=96) but rather di↵erent number of pro-
tons (Z=44 and 40, respectively). Their comparison will help to single out e↵ects
proportional to magnetic field. As of this time, the run was made but analysis of
the results is not yet completed.

Eventually we will learn the sphaleron rates, both the “primordial one”, from
nonzero topology in the vacuum wave function, as well as that in GLASMA. Ex-
perimental check of the sphaleron theory in QCD will, no doubt, strengthen also
our understanding of electroweak sphalerons in the Big Bang.

9Except for quark mass terms, leading to chirality flips. Those masses are quite small to be
important at the time scale considered.
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Fig. 12.5 Upper:Evolution of the Chern-Simons number for a 0.35 single non-equilibrium config-
uration. Di↵erent curves correspond to di↵erent extraction procedures. Lower: Histograms of the
distribution over NCS at time Qst = 10.

in GLASMA Qs ⇠ 2 GeV one finds that both the absolute time and time interval
are about 1 fm/c. Taking this histogram as an example of that, we see than
r.m.s. deviation corresponds to the di↵usive motion adding �Nr.m.s.

CS ⇡ 3 new
transitions. For 3 light quark flavors, this corresponds to the added chiral charge of
the configurations to be about
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Mace, Schlichting and Venugopalan [Mace et al., 2016] 

Diffusion in Chern-Simons  
number in GLASMA
Change of 1 => 

 6 units of axial charge 
So total  r.m.s. is +- 25 
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“Gamma” correlator

!3

 The sign of the correlations is sensitive to the 
“direction” (in- or out-of-plane), the background is 
suppressed (Bin-Bout) at least by a factor of v2  < 10-1.
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Chiral magnetic e↵ect

Such a strong B field may influence the dynamics of QGP
Chirality imbalance + magnetic field = chiral magnetic e↵ect
(CME) (Kharzeev 2004, Kharzeev, Mclerran, Warringa, Fukushima 2007-2008):

JV =
Nce

2⇡2
µAB

Phenomenology: charge-charge azimuthal correlation. Voloshin 2004,

STAR@RHIC 2009-2014, ALICE@LHC 2012-2014

Signal for local parity violation of QCD?! Need more theoretical and
experimental studies on the backgrounds. (Liao, Bzdak, and Koch

2010-2013, Wang 2010, Pratt et al 2010, ...)
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CME (Kharzeev et al) ~J ⇠ µ5
~B
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Non-dissipative  
current 

Recently  observed 
In semimetals

One needs QGP  
WHICH IS “CHIRAL MATTER” 

AS AT T>TC NO <QQ>!

LATEST RHIC run done, not yet analyzed 



 sounds in the Little and Big Bangs 

(introductory heavy ion collisions vs cosmology)



Perturbations of 
the Big and the 
Little Bangs
Frozen sound (from the era long 
gone) is seen on the sky, both in 
CMB and in distribution of Galaxies

They are literally circles on the 
sky, around primordial density 
perturbations 

Initial state fluctuations 
in the positions of participant nucleons 
lead to perturbations of the Little 
Bang also 

Cylindrical (extended in z)
at FO surface tauf=2R and 
sound velocity is ½         => 
radius is about R   =>
Azimutal harmonics m=O(1)
Angle about 1 radian

Perhaps shumerians had managed to see them somehow….,                            
why else had they introduced 1o?



ACOUSTIC PEAK  SEEN ON THE SKY, 
ON CMB and galaxy distribution



Comoving coordinates with Gubser flow: 
Gubser and Yarom, arXiv:1012.1314



The modified freezeout
Surface (right) leads to
A modified angular distribution
Of particles, with and without viscosity
(left)

the effect of viscosity was seen by eye 
for the first time



our theoretical  prediction 
for two-particle correlator soon confirmed by ATLAS measuremnts

colored curves are expansion in harmonics



our paper 2011:  
fixed QGP viscosity and predicted  

the first minimum at m=7 
and maximum at 9
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Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Higher harmonic non-linear flow modes of charged hadrons in Pb–Pb
collisions at p

sNN =5.02 TeV

ALICE Collaboration⇤

Abstract

Anisotropic flow coefficients, vn, non-linear flow mode coefficients, cn,mk, and correlations among
different symmetry planes, rn,mk are measured in Pb–Pb collisions at

p
sNN = 5.02 TeV. Results

obtained with multi-particle correlations are reported for the transverse momentum interval 0.2 <
pT < 5.0 GeV/c within the pseudorapidity interval 0.4 < |h | < 0.8 as a function of collision centrality.
The vn coefficients and cn,mk and rn,mk are presented up to the ninth and seventh harmonic order,
respectively. Calculations suggest that the correlations measured in different symmetry planes and
the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios
of the medium created in heavy-ion collisions. The comparison between these measurements and
those at lower energies and calculations from hydrodynamic models places strong constraints on the
initial conditions and transport properties of the system.

⇤See Appendix B for the list of collaboration members
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Fig. 3: vn as a function of the harmonic order n for various centrality intervals.

a function of centrality in Fig. 5. Except for r6,33, all coefficients indicate an increase in correlation
between symmetry planes with increasing centrality class of the collision. The measurements generally
agree with the ones obtained at the lower energy. The r6,222 is the only coefficient for which an energy
dependence can be observed. The hydrodynamic calculations reproduce the measurements within the
large theoretical uncertainties. For r4,22, r5,23, and r6,222, TRENTo+param3 however underestimates the
data in mid-central collisions.

Finally, the non-linear flow mode coefficients are presented in Fig. 6. Six coefficients are measured,
of which four are compared with the lower beam energy results available in [53]. For c4,22 and c5,23,
the centrality dependence and overall magnitude agree well with the results from the lower beam energy.
The centrality dependence of the new data is similar to the previous results: a larger value in more central
collisions, decreasing close to unity towards 50% centrality.

All of the non-linear flow mode coefficients for the sixth harmonic agree with the previous measurements.
The centrality dependence of c6,222 is similar to the ones of the lower order coefficients, and the overall
magnitude similar to c4,22. As for c6,33, no clear centrality dependence is observed within the current
experimental uncertainties. Whereas the previous measurements are unable to distinguish between the
magnitudes of c6,222 and c6,33, the current results show that c6,222 > c6,33 across the whole centrality
interval. For c7,223, the overall magnitude is larger than for the other non-linear flow mode coefficients.

The hydrodynamic calculations for the non-linear flow mode coefficients show slightly more variation
compared to the symmetry-plane correlations. As seen from the panels of Fig. 6, one observes the
reproduction of the data points by EKRT+param0 up to the modes of the sixth harmonic, and TRENTo+
param3 in all harmonics. The EKRT+param1 calculations slightly overestimate the centrality dependence
of the non-linear flow mode coefficients. It can be seen that the parameterizations of the EKRT presented
here imply cn,mk across all harmonic orders to have sensitivity to h/s, whereas in the previous calculations
in [53], weak h/s dependence was found for c4,22 and c6,222. The fifth order coefficient c5,23 is expected
to be quite sensitive to h/s in central collisions as can be seen from the difference of the predicted values
from EKRT+param0 and EKRT+param1. The AMPT+param2 calculations underestimate the magnitude

10

points are ATLAS 2011, preliminary



Sphalerons in 
QCD AND ELECTROWEAK PHASE TRANSITIONS



Cosmological electroweak phase transition  (EWPT)
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Appendix A: Basics of Electroweak phase
transition

The transition temperature for the EWPT
follows from lattice studies [11]

TEW = (159± 1)GeV (A1)

The temperature of Universe today is Tnow =
2.73K. The ensuing redshift z-factor is

zEW =
TEW

Tnow

⇡ 6⇥ 1014 (A2)

During the radiation dominated era, the rela-
tion of time to temperature is given by Fried-
mann

t =

✓
90

32⇡3NDOF(t)

◆ 1
2 MP

T 2
(A3)

Inserting the Planck Mass MP , the transition
temperature and the e↵ective number of de-
grees of freedom NDOF, we find the time after
Big Bang to be

tEW ⇠ 0.3 · 10�11s (A4)

or ctEW ⇡ 0.1mm.
As we already mentioned, lattice studies of

the in SM have excluded a first order tran-
sition. Therefore we focus on the cross-over,
in which the Higgs VEV grows gradually by
some smooth function v(T ) for T < TEW . Fol-
lowing [11], a relatively sharp cross-over is ob-
served at TEW = (159 ± 1)GeV. The squared
Higgs VEV below this temperature grows ap-
proximately linearly

v2(140GeV < T < TEW )

T 2
⇡ 9

✓
1�

T

TEW

◆

(A5)
This scaling is consistent with the naive
Landau-Ginzburg treatment of the Higgs po-
tential. The coe�cient is also in agreement
with the two-loop perturbative calculations.

In the symmetric phase T > TEW , the nor-
malized sphaleron rate remains constant, which
according to [11] is

�

T 4
⇡ 1.5 · 10�7 (A6)

consistent with expected magnitude of 18↵5

EW

from perturbative calculations.

If the seeded magnetic field would be simply
produced at the electroweak scale TEW , and
then just grow with the Universe with the red-
shift factor zEW , its resulting spatial scale to-
day would be

⇠ ⇠
zEW

TEW

= 4⇥ 1014 ⇥ 10�17 m ⇡ 4mm (A7)

The primary phase of the inverse magnetic
cascade can only reach from the micro scale of
1/TEW ⇠ 0.01 fm to the horizon at that time,
ctEW , about 13 orders of magnitude away. If
that would be the end of the inverse cascade,
the correlation length of the magnetic chirality
would be

⇠ ⇠
zEW

ctEW

⇠ 4⇥ 1014 ⇥ 3⇥ 10�4m ⇡ 1011m

(A8)
This distance may appear large on a human
scale, but in units used for intergalactic dis-
tances it is tiny 1

3
⇥ 10�11 Mpc. This scale is

also the same as the predicted maximal wave-
length of the gravity waves emitted at elec-
troweak transition today, in the hypothetical
inverse acoustic cascade.

Appendix B: Pure gauge sphalerons and
their explosion

Both static and time-dependent exploding
solutions for the pure-gauge sphaleron have
been originally discussed by Carter, Ostrovsky
and Shuryak (COS) [18]. Its simpler deriva-
tion, to be used below, has been discussed
by Shuryak and Zahed [19]. The construction
relies on an o↵-center conformal transforma-
tion of the O(4) symmetric Euclidean instan-
ton solution, which is analytically continued to
Minkowski space-time. The focus of the work
in [19] was primarily the detailed description of
the fermion production.

The original O(4)-symmetric solution is
given by the following ansatz

At later time 
 Higgs VEV appears, v^2 

Approximately linearly in T 
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Appendix B: Pure gauge sphalerons and
their explosion

Both static and time-dependent exploding
solutions for the pure-gauge sphaleron have
been originally discussed by Carter, Ostrovsky
and Shuryak (COS) [18]. Its simpler deriva-
tion, to be used below, has been discussed
by Shuryak and Zahed [19]. The construction
relies on an o↵-center conformal transforma-
tion of the O(4) symmetric Euclidean instan-
ton solution, which is analytically continued to
Minkowski space-time. The focus of the work
in [19] was primarily the detailed description of
the fermion production.

The original O(4)-symmetric solution is
given by the following ansatz

In the fully broken  
phase at T=0 
v=246 GeV

W,Z,quarks and leptons 
Are all massless at T>Tc

If Higgs mass be small,  
it is the first order,  

thus studies of bubbles etc in 1980s. 
But now we know it is  
a smooth crossover

24

observed BAU ratio. This is a well known prob-
lem, resulting in pessimistic view of the whole
approach.

However, the so called “topological stability”
comes to the rescue. There are good reasons
to believe that the Dirac operator in the back-
ground of a sphaleron explosion still possesses a
topological zero mode, surviving gluon rescat-
tering. This in turn implies that the only place
where the Klimov-Weldon mass appears is in
the e↵ective mass term for left-handed quarks,
asM2

q /MKW . These (flavor-dependent) mass
contributions cause additional phase shifts in
the outgoing quark waves during their produc-
tion process. Moderatly involved calculations
of the resulting CP asymmetry set its value at
about ⇠ 10�9, suppressed by the Jarlskog com-
bination of CKM phases and the fourth powers
of the corresponding quark masses.

Comparing to what is needed to solve famed
BAU problem, it is about an order of magnitude
o↵. We think it is well inside the uncertain-
ties of our crude estimates. Anyway, we have
shown that minimal standard model can gener-
ate BAU many orders of magnitude larger than
previously expected. Clearly, further scrutiny
of this scenario is needed.

Finally, we have shown that like the BAU,
CP asymmetry at sphaleron explosions should
also be the origin of helical magnetic fields. The
conservation of the (Abelian version) of Chern-
Simons number, magnetic linkage, should then
keep it till today, and so potentially observable.

Acknowledgements. We are grateful to
M. Shaposhnikov who patiently criticized ear-
lier versions of this paper. The work is sup-
ported by the U.S. Department of Energy, Of-
fice of Science, under Contract No. DE-FG-
88ER40388.

Appendix A: Basics of Electroweak phase
transition

The transition temperature for the elec-
troweak symmetry breaking was known from
the mean field analysis of the Higgs poten-
tial, and was further detailed by lattice studies
in [16]. It is a crossover transition at

TEW = (159± 1)GeV (A1)

The temperature of the Universe today is
Tnow = 2.73K. The ensuing redshift z-factor
is

zEW =
TEW

Tnow

⇡ 6.8 · 1014 (A2)

During the radiation dominated era, the rela-
tion of time to temperature is given by Fried-
mann relation

t =

✓
90

32⇡3NDOF(t)

◆ 1
2 MP

T 2
(A3)

Inserting the Planck Mass MP = 1.2·1019 GeV,
the transition temperature and the e↵ective
number of degrees of freedom NDOF = 106.75,
we find the time after the Big Bang to be

tEW ⇠ 0.9 · 10�11s, ctEW ⇡ 2.7mm (A4)

As explained in the main text, the main phe-
nomena discussed happen near the “sphaleron
freezeout” time, which, according to Ref[16], is
at TFO ⇡ 130GeV. The corresponding cosmo-
logical time is then

tFO ⇠ 1.36 · 10�11s, ctFO ⇡ 4 · mm (A5)

The Higgs VEV v(T ) grows gradually, from
zero at the critical TEW . It was confirmed by
[16] that the squared Higgs VEV grows approx-
imately linearly

v2(140GeV < T < TEW )

T 2
⇡ 9

✓
1�

T

TEW

◆

(A6)
This scaling is consistent with the naive
Landau-Ginzburg treatment of the Higgs po-
tential. The coe�cient is also in agreement
with the two-loop perturbative calculations. At
freezeout its value is

v(TFO) ⇡ 167GeV (A7)

approximately 2/3 of the value in the fully bro-
ken phase.

crossover: M. D’Onofrio, K. Rummukainen and A. Tranberg,  
Phys. Rev. Lett. 113, no. 14, 141602 
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�
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EW
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produced at the electroweak scale TEW , and
then just grow with the Universe with the red-
shift factor zEW , its resulting spatial scale to-
day would be

⇠ ⇠
zEW

TEW

= 4⇥ 1014 ⇥ 10�17 m ⇡ 4mm (A7)

The primary phase of the inverse magnetic
cascade can only reach from the micro scale of
1/TEW ⇠ 0.01 fm to the horizon at that time,
ctEW , about 13 orders of magnitude away. If
that would be the end of the inverse cascade,
the correlation length of the magnetic chirality
would be

⇠ ⇠
zEW

ctEW

⇠ 4⇥ 1014 ⇥ 3⇥ 10�4m ⇡ 1011m

(A8)
This distance may appear large on a human
scale, but in units used for intergalactic dis-
tances it is tiny 1

3
⇥ 10�11 Mpc. This scale is

also the same as the predicted maximal wave-
length of the gravity waves emitted at elec-
troweak transition today, in the hypothetical
inverse acoustic cascade.

Appendix B: Pure gauge sphalerons and
their explosion

Both static and time-dependent exploding
solutions for the pure-gauge sphaleron have
been originally discussed by Carter, Ostrovsky
and Shuryak (COS) [18]. Its simpler deriva-
tion, to be used below, has been discussed
by Shuryak and Zahed [19]. The construction
relies on an o↵-center conformal transforma-
tion of the O(4) symmetric Euclidean instan-
ton solution, which is analytically continued to
Minkowski space-time. The focus of the work
in [19] was primarily the detailed description of
the fermion production.

The original O(4)-symmetric solution is
given by the following ansatz

Note that the critical temperature  
for QCD transition is nearly  

exactly 1000 times smaller, 155 MeV

At later time 
 Higgs VEV appears, v^2 

Approximately linearly in T 
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Appendix A: Basics of Electroweak phase
transition

The transition temperature for the EWPT
follows from lattice studies [11]

TEW = (159± 1)GeV (A1)

The temperature of Universe today is Tnow =
2.73K. The ensuing redshift z-factor is

zEW =
TEW

Tnow

⇡ 6⇥ 1014 (A2)

During the radiation dominated era, the rela-
tion of time to temperature is given by Fried-
mann

t =

✓
90

32⇡3NDOF(t)

◆ 1
2 MP

T 2
(A3)

Inserting the Planck Mass MP , the transition
temperature and the e↵ective number of de-
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Big Bang to be
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or ctEW ⇡ 0.1mm.
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v2(140GeV < T < TEW )

T 2
⇡ 9

✓
1�

T

TEW

◆

(A5)
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solutions for the pure-gauge sphaleron have
been originally discussed by Carter, Ostrovsky
and Shuryak (COS) [18]. Its simpler deriva-
tion, to be used below, has been discussed
by Shuryak and Zahed [19]. The construction
relies on an o↵-center conformal transforma-
tion of the O(4) symmetric Euclidean instan-
ton solution, which is analytically continued to
Minkowski space-time. The focus of the work
in [19] was primarily the detailed description of
the fermion production.

The original O(4)-symmetric solution is
given by the following ansatz

In the fully broken  
phase at T=0 
v=246 GeV

W,Z,quarks and leptons 
Are all massless at T>Tc

If Higgs mass be small,  
it is the first order,  

thus studies of bubbles etc in 1980s. 
But now we know it is  
a smooth crossover
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observed BAU ratio. This is a well known prob-
lem, resulting in pessimistic view of the whole
approach.

However, the so called “topological stability”
comes to the rescue. There are good reasons
to believe that the Dirac operator in the back-
ground of a sphaleron explosion still possesses a
topological zero mode, surviving gluon rescat-
tering. This in turn implies that the only place
where the Klimov-Weldon mass appears is in
the e↵ective mass term for left-handed quarks,
asM2

q /MKW . These (flavor-dependent) mass
contributions cause additional phase shifts in
the outgoing quark waves during their produc-
tion process. Moderatly involved calculations
of the resulting CP asymmetry set its value at
about ⇠ 10�9, suppressed by the Jarlskog com-
bination of CKM phases and the fourth powers
of the corresponding quark masses.

Comparing to what is needed to solve famed
BAU problem, it is about an order of magnitude
o↵. We think it is well inside the uncertain-
ties of our crude estimates. Anyway, we have
shown that minimal standard model can gener-
ate BAU many orders of magnitude larger than
previously expected. Clearly, further scrutiny
of this scenario is needed.

Finally, we have shown that like the BAU,
CP asymmetry at sphaleron explosions should
also be the origin of helical magnetic fields. The
conservation of the (Abelian version) of Chern-
Simons number, magnetic linkage, should then
keep it till today, and so potentially observable.
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Appendix A: Basics of Electroweak phase
transition

The transition temperature for the elec-
troweak symmetry breaking was known from
the mean field analysis of the Higgs poten-
tial, and was further detailed by lattice studies
in [16]. It is a crossover transition at

TEW = (159± 1)GeV (A1)

The temperature of the Universe today is
Tnow = 2.73K. The ensuing redshift z-factor
is

zEW =
TEW

Tnow

⇡ 6.8 · 1014 (A2)

During the radiation dominated era, the rela-
tion of time to temperature is given by Fried-
mann relation

t =

✓
90

32⇡3NDOF(t)

◆ 1
2 MP

T 2
(A3)

Inserting the Planck Mass MP = 1.2·1019 GeV,
the transition temperature and the e↵ective
number of degrees of freedom NDOF = 106.75,
we find the time after the Big Bang to be

tEW ⇠ 0.9 · 10�11s, ctEW ⇡ 2.7mm (A4)

As explained in the main text, the main phe-
nomena discussed happen near the “sphaleron
freezeout” time, which, according to Ref[16], is
at TFO ⇡ 130GeV. The corresponding cosmo-
logical time is then

tFO ⇠ 1.36 · 10�11s, ctFO ⇡ 4 · mm (A5)

The Higgs VEV v(T ) grows gradually, from
zero at the critical TEW . It was confirmed by
[16] that the squared Higgs VEV grows approx-
imately linearly

v2(140GeV < T < TEW )

T 2
⇡ 9

✓
1�

T

TEW

◆

(A6)
This scaling is consistent with the naive
Landau-Ginzburg treatment of the Higgs po-
tential. The coe�cient is also in agreement
with the two-loop perturbative calculations. At
freezeout its value is

v(TFO) ⇡ 167GeV (A7)

approximately 2/3 of the value in the fully bro-
ken phase.

crossover: M. D’Onofrio, K. Rummukainen and A. Tranberg,  
Phys. Rev. Lett. 113, no. 14, 141602 



Sphalerons in cosmological  
electroweak transition

4

it may be observable today, via the prevalence
of a certain magnetic helicity in the intergalac-
tic magnetic fields.

II. SPHALERONS IN THE
CROSSOVER EW TRANSITION

A. The temperature dependence of the
sphaleron rates

To assess the temperature of the sphaleron
rate, we first start in the symmetric phase with
zero Higgs VEV and T > TEW . The change in
the baryon number is related to the sphaleron
rate as [16],

1

NB

dNB

dt
=

39 �

4T 3
. (2)

The sphaleron rate calculated from earlier lat-
tice studies and also derived from Bodeker
model is

� = 

✓
gT

mD

◆2

↵5

W
T 4, (3)

with  ⇠ 50 extracted from the lattice fit. The
lattice work [11] yields an accurate evaluation
for the rate

�

T 4
= (18± 4)↵5

EW
⇡ 1.5 · 10�7 (4)

While (4) appears small, its convolution with
time up to the electroweak transition time tEW ,
down to the corresponding temperature TEW ,
is large:

1

NB

dNB

dt
tEW = 3.2 · 109. (5)

Therefore, the baryon production rate in the
symmetric phase strongly exceeds the expan-
sion rate of the Universe H ⇠ 1/tEW , by 9 or-
ders of magnitude! Therefore, prior to EWPT,
T � TEW , the sphaleron transitions are in ther-
mal equilibrium. According to Sakharov, this
excludes the formation of BAU. In fact, this

even suggests a total washout of the baryon-
lepton (BL) asymmetry. This particular con-
clusion will be circumvented below, by the pro-
posed here “sphaleron freezeout” phenomenon.

Another important result of the lattice
work [11] is the temperature dependence of the
sphaleron rate in the broken phase

log

✓
�(T < TEW )

T 4

◆
=

�(147.7± 1.9) + (0.83± 0.01)

✓
T

GeV

◆

(6)

It would be useful for our subsequent dis-
cussion to re-parametrize this rate, express-
ing it in terms of the sphaleron mass through
the temperature-dependent Higgs VEV v(T ),
namely

�

T 4
⇠ exp

✓
�

�Mv

T

◆
, (7)

with

�Mv(T ) ⇡
v(T )2

9GeV
. (8)

By comparing this rate to the Hubble value
for the Universe expansion rate at the time
tEW , the authors of [11] concluded that the
sphaleron transitions become irrelevant when
the temperature is below

Tdecoupling = 131.7± 2.3GeV. (9)

Therefore our subsequent discussion is limited
to the times when the temperature is in the
range

TEWPT ⇡ 160GeV < T < Tdecoupling ⇡ 130GeV

Note that by this time, the Higgs VEV (A5)
reaches only a fraction of its value today, in the
fully broken phase, i.e. v(T = 0) ⇡ 246 GeV.

B. The sphaleron size distribution

The lattice results recalled above give us
valuable information on the mean sphaleron

4

it may be observable today, via the prevalence
of a certain magnetic helicity in the intergalac-
tic magnetic fields.

II. SPHALERONS IN THE
CROSSOVER EW TRANSITION

A. The temperature dependence of the
sphaleron rates

To assess the temperature of the sphaleron
rate, we first start in the symmetric phase with
zero Higgs VEV and T > TEW . The change in
the baryon number is related to the sphaleron
rate as [16],

1

NB

dNB

dt
=

39 �

4T 3
. (2)

The sphaleron rate calculated from earlier lat-
tice studies and also derived from Bodeker
model is

� = 

✓
gT

mD

◆2

↵5

W
T 4, (3)

with  ⇠ 50 extracted from the lattice fit. The
lattice work [11] yields an accurate evaluation
for the rate

�

T 4
= (18± 4)↵5

EW
⇡ 1.5 · 10�7 (4)

While (4) appears small, its convolution with
time up to the electroweak transition time tEW ,
down to the corresponding temperature TEW ,
is large:

1

NB

dNB

dt
tEW = 3.2 · 109. (5)

Therefore, the baryon production rate in the
symmetric phase strongly exceeds the expan-
sion rate of the Universe H ⇠ 1/tEW , by 9 or-
ders of magnitude! Therefore, prior to EWPT,
T � TEW , the sphaleron transitions are in ther-
mal equilibrium. According to Sakharov, this
excludes the formation of BAU. In fact, this

even suggests a total washout of the baryon-
lepton (BL) asymmetry. This particular con-
clusion will be circumvented below, by the pro-
posed here “sphaleron freezeout” phenomenon.

Another important result of the lattice
work [11] is the temperature dependence of the
sphaleron rate in the broken phase

log

✓
�(T < TEW )

T 4

◆
=

�(147.7± 1.9) + (0.83± 0.01)

✓
T

GeV

◆

(6)

It would be useful for our subsequent dis-
cussion to re-parametrize this rate, express-
ing it in terms of the sphaleron mass through
the temperature-dependent Higgs VEV v(T ),
namely

�

T 4
⇠ exp

✓
�

�Mv

T

◆
, (7)

with

�Mv(T ) ⇡
v(T )2

9GeV
. (8)

By comparing this rate to the Hubble value
for the Universe expansion rate at the time
tEW , the authors of [11] concluded that the
sphaleron transitions become irrelevant when
the temperature is below

Tdecoupling = 131.7± 2.3GeV. (9)

Therefore our subsequent discussion is limited
to the times when the temperature is in the
range

TEWPT ⇡ 160GeV < T < Tdecoupling ⇡ 130GeV

Note that by this time, the Higgs VEV (A5)
reaches only a fraction of its value today, in the
fully broken phase, i.e. v(T = 0) ⇡ 246 GeV.

B. The sphaleron size distribution

The lattice results recalled above give us
valuable information on the mean sphaleron

Change in baryon number: 
each sphaleron explosion creates  

9 quarks and 3 leptons  
Is related to sphaleron rate 

Per dt d^3x

At T>Tc (early Universe) 
The rate is only power suppressed 

And is about 10^9 times the rate of expansion 
Erasure of earlier baryon  

asymmetry is therefore a problem
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it may be observable today, via the prevalence
of a certain magnetic helicity in the intergalac-
tic magnetic fields.

II. SPHALERONS IN THE
CROSSOVER EW TRANSITION

A. The temperature dependence of the
sphaleron rates

To assess the temperature of the sphaleron
rate, we first start in the symmetric phase with
zero Higgs VEV and T > TEW . The change in
the baryon number is related to the sphaleron
rate as [16],

1

NB

dNB

dt
=

39 �

4T 3
. (2)

The sphaleron rate calculated from earlier lat-
tice studies and also derived from Bodeker
model is

� = 

✓
gT

mD

◆2

↵5

W
T 4, (3)

with  ⇠ 50 extracted from the lattice fit. The
lattice work [11] yields an accurate evaluation
for the rate

�

T 4
= (18± 4)↵5

EW
⇡ 1.5 · 10�7 (4)

While (4) appears small, its convolution with
time up to the electroweak transition time tEW ,
down to the corresponding temperature TEW ,
is large:

1

NB

dNB

dt
tEW = 3.2 · 109. (5)

Therefore, the baryon production rate in the
symmetric phase strongly exceeds the expan-
sion rate of the Universe H ⇠ 1/tEW , by 9 or-
ders of magnitude! Therefore, prior to EWPT,
T � TEW , the sphaleron transitions are in ther-
mal equilibrium. According to Sakharov, this
excludes the formation of BAU. In fact, this

even suggests a total washout of the baryon-
lepton (BL) asymmetry. This particular con-
clusion will be circumvented below, by the pro-
posed here “sphaleron freezeout” phenomenon.

Another important result of the lattice
work [11] is the temperature dependence of the
sphaleron rate in the broken phase

log

✓
�(T < TEW )

T 4

◆
=

�(147.7± 1.9) + (0.83± 0.01)

✓
T

GeV

◆

(6)

It would be useful for our subsequent dis-
cussion to re-parametrize this rate, express-
ing it in terms of the sphaleron mass through
the temperature-dependent Higgs VEV v(T ),
namely

�

T 4
⇠ exp

✓
�

�Mv

T

◆
, (7)

with

�Mv(T ) ⇡
v(T )2

9GeV
. (8)

By comparing this rate to the Hubble value
for the Universe expansion rate at the time
tEW , the authors of [11] concluded that the
sphaleron transitions become irrelevant when
the temperature is below

Tdecoupling = 131.7± 2.3GeV. (9)

Therefore our subsequent discussion is limited
to the times when the temperature is in the
range

TEWPT ⇡ 160GeV < T < Tdecoupling ⇡ 130GeV

Note that by this time, the Higgs VEV (A5)
reaches only a fraction of its value today, in the
fully broken phase, i.e. v(T = 0) ⇡ 246 GeV.

B. The sphaleron size distribution

The lattice results recalled above give us
valuable information on the mean sphaleron
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rates, and thus masses. However for the pur-
poses of this work, we need to know also the
sphaleron size distribution. As we will detail
below, baryogenesis driven by CP violation is
biased toward sphalerons of sizes larger then
average, while gravity wave signal and seeds of
magnetic clouds are biased to smaller sizes.

Small sizes: Let us start with the small-
size part of the distribution in size ⇢. In this
regime, we can ignore the Higgs VEV, even
when it is non-vanishing, a significant simpli-
fication. By dimensional argument it is clear
that Msph(⇢) ⇠ 1/⇢. It is also clear that small-
size sphalerons should be spherically symmet-
ric.

The classical sphaleron-path configurations
in pure gauge theory were analytically found
in [18]. The method used is “constrained mini-
mization” of the energy, keeping their size ⇢ and
their Chern-Simons number NCS fixed. This
gave the explicit shape of the sphaleron barrier.
At the highest point of the barrier NCS = 1

2
,

the sphaleron mass is

Msph(⇢) =
3⇡2

g2⇢
(10)

Later the same solutions were obtained in [19]
by a di↵erent method, via an o↵-center con-
formal transformation of the Euclidean solu-
tion (the instanton) of the Yang-Mills equation.
Some of the results are reviewed in Appendix
B. It provides not only a static sphaleron con-
figuration, but the whole sphaleron explosion
process in relatively simple analytic form, to be
used below.

Large sizes: Now we turn to the oppo-
site limit of large-size sphalerons. Since the
sphaleron itself is a magnetic configuration, at
large ⇢ one should consider magnetic screening
e↵ects. Unlike the simpler electric screening,
the magnetic screening does not appear in per-
turbation theory [21]. It is purely nonpertur-
bative, and likely due to magnetic monopoles.

The magnetic mass Mm conjectured by
Polyakov to scale as Mm = O(g2T ), was con-
firmed by lattice studies. While in the QCD
plasma the coupling is large and the di↵erence
between the electric and magnetic masses is
only a factor of two or so, in the electroweak

plasma the coupling is small ↵EW ⇠ 1/30,
and therefore the magnetic screening mass is
smaller than the thermal momenta by about
two order of magnitude

Mm

3T
⇠

↵EW

3
⇠ 10�2 (11)

The key consequence for the sphalerons is that
their sizes would be about two orders of mag-
nitude larger than the interparticle distances in
the electroweak plasma. This conclusion, in
turn, will have dramatic consequences for the
magnitude of the CP violation.

The part of the gauge action related with the
screening mass is

�Sscreening =
M2

m

2

Z
d4x(Aa

i
)2 (12)

For static sphalerons, the integral over the Mat-
subara time is trivial, giving 1/T . Parametri-
cally, we have Mm ⇠ g2T,A ⇠ 1/g⇢, so that

M2

m

Z
d4x(Aa

i
)2 ⇠

(g2T )2
✓

1

g⇢

◆2 ⇢3

T
⇠ g2T⇢ (13)

At high temperature, the pure SU(2) lattice
simulations in [15] give

Mm(T ) ⇡ 0.457g2T (14)

Inserting (14) in (12) and using the pure gauge
sphaleron configuration yield the ecreening fac-
tor for large size sphalerons

�

T 4
⇠ exp

✓
� (0.457)2⇡2g2T⇢

◆
(15)

The sphaleron size distribution can now
be constructed using the mean mass (8), the
small and large size limits (10) and (15). More
specifically, the proposed distribution interpo-
lates between the small and large size distribu-
tions, which are forced to merge at ⇢ = ⇢mid =
0.8GeV to give (7)
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3
⇠ 10�2 (11)

The key consequence for the sphalerons is that
their sizes would be about two orders of mag-
nitude larger than the interparticle distances in
the electroweak plasma. This conclusion, in
turn, will have dramatic consequences for the
magnitude of the CP violation.

The part of the gauge action related with the
screening mass is
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For static sphalerons, the integral over the Mat-
subara time is trivial, giving 1/T . Parametri-
cally, we have Mm ⇠ g2T,A ⇠ 1/g⇢, so that
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At high temperature, the pure SU(2) lattice
simulations in [15] give

Mm(T ) ⇡ 0.457g2T (14)

Inserting (14) in (12) and using the pure gauge
sphaleron configuration yield the ecreening fac-
tor for large size sphalerons
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T 4
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◆
(15)

The sphaleron size distribution can now
be constructed using the mean mass (8), the
small and large size limits (10) and (15). More
specifically, the proposed distribution interpo-
lates between the small and large size distribu-
tions, which are forced to merge at ⇢ = ⇢mid =
0.8GeV to give (7)

6

FIG. 1: The sphaleron probability distribution as
a function of the sphaleron size ⇢(GeV�1). The
curves correspond to T = 159, 150, 140, 130GeV,
top to bottom. The horizontal line separates the
tail which is out of the Hubble expansion rate.
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(16)

In Fig. 1 we show the size distribution (16)
for four temperatures in the range 130GeV 

TEW  159GeV. The lowest temperature
TL ⇡ 130GeV corresponds to a sphaleron rate
that is below the Universe expansion rate (Hub-
ble). The intercept of the curves with the
horizontal line give the largest size sphalerons
that are still cosmologically exploding, at the
corresponding temperatures. For example, for
T = 140GeV (solid line) the largest size is
⇢max ⇡ 10GeV�1. At T = 130GeV they are
about 1GeV�1.

III. SPHALERON EXPLOSIONS:
PRODUCTION OF SOUND AND

GRAVITY WAVES

Most of the studies on the gravity wave gen-
eration by the EWPT focus on scenarios based
on the first order transition or the “cold” tran-
sition , as those usually yield large stress ten-
sor fluctuations. To our knowledge, the smooth
cross over transition of the minimal SM has not
been considered.

Since the sphaleron explosions give rise
to significant deviations from a homogeneous
stress tensor of the plasma

�Tµ⌫
⇠ Gµ�G⌫

�
⇠

1

g4T 4
(17)

one may expect radiation of the gravity waves.
The stress tensor from the analytically known
sphaleron field (B10) yields long expressions
which are not suitable for reproduction here.
Instead, we show in Fig. 2 the behavior of
T 00(t, r) (the energy density) and T 33(t, r)
(the pressure), which illustrates the time-
development of the exploding sphaleron in a
spherical shell.

FIG. 2: Componenents of the stress tensor (times
r2, namely r2T 00(t, r) upper plot, r2T 33(t, r) lower
plot) as a function of r, the distance from the cen-
ter, at times t/⇢ = 0.1, 1, 2, left to right.
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Strongly suppressing sphalerons
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FIG. 1: The sphaleron suppression rates as a function of the sphaleron size ⇢ in GeV�1. The solid curve
corresponds to the unbroken phase v = 0 at T = TEW . Four sets of points, top to bottom, are for well
broken phase, at T = 155, 150, 140, 130GeV. They are calculated via Ansatz B described in Appendix
C, and normalized to lattice-based rates. The horizontal dashed line indicates the Hubble expansion rate
relative to these rates.

show below, because in this region the CP
asymmetry is extremely small, growing toward
T = 130GeV.
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GRAVITY WAVES

Most of the studies on the gravity wave gen-
eration by the EWPT focus on scenarios based
on the first order transition or the “cold” tran-
sition , as those usually yield large density fluc-
tuations. To our knowledge, the smooth cross
over transition of the minimal SM has not been
considered.

Since the sphaleron explosions give rise
to significant deviations from a homogeneous
stress tensor of the plasma
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one may expect radiation of the gravity waves.
The stress tensor from the analytically known
sphaleron field (B10) yields long expressions
which are not suitable for reproduction here.

Instead, we show in Fig. 2 the behavior of
T 00(t, r) (the energy density) and T 33(t, r)
(the pressure), which illustrates the time-
development of the exploding sphaleron in a
spherical shell.

The key point here is to assess the scale de-
pendence of both the sound and gravity waves
triggered by the explosion, which can be ex-
pressed using the power-per-volume dE/d4x.
Dimensional reasoning shows that the average
scale is shifted to smaller sphaleron sizes. The
measure for small size sphalerons

d⇢

⇢5
P (⇢) = d⇢ exp

✓
�

3⇡2

g2T⇢
� 5log(⇢)

◆
(19)

is peaked at

⇢⇤ =
3⇡

20↵EWT
⇡

1

10GeV
(20)

which is about an order of magnitude smaller
than the peak of the distribution (Fig.1).

Also, for T > Tc we do not expect direct
gravitation emission from the sphaleron explo-
sion. In this regime the Higgs VEV vanishes,

size (1/GeV)

D.Kharzeev, E.S, I.Zahed Phys.Rev.D 102 (2020) 7, 073003 • e-Print: 1906.04080

As mountains grow, everything  
from slopes falls down
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d⇠0f(⇠0) (B1)

with ⇠ = Log(y2/⇢2) and ⌘aµ⌫ the ’t Hooft sym-
bol. Upon substitution of the gauge fields in the
gauge Lagrangian one finds the e↵ective action
for f(⇠)

Se↵ =

Z
d⇠

"
ḟ2

2
+ 2f2(1� f)2

#
(B2)

corresponding to the motion of a particle in a
double-well potential. In the Euclidean formu-
lation, as written, the e↵ective potential is in-
verted

VE = �2f2(1� f)2 (B3)

and the corresponding solution is the well
known BPST instanton, a path connecting the
two maxima of VE , at f = 0, 1. Any other so-
lution of the equation of motion following from
Se↵ obviously generalizes to a solution of the
Yang-Mills equations for Aa

µ
(x) as well. The

sphaleron itself is the static solution at the
top of the potential between the minima with
f = �1/2.

The next step is to perform an o↵-center con-
formal transformation

(x+ a)µ =
2⇢2

(y + a)2
(y + a)µ (B4)

with aµ = (0, 0, 0, ⇢). It changes the origi-
nal spherically symmetric solution to a solu-
tion of the Yang-Mills equation depending on
the new coordinates xµ, with separate depen-
dences on time x4 and the 3-dimensional radius
r =

p
x2
1
+ x2

2
+ x2

3
.

The last step is the analytic continuation to
Minkowski time t, via x4 ! it. The original
parameter ⇠ in terms of these Minkowskian co-
ordinates, which we still call xµ, has the form

⇠ =
1

2
Log

✓
y2

⇢2

◆
=

1

2
Log

✓
(t+ i⇢)2 � r2

(t� i⇢)2 � r2

◆

(B5)
which is pure imaginary.To avoid carrying the
extra i, we use the real substitution

⇠E ! �i⇠M = arctan

✓
2⇢t

t2 � r2 � ⇢2

◆
(B6)

and in what follows we will drop the su�x E.
Switching from imaginary to real ⇠, correponds
to switching from the Euclidean to Minkowski
spacetime solution. It changes the sign of the
acceleration, or the sign of the e↵ective poten-
tial VM = �VE , to that of the normal double-
well problem.

The needed solution of the equation of mo-
tion has been given in [19] [25]

f(⇠) =
1

2


1�

q
1 +

p
2✏ dn

✓q
1 +

p
2✏(⇠ �K),

1
p
m

◆�
(B7)

where dn(z, k) is one of the elliptic Jacobi func-
tions, 2✏ = E/Es, 2m = 1 + 1/

p
2✏, and E =

V (fin) is the conserved energy of the mechani-
cal system normalized to that of the sphaleron
energy Es = V (f = 1/2) = 1/8. Since the start

from exactly the maximum takes a divergent
time, we will start by pushing the sphaleron
from nearby the turning point with
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V (fin) is the conserved energy of the mechani-
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where dn(z, k) is one of the elliptic Jacobi func-
tions, 2✏ = E/Es, 2m = 1 + 1/

p
2✏, and E =

V (fin) is the conserved energy of the mechani-
cal system normalized to that of the sphaleron
energy Es = V (f = 1/2) = 1/8. Since the start

from exactly the maximum takes a divergent
time, we will start by pushing the sphaleron
from nearby the turning point with

Explosion of pure gauge sphalerons was solved analytically 
By conformal off-center transformation  
and continuation into Minkowski time
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f(0) = fin =
1

2
� , f 0(0) = 0 (B8)

The small displacement  ensures that “rolling
downhill” from the maximum takes a finite time
and that the half-periodK – given by an elliptic
integral – in the expression is not divergent. In
the plots below we will use  = 0.01, but the
results dependent on its value very weakly.

The solution above describes a particle tum-
bling periodically between two turning points,
and so the expression above defines a periodic
function for all ⇠. However, as it is clear from
(B6), for our particular application the only rel-
evant domain is ⇠ 2 [�⇡/2,⇡/2]. The solution
f(⇠) in it is shown in Fig. 5. Using the first 3
nonzero terms of its Taylor expansion

f ⇡ 0.49292875� 0.0070691232⇠2

�0.0011773⇠4 � 0.0000781531899⇠6

(B9)

we find a parametrization with an accuracy of
10�5, obviously invisible in the plot and more
than enough for our considerations.

FIG. 5: The function f(⇠) in the needed range of
its argument ⇠ 2 [�⇡/2,⇡/2]

The components of the gauge potentials have
the form [19]

gAa

4
= �f(⇠)

8t⇢xa

[(t� i⇢)2 � r2][(t+ i⇢)2 � r2]

gAa

i
= 4⇢f(⇠)

�ai(t2 � r2 + ⇢2) + 2⇢✏aijxj + 2xixa

[(t� i⇢)2 � r2][(t+ i⇢)2 � r2]
(B10)

which are manifestly real. From those poten-
tials we have generated rather lengthy expres-
sions for the electric and magnetic fields, and
eventually for the CP-violating operators using
Mathematica.

Let us only mention that for the sphaleron
solution itself at t = 0, the static solution is
purely magnetic with gAa

4
= 0. The magnetic

field squared is spherically symmetric and sim-
ple

~B2 =
96⇢4

(⇢2 + r2)4
(B11)

We note that the specific expressions for pure-
gauge sphaleron explosions were compared with
numerical real-time simulations [] where they
occur inside the “hot spots” with very good
agreement [5]. In the “cold scenario” numer-
ically studied the sphaleron size was not deter-
mined by the Higgs VEV in the broken phase,
but by the size of the hot spots with the unbro-
ken phase. Unfortunately, a large size tail of
the sphaleron distribution on which we focused
in this work cannot be studied in similar simu-
lations, as their probability is prohibitively low
to reach it statistically.
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with ⇠ = Log(y2/⇢2) and ⌘aµ⌫ the ’t Hooft sym-
bol. Upon substitution of the gauge fields in the
gauge Lagrangian one finds the e↵ective action
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corresponding to the motion of a particle in a
double-well potential. In the Euclidean formu-
lation, as written, the e↵ective potential is in-
verted

VE = �2f2(1� f)2 (B3)

and the corresponding solution is the well
known BPST instanton, a path connecting the
two maxima of VE , at f = 0, 1. Any other so-
lution of the equation of motion following from
Se↵ obviously generalizes to a solution of the
Yang-Mills equations for Aa

µ
(x) as well. The

sphaleron itself is the static solution at the
top of the potential between the minima with
f = �1/2.

The next step is to perform an o↵-center con-
formal transformation
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(y + a)µ (B4)

with aµ = (0, 0, 0, ⇢). It changes the origi-
nal spherically symmetric solution to a solu-
tion of the Yang-Mills equation depending on
the new coordinates xµ, with separate depen-
dences on time x4 and the 3-dimensional radius
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The last step is the analytic continuation to
Minkowski time t, via x4 ! it. The original
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and in what follows we will drop the su�x E.
Switching from imaginary to real ⇠, correponds
to switching from the Euclidean to Minkowski
spacetime solution. It changes the sign of the
acceleration, or the sign of the e↵ective poten-
tial VM = �VE , to that of the normal double-
well problem.

The needed solution of the equation of mo-
tion has been given in [19] [25]
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where dn(z, k) is one of the elliptic Jacobi func-
tions, 2✏ = E/Es, 2m = 1 + 1/

p
2✏, and E =

V (fin) is the conserved energy of the mechani-
cal system normalized to that of the sphaleron
energy Es = V (f = 1/2) = 1/8. Since the start

from exactly the maximum takes a divergent
time, we will start by pushing the sphaleron
from nearby the turning point with
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Explosion of pure gauge sphalerons was solved analytically 
By conformal off-center transformation  
and continuation into Minkowski time
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f(0) = fin =
1

2
� , f 0(0) = 0 (B8)

The small displacement  ensures that “rolling
downhill” from the maximum takes a finite time
and that the half-periodK – given by an elliptic
integral – in the expression is not divergent. In
the plots below we will use  = 0.01, but the
results dependent on its value very weakly.

The solution above describes a particle tum-
bling periodically between two turning points,
and so the expression above defines a periodic
function for all ⇠. However, as it is clear from
(B6), for our particular application the only rel-
evant domain is ⇠ 2 [�⇡/2,⇡/2]. The solution
f(⇠) in it is shown in Fig. 5. Using the first 3
nonzero terms of its Taylor expansion

f ⇡ 0.49292875� 0.0070691232⇠2

�0.0011773⇠4 � 0.0000781531899⇠6

(B9)

we find a parametrization with an accuracy of
10�5, obviously invisible in the plot and more
than enough for our considerations.

FIG. 5: The function f(⇠) in the needed range of
its argument ⇠ 2 [�⇡/2,⇡/2]

The components of the gauge potentials have
the form [19]

gAa

4
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8t⇢xa

[(t� i⇢)2 � r2][(t+ i⇢)2 � r2]

gAa
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�ai(t2 � r2 + ⇢2) + 2⇢✏aijxj + 2xixa

[(t� i⇢)2 � r2][(t+ i⇢)2 � r2]
(B10)

which are manifestly real. From those poten-
tials we have generated rather lengthy expres-
sions for the electric and magnetic fields, and
eventually for the CP-violating operators using
Mathematica.

Let us only mention that for the sphaleron
solution itself at t = 0, the static solution is
purely magnetic with gAa

4
= 0. The magnetic

field squared is spherically symmetric and sim-
ple

~B2 =
96⇢4

(⇢2 + r2)4
(B11)

We note that the specific expressions for pure-
gauge sphaleron explosions were compared with
numerical real-time simulations [] where they
occur inside the “hot spots” with very good
agreement [5]. In the “cold scenario” numer-
ically studied the sphaleron size was not deter-
mined by the Higgs VEV in the broken phase,
but by the size of the hot spots with the unbro-
ken phase. Unfortunately, a large size tail of
the sphaleron distribution on which we focused
in this work cannot be studied in similar simu-
lations, as their probability is prohibitively low
to reach it statistically.
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FIG. 1: The sphaleron probability distribution as
a function of the sphaleron size ⇢(GeV�1). The
curves correspond to T = 159, 150, 140, 130GeV,
top to bottom. The horizontal line separates the
tail which is out of the Hubble expansion rate.
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In Fig. 1 we show the size distribution (16)
for four temperatures in the range 130GeV 

TEW  159GeV. The lowest temperature
TL ⇡ 130GeV corresponds to a sphaleron rate
that is below the Universe expansion rate (Hub-
ble). The intercept of the curves with the
horizontal line give the largest size sphalerons
that are still cosmologically exploding, at the
corresponding temperatures. For example, for
T = 140GeV (solid line) the largest size is
⇢max ⇡ 10GeV�1. At T = 130GeV they are
about 1GeV�1.

III. SPHALERON EXPLOSIONS:
PRODUCTION OF SOUND AND

GRAVITY WAVES

Most of the studies on the gravity wave gen-
eration by the EWPT focus on scenarios based
on the first order transition or the “cold” tran-
sition , as those usually yield large stress ten-
sor fluctuations. To our knowledge, the smooth
cross over transition of the minimal SM has not
been considered.

Since the sphaleron explosions give rise
to significant deviations from a homogeneous
stress tensor of the plasma

�Tµ⌫
⇠ Gµ�G⌫

�
⇠

1

g4T 4
(17)

one may expect radiation of the gravity waves.
The stress tensor from the analytically known
sphaleron field (B10) yields long expressions
which are not suitable for reproduction here.
Instead, we show in Fig. 2 the behavior of
T 00(t, r) (the energy density) and T 33(t, r)
(the pressure), which illustrates the time-
development of the exploding sphaleron in a
spherical shell.
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FIG. 2: Componenents of the stress tensor (times
r2, namely r2T 00(t, r) upper plot, r2T 33(t, r) lower
plot) as a function of r, the distance from the cen-
ter, at times t/⇢ = 0.1, 1, 2, left to right.
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that is below the Universe expansion rate (Hub-
ble). The intercept of the curves with the
horizontal line give the largest size sphalerons
that are still cosmologically exploding, at the
corresponding temperatures. For example, for
T = 140GeV (solid line) the largest size is
⇢max ⇡ 10GeV�1. At T = 130GeV they are
about 1GeV�1.

III. SPHALERON EXPLOSIONS:
PRODUCTION OF SOUND AND

GRAVITY WAVES

Most of the studies on the gravity wave gen-
eration by the EWPT focus on scenarios based
on the first order transition or the “cold” tran-
sition , as those usually yield large stress ten-
sor fluctuations. To our knowledge, the smooth
cross over transition of the minimal SM has not
been considered.

Since the sphaleron explosions give rise
to significant deviations from a homogeneous
stress tensor of the plasma

�Tµ⌫
⇠ Gµ�G⌫

�
⇠

1

g4T 4
(17)

one may expect radiation of the gravity waves.
The stress tensor from the analytically known
sphaleron field (B10) yields long expressions
which are not suitable for reproduction here.
Instead, we show in Fig. 2 the behavior of
T 00(t, r) (the energy density) and T 33(t, r)
(the pressure), which illustrates the time-
development of the exploding sphaleron in a
spherical shell.

FIG. 2: Componenents of the stress tensor (times
r2, namely r2T 00(t, r) upper plot, r2T 33(t, r) lower
plot) as a function of r, the distance from the cen-
ter, at times t/⇢ = 0.1, 1, 2, left to right.
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At T<Tc VEV of Higgs is nonzero 
Weinberg angle mixes Z and photons 
And also makes explosion elliptic => 
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leads to lengthy expressions,  

here are snapshots
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FIG. 2: (From Ref. [1]) Power spectrum of the velocity
squared versus the (log of) the wave number k. The grey
upper curves are for sounds, from bottom to top as time pro-
gresses, t = 600, 800, 1000, 1200, 1400T�1

c . The black curves
in the bottom are for rotational excitations.

the rotational ones (solid curves below) are suppressed
by several orders of magnitude. It is not known how
universal this feature is, but let us accept it for now.

The spectra in Fig. 2 have a shallow maximum at
kT ⇠ 0.03 corresponding to a characteristic dynamical
scale of the simulation, the distance between bubbles.
Should this calculation be extended to smaller k, we think
it is inevitable that the spectrum will be exponentially
cut o↵ in the IR. Spectra at subsequent time moments
show no visible tendency of movement of the maximum.
We attribute this to the fact that the total time of the
simulation is simply not enough time for the sound cas-
cade – and self-similar solution – to develop.

Note that the typical magnitude of v2 in this simula-
tion is 10�4 (in relativistic units, with the speed of light
c = 1). Results of these simulations provide, in prin-
ciple, the initial sound power spectrum, from which the
inverse acoustic cascade may start evolving. Since we ex-
pect it to start as weak turbulence in a self-similar form
(40), we only need to know the conserved N . The energy
of the sound waves, to the second order, is the unper-
turbed density of matter times the fluid velocity squared
(✏+ p)0V 2. So one can relate this spectrum to the sound
wave occupation numbers via

(✏+ p)0
dv2

d log k
⇠ 4⇡!knkk

3 . (42)

The approximately flat observed left-hand side shows
that the e↵ective initial value of the index is close to
4 (of course, only in a limited range of scales and time).
Then it is supposed to become the weak turbulence, and
the slope for the curve would be sweak �4 = �2/3, while
the left end of the curve, in the lower k region, enters the
strong turbulence regime with the slope sstrong � 4 = 0,
i.e., stays flat. If sstrong�4 > 0, or even 2 as we included
as a possibility, the energy spectrum will start growing

toward small k.

V. GENERATION OF GRAVITY WAVES

A. The spectral density of the stress tensor
correlator

General expressions for the GW production rate are
well known, and we will not reproduce them here, pro-
ceeding directly to the main object, the two-point corre-
lator of the stress tensors,

Gµ⌫µ
0
⌫
0
=

Z
d4x d4y eik↵(x

↵�y
↵
)
hTµ⌫(x)Tµ

0
⌫
0
(y)i .

(43)

Note that while the big bang is homogeneous in space, the
3-momentum can be well defined and conserved, but it is
time dependent. We will, however, still treat it as qua-
sistatic, with well-defined frequencies of perturbations,
with a cuto↵ at the lowest end, ! < 1/tlife.
Using hydrodynamical expression for the stress tensor,

Tµ⌫ = (✏+ p)uµu⌫ + gµ⌫p , (44)

and expanding it in powers of a small parameter – the
sound amplitude – one can identify terms related to the
sound wave. Associating the zeroth order terms with the
matter rest frame, one introduces the first order velocities
by

uµ = (1, 0, 0, 0) + �uµ

(1)
(45)

and one expands the stress tensor to the second order as

�Tµ⌫

(2)
= (✏+ p)(0)�u

µ

(1)
�u⌫

(1)
+ (✏+ p)(2)�

µ0�⌫0 + p(2)g
µ⌫ .

(46)

The correlator is to be coupled to the metric perturba-
tions hµ⌫hµ0⌫0 and we are interested in indices corre-
sponding to two polarizations of the GW transverse to
its momentum k↵. Such components are only provided
by the term with velocities, and thus we focus on
Z

d4x d4y eik↵(x
↵�y

↵
)
h�uµ(x)�u⌫(x)�uµ

0
(y)�u⌫

0
(y)i ,

(47)

where we dropped the overall factor (✏ + p)2
(0)

and sub-

scripts “(1)” for the first order terms.
The next step is to split four velocities into two pairs,

for which we use the “sound propagators”,

�mn(p0, ~p) =

Z
d4x eipµx

µ

h�um(x)�un(0)i , (48)

where we changed indices to the Latin ones, emphasizing
that those are only spatial. In these terms, the correlator
in question is a loop diagram shown in Fig. 3(b). Similar

9
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FIG. 3: (a) Sketch of the collision of two sound waves (b) The diagram and the cut described in the text. External legs are
gravity waves (gravitons), and the sounds (phonons) are in the loop.

loop diagrams were derived and discussed in connection
with fluctuation-induced or loop corrections to hydrody-
namical observables: for a recent review of the results,
standard definitions and relations, see [18].

Time-dependent Green’s functions can be chosen dif-
ferently depending on the assumed boundary conditions
on the time dependence. The most natural Green’s func-
tions for the sounds are the retarded one �R, which only
has poles in a half of the complex energy E = p0 plane,
corresponding to the sound dissipation, and the symmet-
ric one �S , which has all four possible poles. In equi-
librium, they are related to each other by the so-called
Kubo-Martin-Schwinger (KMS) relation (E = p0),

��S = (1 + 2nB(E))Im�R ⇡
E⌧T

2T

E
Im�R , (49)

where nB(E) is the equilibrium Bose distribution. This
expression shows that Im�R corresponds to a single
phonon quantum, and the �S to a wave with proper oc-
cupation numbers. It also suggests generalization to an
out-of-equilibrium case that we will use, i.e., introduction
of the new rescaled function

��̃S = 2n(E)Im�R , (50)

containing out-of-equilibrium occupation number n(E),
which is assumed to be much larger than the quantum
term 1 in (49), which is therefore dropped. The explicit
expression to be used takes the form

�̃mn

R
=

1

(✏+ p)(0)

pmpn

p2
E2

(E2 � p2c2
s
) + i�̃p2E

, (51)

where notations are three-dimensional, e.g. p2 = ~p2. The
dissipation lifetime parameter is related to the shear vis-
cosity

�̃ =
4

3
·

⌘

✏+ p
. (52)

Now one can perform the Fourier transformation and rep-
resent the correlator as a standard field theory loop di-
agram. The imaginary part of the correlator, as usual,
corresponds to the unitarity cut of the loop into product
of two complex conjugated parts, or the probability of
the corresponding sound merging process,

ImGmm
0
nn

0
(k)

(✏+ p)2
(0)

= (53)

Z
d4p

(2⇡)4
n(p0) Im �̃mm

0

R
(p)n(k0 � p0) Im �̃nn

0

R
(k � p)

Multiplied by the Newton coupling constant and taken
on shell, k2

↵
= 0, this will give us the rate of the sound+

sound ! GW process. Note that the unitarity cut also
puts both sound lines on shell.

B. Sounds to GW: Kinematics

One sound wave obviously cannot produce a GW, for
the following reasons: (i) The dispersion relation for the
sound is ! = csk, which is di↵erent from that of the
GW, ! = k; (ii) polarization of the sound wave is a
longitudinal vector, while it should be a transverse tensor
for the GW.
Two on-shell sound waves can accomplish this. Us-

ing notations pµ
1
+ pµ

2
= kµ, one writes the GW on-shell

condition (kµ)2 = 0 as

c2
s
(p1 + p2)

2 = p2
1
+ p2

2
+ 2p1p2 cos(✓12) , (54)

where cs,✓12 are the sound velocity and an angle between
the two sound waves, respectively. In terms of such an
angle, there are two extreme configurations. The first is
a “symmetric case”, p1 = p2, corresponding to a minimal
angle. For c2

s
= 1/3, this angle is ✓12 = 109�. The sec-

ond, the “asymmetric case”, corresponds to anticollinear
vectors ~p1, ~p2, ✓12 = 180�. An important di↵erence from

TWO PHONONS IN THE LOOP
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FIG. 2: (From Ref. [1]) Power spectrum of the velocity
squared versus the (log of) the wave number k. The grey
upper curves are for sounds, from bottom to top as time pro-
gresses, t = 600, 800, 1000, 1200, 1400T�1

c . The black curves
in the bottom are for rotational excitations.

the rotational ones (solid curves below) are suppressed
by several orders of magnitude. It is not known how
universal this feature is, but let us accept it for now.

The spectra in Fig. 2 have a shallow maximum at
kT ⇠ 0.03 corresponding to a characteristic dynamical
scale of the simulation, the distance between bubbles.
Should this calculation be extended to smaller k, we think
it is inevitable that the spectrum will be exponentially
cut o↵ in the IR. Spectra at subsequent time moments
show no visible tendency of movement of the maximum.
We attribute this to the fact that the total time of the
simulation is simply not enough time for the sound cas-
cade – and self-similar solution – to develop.

Note that the typical magnitude of v2 in this simula-
tion is 10�4 (in relativistic units, with the speed of light
c = 1). Results of these simulations provide, in prin-
ciple, the initial sound power spectrum, from which the
inverse acoustic cascade may start evolving. Since we ex-
pect it to start as weak turbulence in a self-similar form
(40), we only need to know the conserved N . The energy
of the sound waves, to the second order, is the unper-
turbed density of matter times the fluid velocity squared
(✏+ p)0V 2. So one can relate this spectrum to the sound
wave occupation numbers via

(✏+ p)0
dv2

d log k
⇠ 4⇡!knkk

3 . (42)

The approximately flat observed left-hand side shows
that the e↵ective initial value of the index is close to
4 (of course, only in a limited range of scales and time).
Then it is supposed to become the weak turbulence, and
the slope for the curve would be sweak �4 = �2/3, while
the left end of the curve, in the lower k region, enters the
strong turbulence regime with the slope sstrong � 4 = 0,
i.e., stays flat. If sstrong�4 > 0, or even 2 as we included
as a possibility, the energy spectrum will start growing

toward small k.

V. GENERATION OF GRAVITY WAVES

A. The spectral density of the stress tensor
correlator

General expressions for the GW production rate are
well known, and we will not reproduce them here, pro-
ceeding directly to the main object, the two-point corre-
lator of the stress tensors,

Gµ⌫µ
0
⌫
0
=

Z
d4x d4y eik↵(x

↵�y
↵
)
hTµ⌫(x)Tµ

0
⌫
0
(y)i .

(43)

Note that while the big bang is homogeneous in space, the
3-momentum can be well defined and conserved, but it is
time dependent. We will, however, still treat it as qua-
sistatic, with well-defined frequencies of perturbations,
with a cuto↵ at the lowest end, ! < 1/tlife.
Using hydrodynamical expression for the stress tensor,

Tµ⌫ = (✏+ p)uµu⌫ + gµ⌫p , (44)

and expanding it in powers of a small parameter – the
sound amplitude – one can identify terms related to the
sound wave. Associating the zeroth order terms with the
matter rest frame, one introduces the first order velocities
by

uµ = (1, 0, 0, 0) + �uµ

(1)
(45)

and one expands the stress tensor to the second order as
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The correlator is to be coupled to the metric perturba-
tions hµ⌫hµ0⌫0 and we are interested in indices corre-
sponding to two polarizations of the GW transverse to
its momentum k↵. Such components are only provided
by the term with velocities, and thus we focus on
Z

d4x d4y eik↵(x
↵�y

↵
)
h�uµ(x)�u⌫(x)�uµ

0
(y)�u⌫

0
(y)i ,

(47)

where we dropped the overall factor (✏ + p)2
(0)

and sub-

scripts “(1)” for the first order terms.
The next step is to split four velocities into two pairs,

for which we use the “sound propagators”,

�mn(p0, ~p) =

Z
d4x eipµx

µ

h�um(x)�un(0)i , (48)

where we changed indices to the Latin ones, emphasizing
that those are only spatial. In these terms, the correlator
in question is a loop diagram shown in Fig. 3(b). Similar
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FIG. 3: (a) Sketch of the collision of two sound waves (b) The diagram and the cut described in the text. External legs are
gravity waves (gravitons), and the sounds (phonons) are in the loop.

loop diagrams were derived and discussed in connection
with fluctuation-induced or loop corrections to hydrody-
namical observables: for a recent review of the results,
standard definitions and relations, see [18].

Time-dependent Green’s functions can be chosen dif-
ferently depending on the assumed boundary conditions
on the time dependence. The most natural Green’s func-
tions for the sounds are the retarded one �R, which only
has poles in a half of the complex energy E = p0 plane,
corresponding to the sound dissipation, and the symmet-
ric one �S , which has all four possible poles. In equi-
librium, they are related to each other by the so-called
Kubo-Martin-Schwinger (KMS) relation (E = p0),

��S = (1 + 2nB(E))Im�R ⇡
E⌧T

2T

E
Im�R , (49)

where nB(E) is the equilibrium Bose distribution. This
expression shows that Im�R corresponds to a single
phonon quantum, and the �S to a wave with proper oc-
cupation numbers. It also suggests generalization to an
out-of-equilibrium case that we will use, i.e., introduction
of the new rescaled function

��̃S = 2n(E)Im�R , (50)

containing out-of-equilibrium occupation number n(E),
which is assumed to be much larger than the quantum
term 1 in (49), which is therefore dropped. The explicit
expression to be used takes the form

�̃mn

R
=

1

(✏+ p)(0)

pmpn

p2
E2

(E2 � p2c2
s
) + i�̃p2E

, (51)

where notations are three-dimensional, e.g. p2 = ~p2. The
dissipation lifetime parameter is related to the shear vis-
cosity

�̃ =
4

3
·

⌘

✏+ p
. (52)

Now one can perform the Fourier transformation and rep-
resent the correlator as a standard field theory loop di-
agram. The imaginary part of the correlator, as usual,
corresponds to the unitarity cut of the loop into product
of two complex conjugated parts, or the probability of
the corresponding sound merging process,
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Multiplied by the Newton coupling constant and taken
on shell, k2

↵
= 0, this will give us the rate of the sound+

sound ! GW process. Note that the unitarity cut also
puts both sound lines on shell.

B. Sounds to GW: Kinematics

One sound wave obviously cannot produce a GW, for
the following reasons: (i) The dispersion relation for the
sound is ! = csk, which is di↵erent from that of the
GW, ! = k; (ii) polarization of the sound wave is a
longitudinal vector, while it should be a transverse tensor
for the GW.
Two on-shell sound waves can accomplish this. Us-

ing notations pµ
1
+ pµ

2
= kµ, one writes the GW on-shell

condition (kµ)2 = 0 as

c2
s
(p1 + p2)

2 = p2
1
+ p2

2
+ 2p1p2 cos(✓12) , (54)

where cs,✓12 are the sound velocity and an angle between
the two sound waves, respectively. In terms of such an
angle, there are two extreme configurations. The first is
a “symmetric case”, p1 = p2, corresponding to a minimal
angle. For c2

s
= 1/3, this angle is ✓12 = 109�. The sec-

ond, the “asymmetric case”, corresponds to anticollinear
vectors ~p1, ~p2, ✓12 = 180�. An important di↵erence from
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FIG. 2: (From Ref. [1]) Power spectrum of the velocity
squared versus the (log of) the wave number k. The grey
upper curves are for sounds, from bottom to top as time pro-
gresses, t = 600, 800, 1000, 1200, 1400T�1

c . The black curves
in the bottom are for rotational excitations.

the rotational ones (solid curves below) are suppressed
by several orders of magnitude. It is not known how
universal this feature is, but let us accept it for now.

The spectra in Fig. 2 have a shallow maximum at
kT ⇠ 0.03 corresponding to a characteristic dynamical
scale of the simulation, the distance between bubbles.
Should this calculation be extended to smaller k, we think
it is inevitable that the spectrum will be exponentially
cut o↵ in the IR. Spectra at subsequent time moments
show no visible tendency of movement of the maximum.
We attribute this to the fact that the total time of the
simulation is simply not enough time for the sound cas-
cade – and self-similar solution – to develop.

Note that the typical magnitude of v2 in this simula-
tion is 10�4 (in relativistic units, with the speed of light
c = 1). Results of these simulations provide, in prin-
ciple, the initial sound power spectrum, from which the
inverse acoustic cascade may start evolving. Since we ex-
pect it to start as weak turbulence in a self-similar form
(40), we only need to know the conserved N . The energy
of the sound waves, to the second order, is the unper-
turbed density of matter times the fluid velocity squared
(✏+ p)0V 2. So one can relate this spectrum to the sound
wave occupation numbers via

(✏+ p)0
dv2

d log k
⇠ 4⇡!knkk

3 . (42)

The approximately flat observed left-hand side shows
that the e↵ective initial value of the index is close to
4 (of course, only in a limited range of scales and time).
Then it is supposed to become the weak turbulence, and
the slope for the curve would be sweak �4 = �2/3, while
the left end of the curve, in the lower k region, enters the
strong turbulence regime with the slope sstrong � 4 = 0,
i.e., stays flat. If sstrong�4 > 0, or even 2 as we included
as a possibility, the energy spectrum will start growing

toward small k.

V. GENERATION OF GRAVITY WAVES

A. The spectral density of the stress tensor
correlator

General expressions for the GW production rate are
well known, and we will not reproduce them here, pro-
ceeding directly to the main object, the two-point corre-
lator of the stress tensors,

Gµ⌫µ
0
⌫
0
=

Z
d4x d4y eik↵(x

↵�y
↵
)
hTµ⌫(x)Tµ

0
⌫
0
(y)i .

(43)

Note that while the big bang is homogeneous in space, the
3-momentum can be well defined and conserved, but it is
time dependent. We will, however, still treat it as qua-
sistatic, with well-defined frequencies of perturbations,
with a cuto↵ at the lowest end, ! < 1/tlife.
Using hydrodynamical expression for the stress tensor,

Tµ⌫ = (✏+ p)uµu⌫ + gµ⌫p , (44)

and expanding it in powers of a small parameter – the
sound amplitude – one can identify terms related to the
sound wave. Associating the zeroth order terms with the
matter rest frame, one introduces the first order velocities
by

uµ = (1, 0, 0, 0) + �uµ

(1)
(45)

and one expands the stress tensor to the second order as

�Tµ⌫

(2)
= (✏+ p)(0)�u

µ

(1)
�u⌫

(1)
+ (✏+ p)(2)�

µ0�⌫0 + p(2)g
µ⌫ .

(46)

The correlator is to be coupled to the metric perturba-
tions hµ⌫hµ0⌫0 and we are interested in indices corre-
sponding to two polarizations of the GW transverse to
its momentum k↵. Such components are only provided
by the term with velocities, and thus we focus on
Z

d4x d4y eik↵(x
↵�y

↵
)
h�uµ(x)�u⌫(x)�uµ

0
(y)�u⌫

0
(y)i ,

(47)

where we dropped the overall factor (✏ + p)2
(0)

and sub-

scripts “(1)” for the first order terms.
The next step is to split four velocities into two pairs,

for which we use the “sound propagators”,

�mn(p0, ~p) =

Z
d4x eipµx

µ

h�um(x)�un(0)i , (48)

where we changed indices to the Latin ones, emphasizing
that those are only spatial. In these terms, the correlator
in question is a loop diagram shown in Fig. 3(b). Similar
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FIG. 3: (a) Sketch of the collision of two sound waves (b) The diagram and the cut described in the text. External legs are
gravity waves (gravitons), and the sounds (phonons) are in the loop.

loop diagrams were derived and discussed in connection
with fluctuation-induced or loop corrections to hydrody-
namical observables: for a recent review of the results,
standard definitions and relations, see [18].

Time-dependent Green’s functions can be chosen dif-
ferently depending on the assumed boundary conditions
on the time dependence. The most natural Green’s func-
tions for the sounds are the retarded one �R, which only
has poles in a half of the complex energy E = p0 plane,
corresponding to the sound dissipation, and the symmet-
ric one �S , which has all four possible poles. In equi-
librium, they are related to each other by the so-called
Kubo-Martin-Schwinger (KMS) relation (E = p0),

��S = (1 + 2nB(E))Im�R ⇡
E⌧T

2T

E
Im�R , (49)

where nB(E) is the equilibrium Bose distribution. This
expression shows that Im�R corresponds to a single
phonon quantum, and the �S to a wave with proper oc-
cupation numbers. It also suggests generalization to an
out-of-equilibrium case that we will use, i.e., introduction
of the new rescaled function

��̃S = 2n(E)Im�R , (50)

containing out-of-equilibrium occupation number n(E),
which is assumed to be much larger than the quantum
term 1 in (49), which is therefore dropped. The explicit
expression to be used takes the form

�̃mn

R
=

1

(✏+ p)(0)

pmpn

p2
E2

(E2 � p2c2
s
) + i�̃p2E

, (51)

where notations are three-dimensional, e.g. p2 = ~p2. The
dissipation lifetime parameter is related to the shear vis-
cosity

�̃ =
4

3
·

⌘

✏+ p
. (52)

Now one can perform the Fourier transformation and rep-
resent the correlator as a standard field theory loop di-
agram. The imaginary part of the correlator, as usual,
corresponds to the unitarity cut of the loop into product
of two complex conjugated parts, or the probability of
the corresponding sound merging process,

ImGmm
0
nn

0
(k)

(✏+ p)2
(0)

= (53)

Z
d4p

(2⇡)4
n(p0) Im �̃mm

0

R
(p)n(k0 � p0) Im �̃nn

0

R
(k � p)

Multiplied by the Newton coupling constant and taken
on shell, k2

↵
= 0, this will give us the rate of the sound+

sound ! GW process. Note that the unitarity cut also
puts both sound lines on shell.

B. Sounds to GW: Kinematics

One sound wave obviously cannot produce a GW, for
the following reasons: (i) The dispersion relation for the
sound is ! = csk, which is di↵erent from that of the
GW, ! = k; (ii) polarization of the sound wave is a
longitudinal vector, while it should be a transverse tensor
for the GW.
Two on-shell sound waves can accomplish this. Us-

ing notations pµ
1
+ pµ

2
= kµ, one writes the GW on-shell

condition (kµ)2 = 0 as

c2
s
(p1 + p2)

2 = p2
1
+ p2

2
+ 2p1p2 cos(✓12) , (54)

where cs,✓12 are the sound velocity and an angle between
the two sound waves, respectively. In terms of such an
angle, there are two extreme configurations. The first is
a “symmetric case”, p1 = p2, corresponding to a minimal
angle. For c2

s
= 1/3, this angle is ✓12 = 109�. The sec-

ond, the “asymmetric case”, corresponds to anticollinear
vectors ~p1, ~p2, ✓12 = 180�. An important di↵erence from
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size sphalerons can explain the BAU within the
MSM.

Multiple other sources of CP violation have
been proposed in the literature, but instead of
considering some specific models we found it in-
structive to focus on a scenario in which CP vio-
lation is instead maximal. We would not spec-
ulate here what particular mechanism – CP vi-
olating ✓ field, lepton number asymmetry from
the neutrino sector, or others – can lead to that.

VI. HELICAL MAGNETOGENESIS

The symmetry breaking by the Higgs VEV
at T < Tc leads to mass separation of the orig-
inal non-Abelian field A3

µ
into a massive Zµ

and a massless aµ, related by a rotation involv-
ing the Weinberg angle. The expanding outer
shell of the sphaleron explosion contains mass-
less photons and near-massless quarks and lep-
tons u, d, e, ⌫.

The anomaly relation implies that the non-
Abelian Chern-Simons number during the ex-
plosion defines the chiralities of the light
fermions, which can be transferred to the
so-called “magnetic helicity” (Chern-Simons
three-form):

Z
d3x ~A ~B ⇠ B2⇠4. (38)

The configurations with nonzero (38) corre-
spond to chiral knots of magnetic flux, and are
called helical.

The chiral anomaly allows the transfer of
fermion chirality to the chirality of the gauge
fields, and thus to magnetic helicity. Indeed,
the time derivative of magnetic helicity yields
the Chern-Pontryagin number

R
d3x ~E ~B that

is related by the chiral anomaly to the time
derivative of fermion chirality. Because the
transfer of chirality from fermions to magnetic
helicity is energetically favorable, it induces a
“chiral magnetic instability” resulting in an in-
verse cascade.

Microscopically, this instability can be at-
tributed to the chiral magnetic current along
the lines of magnetic field generated by the chi-
ral imbalance of fermions. This current back-
reacts on magnetic field by increasing the mag-
netic helicity; at the same time, it reduces the

chiral asymmetry stored in fermions. It has
been found that this inverse cascade is self-
similar, with exponents corresponding to a dif-
fusive growth of size L with time t, L2

⇠ t.
We conclude that the primordial sphaleron

explosions may seed the helical clouds of pri-
mordial magnetic fields. Since the sphaleron
rate is small, �/T 4 < 10�7, these seeds are pro-
duced independently from each other, as spher-
ical shells expanding luminally.

A. The “inverse cascade” of magnetic
fields

The requirement for the inverse cascade e↵ect
is chiral unbalance which is at the origin of the
CME. Locally the trapped and co-moving light
fermions produced by the sphaleron explosion
are chiral. The time during which chirality is
conserved is given by the appropriate fermion
masses. For magnetic fields it is the electron
mass, which at the sphaleron freezeout time is

me(TFO) = me

v(TFO)

v(0)
⇠ 20KeV (39)

The size growth of the chiral (linked) mag-
netic cloud is di↵usive. For a magnetically
driven plasma with a large electric conductivity
�, a typical magnetic field ~B di↵uses as

d ~B

dt
= Dr

2 ~B (40)

with the di↵usion constant D = 1/(4⇡�) ⇠

1/T . It follows that the magnetic field size
grows as

R2(t) = D�t ⇠
�t

T
(41)

where the inverse cascade time �t is limited by
the electron mass

�t ⇠ 1/me(TFO) (42)

As a result, the size of the chiral magnetic cloud
is
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SM such as quarks and leptons are ignored here because
they have not yet been produced.) Using further Boltz-
mann approximation and also ignoring pbulk for the es-
timate, one gets the mechanical stability condition in a
form

B = gW ⇥W
⇤2T 4

in

45
(14)

or the internal temperature

Tin⇥1�4
W = .66m ⇥ 174GeV (15)

which is indeed well above the equilibrium Tc � 100GeV .
Since the W bag is only mechanically stabilized, it will

be relaxing by cooling relatively quickly, As a result, the
hot spots are reducing their size and eventually disap-
pear. Indeed, this is what happens in simulations, giving
the characteristic lifetime of the hot spots

⇧hot spots � 20�m (16)

It is however important for the sphaleron rate that – in
the bag approximation we use – that while it happens
the inside temperature Tin is not changing because it is
related with the Higgs bag constant.

B. The sphalerons, their structure and size

Trying to understand the results of these numerical
simulations, one can ask in particular the following ques-
tions:
(i) How so high-magnitude gauge field can be produced?
Why does it happen only inside the hot spots?
(ii) What is the energy needed for topological fluctua-
tion? What is the gauge field structure? Can one under-
stand its subsequent evolution and decay products?
(iii) Can one estimate the rate of their production?

The fact that topological transitions happen only in-
side the hot spots is rather simple to understand: as
we already mentioned in the introduction in the bro-
ken phase the height of the barrier (the mass of KM
sphaleron) is prohibitively large. In a spot the height
is not zero, however, as it has finite size ⌅. As we already
mentioned, it is given by the mass of the COS sphaleron� 1�⌅ (see (19)).

In a scale-invariant classical YM theory the size ⌅ is
an arbitrary parameter. In a Big Bang however ( as
well as in numerical models we discuss) this size is to
be determined by the optimal scenario maximizing the
transition rate. With exponential accuracy the optimal
size ⌅� is the extremum of the following expression

�sph(⌅) � exp ⇧�⇥F

Tin
(4⇤⌅3

3
) � 3⇤2

g2⌅Tin
⌃ (17)

Here the first term represents the probability to create a
hot spot, it includes the corresponding free energy den-
sity ⇥F inside the hot spot relative to the bulk ambient

matter outside. The second is the Boltzmann factor con-
taining COS sphaleron mass (??).

The resulting optimal spot size is then

⌅� = Tin ⇥ 3⇤

4g2⇥F �T 3
in

⇤1�4 (18)

If the free energy is that of the W gas, one reproduces
the observed ⌅ � 4m. Note that the parametrically large
quantity here is electroweak coupling 4⇤�g2 = 1��ew,
which determines that the sphaleron consists of many
gauge quanta and thus can be treated semiclassically. As
the radius contains its power 1�4 we get only factor 2
from it. The number of gauge bosons can be estimated
from the action/⌅h which is about O(10). It is perhaps
still large enough for the semiclassical analysis we use.

C. The shape and field structure of the sphaleron

Ideally the sphaleron transition may proceed with the
total energy of the gauge quanta exactly equal to to the
height if the barrier. In this case at the time the system
reaches the maximum – the “sphaleron moment” – the
kinetic (electric) energy is zero, after which the system
may fall downhill into a topologically di⇤erent configura-
tion.

An interesting option pointed out recently by Kuchiev
[33, 34] is that the optimum energy may be less than the
height with tunneling through the barrier’s top. That
however cannot happen in classical simulations we dis-
cuss.

One may think there would be some extra energy
needed to fall over the top in those simulations. And in-
deed, as seen in Fig.3, this is the case. The time evolution
of the magnetic and electric fields have their “sphaleron
moment”, defined as the maximum of B2(t). One indeed
finds that the kinetic-to-potential E2�B2 energy ratio is
indeed small at this moment, of the order of percents.

Does the magnetic field fits well to COS sphaleron so-
lution? The profile of the the magnetic field in COS
configuration is given by the following simple expression

B2(r) = 48⌅4

g2(r2 + ⌅2)4 (19)

which (unlike the KM one) is just spherically symmetric.
This form does indeed fit well the observed shape of the
B2 at the sphaleron moment. The maximum of B2�g2

can be related with its radius, yielding m⌅ ⇥ 3.9, which
is very close to optimal size we got above. This value
corresponds to the total energy of the COS sphaleron (5)

Etot = 3⇤2�g2⌅ ⇥ 2 TeV (20)

As we already mentioned in the INtroduciton, it is 7
times less than the KM sphaleron mass, and for the tem-
peratures we are dealing with Tin = 200 � 100GeV it
makes a huge di⇤erence for he rate.

sum over colors makes  
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in pure gauge it is a ball of size rho 
for kappa=0 it is

these ``turning points” are unstable, 
  basically  magnetic bombs 

waiting to explode 
Approach with care!

B
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small |t| (or large impact parameter b ⇠ 1/
p

|t|) there is no reason to use pQCD. Another theory

based on “stringy instanton” was developed in [11] and is known as BKYZ Pomeron.

II. THE TOPOLOGICAL LANDSCAPE

The Hilbert space of gauge potential Aµ
a(x) is the manifold over which we need to integrate

the QFT partition function. Of course, we would not dare to discuss infinite-dimensional maps,

and focus on two main variables. We would like to study the map of static 3d (purely magnetic)

configurations of the lowest energy. One of the coordinates is the Chern-Simons number

NCS ⌘ ✏0↵��

16⇡2

Z
d3x

✓
Aa

↵@�Aa
� +

1

3
✏abcAa

↵Ab
�Ac

�

◆
(2)

and the other is the mean square radius of the magnetic field strength squared

⇢2 ⌘
R

d3x~x2 ~B2

R
d3x ~B2

(3)

From the viewpoint of path integral over Aa
µ, those are just some particular combinations of these

coordinates.

By the “topological landscape” we mean the minimal energy Umin(Ncs, ⇢) of gauge field configu-

rations with those two coordinates fixed. For pure gauge theory, such minimal energy configurations

themselves, known also as the “sphaleron path” (leading from one topological valley to the next

with minimal energy budget) has been found by Carter, Ostrovsky and myself [12] by two di↵erent

methods. The one related with instanton/sphaleron process will be discussed in the next section.

The second method is minimization with Lagrange multipliers times conditions (2) and (3)

The minimal energy was obtained in a parametric form

Umin(, ⇢) = (1 � 2)2
3⇡2

g2⇢
(4)

NCS() =
1

4
sign()(1 � ||)2(2 + ||)

The result shows a profile of the “topological mountain” of the gauge theory, see Fig. 1, also known

as “the sphaleron path”. Its maximum, at  = 0, has NCS = 1

2
and the energy, the sphaleron mass

Msph = Umin

✓
1

2
, ⇢

◆
=

3⇡2

g2⇢
(5)

When the momentum scale 1/⇢ is high, the gauge fields are very strong and one can neglect

the “vacuum structure” e↵ects and keep only the classical Yang-Mills equation. Of course, the

equation is scale-invariant, and therefore Umin ⇠ 1/⇢. Obviously, if ⇢ is small enough, one can no

longer neglect these e↵ects.

In the electroweak theory the “vacuum structure” e↵ects are described by the Higgs field �.

The scale is set by its VEV v = h�i ⇡ 246 GeV. Ignoring the Weinberg angle and using variational

methods, Klinkhamer and Manton [13] have included Higgs potential. Note that the Higgs field
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Ideally the sphaleron transition may proceed with the
total energy of the gauge quanta exactly equal to to the
height if the barrier. In this case at the time the system
reaches the maximum – the “sphaleron moment” – the
kinetic (electric) energy is zero, after which the system
may fall downhill into a topologically di⇤erent configura-
tion.

An interesting option pointed out recently by Kuchiev
[33, 34] is that the optimum energy may be less than the
height with tunneling through the barrier’s top. That
however cannot happen in classical simulations we dis-
cuss.

One may think there would be some extra energy
needed to fall over the top in those simulations. And in-
deed, as seen in Fig.3, this is the case. The time evolution
of the magnetic and electric fields have their “sphaleron
moment”, defined as the maximum of B2(t). One indeed
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indeed small at this moment, of the order of percents.

Does the magnetic field fits well to COS sphaleron so-
lution? The profile of the the magnetic field in COS
configuration is given by the following simple expression

B2(r) = 48⌅4

g2(r2 + ⌅2)4 (19)

which (unlike the KM one) is just spherically symmetric.
This form does indeed fit well the observed shape of the
B2 at the sphaleron moment. The maximum of B2�g2

can be related with its radius, yielding m⌅ ⇥ 3.9, which
is very close to optimal size we got above. This value
corresponds to the total energy of the COS sphaleron (5)

Etot = 3⇤2�g2⌅ ⇥ 2 TeV (20)

As we already mentioned in the INtroduciton, it is 7
times less than the KM sphaleron mass, and for the tem-
peratures we are dealing with Tin = 200 � 100GeV it
makes a huge di⇤erence for he rate.
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small |t| (or large impact parameter b ⇠ 1/
p

|t|) there is no reason to use pQCD. Another theory

based on “stringy instanton” was developed in [11] and is known as BKYZ Pomeron.

II. THE TOPOLOGICAL LANDSCAPE

The Hilbert space of gauge potential Aµ
a(x) is the manifold over which we need to integrate

the QFT partition function. Of course, we would not dare to discuss infinite-dimensional maps,

and focus on two main variables. We would like to study the map of static 3d (purely magnetic)

configurations of the lowest energy. One of the coordinates is the Chern-Simons number

NCS ⌘ ✏0↵��

16⇡2

Z
d3x

✓
Aa

↵@�Aa
� +

1

3
✏abcAa

↵Ab
�Ac

�

◆
(2)

and the other is the mean square radius of the magnetic field strength squared

⇢2 ⌘
R

d3x~x2 ~B2

R
d3x ~B2

(3)

From the viewpoint of path integral over Aa
µ, those are just some particular combinations of these

coordinates.

By the “topological landscape” we mean the minimal energy Umin(Ncs, ⇢) of gauge field configu-

rations with those two coordinates fixed. For pure gauge theory, such minimal energy configurations

themselves, known also as the “sphaleron path” (leading from one topological valley to the next

with minimal energy budget) has been found by Carter, Ostrovsky and myself [12] by two di↵erent

methods. The one related with instanton/sphaleron process will be discussed in the next section.

The second method is minimization with Lagrange multipliers times conditions (2) and (3)

The minimal energy was obtained in a parametric form

Umin(, ⇢) = (1 � 2)2
3⇡2

g2⇢
(4)

NCS() =
1

4
sign()(1 � ||)2(2 + ||)

The result shows a profile of the “topological mountain” of the gauge theory, see Fig. 1, also known

as “the sphaleron path”. Its maximum, at  = 0, has NCS = 1

2
and the energy, the sphaleron mass

Msph = Umin

✓
1

2
, ⇢

◆
=

3⇡2

g2⇢
(5)

When the momentum scale 1/⇢ is high, the gauge fields are very strong and one can neglect

the “vacuum structure” e↵ects and keep only the classical Yang-Mills equation. Of course, the

equation is scale-invariant, and therefore Umin ⇠ 1/⇢. Obviously, if ⇢ is small enough, one can no

longer neglect these e↵ects.

In the electroweak theory the “vacuum structure” e↵ects are described by the Higgs field �.

The scale is set by its VEV v = h�i ⇡ 246 GeV. Ignoring the Weinberg angle and using variational

methods, Klinkhamer and Manton [13] have included Higgs potential. Note that the Higgs field



Producing hundreds of W’s 
And making them coherent soliton 

Is very hard 
Study QCD sphaleron production is 

Much more promising

electroweak sphalerons 
have a mass of about 8 TeV (>> Tew)  

Can they be produced in high energy pp collisions at LHC or beyond?



Producing hundreds of W’s 
And making them coherent soliton 

Is very hard 
Study QCD sphaleron production is 

Much more promising

electroweak sphalerons 
have a mass of about 8 TeV (>> Tew)  

Can they be produced in high energy pp collisions at LHC or beyond?

Mass of QCS sphalerons 
Is about 3 GeV or larger! 

This is to be discussed here



Producing hundreds of W’s 
And making them coherent soliton 

Is very hard 
Study QCD sphaleron production is 

Much more promising
 QCD sphalerons should be 

produced in high energy 
hadronic collisions, creating 

chiral imbalance  
We will discuss experiments looking 

for that

electroweak sphalerons 
have a mass of about 8 TeV (>> Tew)  

Can they be produced in high energy pp collisions at LHC or beyond?

Mass of QCS sphalerons 
Is about 3 GeV or larger! 

This is to be discussed here



extra slides



Baryogenesis+

•  Sakharov+(1967)+had+formulated+3+condi>ons++
=>+B"viola(on,+CP"viola(on,+non"equilibrium+

•  All+3+are+there+in+the+Standard+Model+(SM)+

•  And+yet+we+do+not+know+how+nB/nγ =6�10�10 

has+been+obtained…+as+way+too+small+
numbers+are+obtained+

•  beyond+the+SM?+(very+popular)+++++++++++++++++++++++++
or+beyond+the+standard+cosmology+instead?+



Instanton-induced elastic dipole-dipole high energy scatteringDecember 7, 2020 12:22 WSPC/Book Trim Size for 9.75in x 6.5in hi˙book2

306 Chiral e↵ects and sphaleron production

Fig. 25.3 The setting of the dipole-dipole potential calculation: two-gluon exchange and
instanton-induced

only consider the case when dipoles are small d ⌧ R, ⇢. In this case te dipole
approximation is justified, both gluons (photons) are emitted at close time and the
correlator to consider is

h ~E2(⌧1) ~E2(⌧2)i ⇠
1

[R2 + (⌧1 � ⌧2)2]
4 (25.14)

Its integral over relative time leads to Casmir-Polder answer just mentioned.
It is straightforward to calculate also the instanton-induced contribution to

dipole-dipole potential [Shuryak and Zahed, 2000]. We would not give here a bit
lengthy expressions, but only note, that while the instanton-induced e↵ect leads to
relatively small energy shifts (⇠ 70 MeV ) compared to the perturbative one-gluon
exchange, it is in fact dominant in the dipole-dipole case. This is a manifestation
of a general trend: the higher is the order of the e↵ect in perturbation theory, the
more important instanton-induced e↵ects become. Indeed, because the instanton
field is O(1/g), the coupling to a quark is cancelled out and extra exchanges go “for
free”, without any additional penalty. The only small factor in the problem is then
the instanton amplitude itself.

So far we just prepared for two main steps of the program: (i) calculate per-
turbative and instanton-induced correlator for wilson lines with a non-zero angle ✓
between them; (ii) promotes the calculation into that of the scattering amplitude,
by analytic continuation

✓ ! iy (25.15)

where y is the Minkowski rapidity di↵erence between the colliding objects. It has
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where y is the Minkowski rapidity di↵erence between the colliding objects. It has

Integrating over time difference 
Gives 1/R^7, Casimir-Polder
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Fig. 25.2 The one-gluon exchange and instanton-induced settings for the quarkonium potential

analytically [Callan et al., 1978]

W (~r) = cos(
⇡rp

r2 + ⇢2
) +

~r~⌧

r
sin(

⇡rp
r2 + ⇢2

) (25.11)

Its contribution to heavy quark potential is then given by

V =

Z
d⇢

1

⇢2

dn(⇢)

d⇢
W (x/⇢) (25.12)

W (x/⇢) =
1

3⇢3

Z
d3r tr

⇥
1 � W (~x � ~r)W+(�~r)

⇤

It was also generalized to velocity-velocity and spin-spin potential. As shown by
[Yakhshiev et al., 2018; Musakhanov, 2018], the instanton model [Shuryak, 1982]

with the original parameters, ⇢ = 1/3 fm, n = 1 fm�3 describes well spectrum of
known charmonium states, including L = 0, 1, 2 states.

The next step, by [Shuryak and Zahed, 2000], is to calculate a potential between
two static dipoles. Before describing it, let me remind that in QED (one photon
exchange) according to famous Casmir-Polder paper the interaction is

V (r) = �
↵1↵2

r7
(25.13)

where ↵i are the so called polarizabilities6. The same result holds in QCD, the
two-gluon exchange can be used to describe interaction between two hadrons. Let
me briefly reproduce this result in Euclidean setting we use. For simplicity let us

6Note that it is not a square of the dipole field ⇠ 1/r6: the di↵erence comes from the time delay.

Wilson line for instanton can be  
Calculated analytically
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Fig. 6.8 default

One can use these expressions, in Euclidean space-time with the angle ✓ between
the Wilson lines, and later analytically continue the result into the Minkowski world
by the substitution

✓ ! iy (6.52)

where y is the Minkowski rapidity di↵erence between the colliding objects. It has
been checked in [Meggiolaro:1997dy, 1998; Shuryak and Zahed, 2000] and elsewhere
that in that it works correctly for perturbative amplitudes. We used it for quark-
quark and dipole-dipole scattering amplitudes as well [Nowak et al., 2001; Shuryak
and Zahed, 2004b] : the setting for the latter case is shown in Fig.6.8.

Strictly speaking,a mutial scattering of two small dipoles correspond to dou-
ble deep-inelastic scattering. For example, future lepton collider can be used as a
collider of two virtual photons �⇤�⇤. The quark-antiquark pair produced by the pho-
tons have small sizes d ⇠ 1/Q provided each photon is highly virtual Q � ⇤QCD.
But in practice the parton enesemble is often represented as a set of dipoles, and
even the proton itself sometimes is treated as a color dipole made of quark and
diquark. For the details about instanton-induced e↵ect in scattering amplitudes see
the papers mentioned.

6.4 Fermionic transitions during changes of gauge topology

6.4.1 The fermionic zero mode of the instanton

The so called index theorems connect topology of the manifold with the number of
zero modes of the Dirac operator defined on them. Without going into details, let

where y is the Minkowski rapidity difference between the colliding objects. 
It has been checked in [Meggiolaro:1997dy, 1998; Shuryak and Zahed, 2000] 
and elsewhere that in that it works correctly for perturbative amplitudes. 

scattering of two small dipoles correspond to elastic double scattering 
For example, future lepton collider can be used as a collider of two virtual photons γ∗γ∗. 
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(November 8, 2018)

A semiclassical theory of high energy scattering based on interrupted tunneling (instantons) or QCD
sphaleron production has been recently developed to describe the growing hadronic cross section and
properties of the soft Pomeron. In this work we address double-pomeron processes in this framework
for the first time. We specifically derive the cross section for central production of parity even and
odd clusters, scalar and pseudoscalar glueballs, and η′ in parton-parton scattering at high energy.
We show that the specific dependence of the production cross section on all its kinematical variables
compares favorably with the UA8 data on inclusive cluster production, as well as the WA102 data
on exclusive central production of scalar glueball and η′, in double-pomeron exchange pp scattering.
The magnitude of the cross section and its dependece on kinematic variables is correct, explaining in
particular a large deviation from the Pomeron factorization at cluster masses in the range MX < 8
GeV reported by UA8.

I. INTRODUCTION

Semi-classical tunneling in the QCD vacuum, de-
scribed by instantons, is traditionally studied in relation
with the QCD vacuum properties such as chiral symme-
try breaking and hadronic spectroscopy, see review [1].
More recently a number of authors [2,3] have suggested

that the semiclassical physics based on instantons and
QCD sphalerons significantly contributes to semi-hard
scattering in QCD, in particular to the parameters of
the so called “soft Pomeron”. The specific behavior of
hadronic cross sections at high energy, i.e. their growth
with energy σ ∼ s0.08 is related to the Pomeron trajec-
tory intercept at t = 0. The semiclassical theory relates
the small power of 0.08 to the barrier-suppressed proba-
bility of tunneling in the QCD vacuum. Also, the small
Pomeron size α′ = 1/(2GeV)2 = (0.1 fm)2 was found to
be related in [2,3] to the small instanton size ρ = 1/3 fm.
As unexpected bonus, it was found that the semiclas-
sical scattering cannot produce an odderon, essentially
due to the inherent SU(2) color nature of the semiclassi-
cal fields. Recently, the same semiclassical reasoning was
applied to the saturation problem at HERA [4].
The semiclassical approach to semi-hard processes is

distinct from many QCD models in a number of ways.
It describes field excitations from the under-the-barrier
part of vacuum wave function, becoming on-the-barrier
states referred to as QCD sphalerons. They are specific
topological clusters made of purely magnetic glue [5]. As
quantum-mechanical and semi-classical arguments show,
it is the most natural excitation of the glue from under
the barrier. When produced they explode [5,6], creating
on the way many light quark pairs [7].
The corresponding contributions to the soft Pomeron

can be viewed as a ladder-type diagrams, similar to the
perturbative BFKL ones but with different rungs [3,2].
The Lipatov vertex – 2 virtual gluons fusing into one
physical gluon – is substituted by a new vertex with a
tunneling path ending at the unitarity cut at the “turning
state” -the topological clusters. In this work we focus on
only one cluster production as illustrated in Fig. 1.

In contrast to deep-inelastic scattering, high energy
hadronic collisions in the semi-hard regime have no large
scale Q2, and so the produced clusters have masses and
sizes that are determined by the typical size of the instan-
tons in the QCD vacuum. This leads to a mass of order
3 GeV for a size of order 1/3 fm, as mentioned above.
A significant amount of clustering in pp collisions has

been known for a very long time [8], where it was also
pointed out that those clusters have on average larger
mass and multiplicity in comparison to the clusters pro-
duced in e+e− annihilation. Unfortunately, a study of
these clusters and their identification is still not done. In
general, from the analysis of secondaries in pp collisions
it is hard to tell which clusters are sphaleron-related and
produced promptly, and which are simply products of the
string fragmentation, a final state interaction unrelated
to the underlying dynamics responsible for the cross sec-
tion. In ordinary inclusive pp collisions only a bulk sta-
tistical analysis can be performed.

(b)                      (c)                         (d)    (a)

FIG. 1. Schematic diagrams for the cross sections of dif-
ferent processes associated with high energy collusion of
two quarks, shown by horizontal solid lines. The vertical
dash-dotted lines are unitarity cuts, they separate the am-
plitude from its complex conjugate. (a) Low-Nussinov or
single-gluon exchange, leading to inelastic collisions due to
color exchange; (b) Low-Nussinov cross section, with no color
exchange; (c) instanton-induced inelastic collision with color
transfer and prompt cluster production, (d) combined instan-
ton-gluon process leading to double-pomeron like events with
a cluster.

That is why in the present work we focus on double-
pomeron scattering, or processes in which there are two
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where the singular gauge configuration is given by α 1.
Specifically, the contribution

−iRaini

(

T e

2
τa
)

AA

sinα

×−iRbjnj

(

T e

2
τb
)

BB

sinα

×+iR′a′i′
ni′
(

T f

2
τa

′

)∗

AA

sinα′

×+iR′b′j′nj′
(

T f

2
τb

′

)∗

BB

sinα′ (11)

where the T e’s are SU(Nc)generators with e = 1, .., (N2
c −

1) and τa’s are SU(2) generators with a = 1, 2, 3, can be
simplified using the color averaging relation
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Thus, (11) becomes

1

N4
c

n · nn′ · n′ sinα sinα sinα′ sinα′ (13)

B. Inclusive Double-Pomeron Cross Section

Inserting (9-13) into (8) and following the steps given
in [2], we obtain for the total singlet cross section

σ(s) ≈ CS π ρ2 ln s

∫

dq1⊥ dq2⊥ K(q1⊥, q2⊥)

×
∫ ∞

(q1⊥+q2⊥)2
dM2 σS(M) . (14)

The constant CS is equal to

CS =
1

(2π)8
64

5N2
c

α2
s ln

2

(

4αs

3π

)

. (15)

The partial cross section σS(Q) is the same as the one
encountered in the sphaleron-like production. To expo-
nential accuracy

σS(Q) = Im

∫

dT eQT−S(T ) ≈ κ e
4π
α

(F(Q)−F(Ms)) , (16)

where the holy grail function F(Q) was evaluated in [14,6]
using singular gauge configurations. In the approxima-
tion

1Since the singular gauge configuration asymptotes the
instanton profile, it is sufficient to use the instan-
ton/antiinstanton profile in the form factors.
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cross section derived in [2] with the substitution CS → C
where

C =
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Note that the ratio of the semiclassical double-pomeron
cross section to the semiclassical inelastic cross section,
as given by diagrams Fig. 1d and 1c respectively, is in-
dependent of the detailed dynamics, and involves mostly
color factors resulting from the singlet projection through
the extra gluon exchanged
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C. The instanton-induced form factor

The form factor is
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which is purely imaginary,
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Here J3/2 is a half-integer Bessel function. In the weak-
field limit the instanton contributes a term 3√x/x2 ≈
1/

√
x that causes the instanton-induced form factor to

diverge. This divergence is analogous to the one encoun-
tered in QQ → QQ. Apart from the unphysical (per-
turbative) singularity at small q⊥, the instanton-induced
form factor can be parameterized by a simple exponential

J(q⊥) ≈ −i q̂⊥ 50 e−1.3q⊥ ρ0 , (24)

The divergence at small q⊥ can be removed by subtract-
ing the tail of the instanton through the substitution

π |x|
√

x2 + ρ20
→ π

(

|x|
√

x2 + ρ20
− 1

)

e−a |x|/ρ0 , (25)

which amounts to a different renormalization of the
charge. This will be understood throughout. Note that
the subtracted form factor vanishes at small q⊥.
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Fig. 7.4 (left) The instanton size ⇢ [fm] distribution dn/d⇢d4z. (right) The combination
⇢�6dn/d⇢d4z, in which the main one-loop behavior drops out for Nc = 3, Nf = 0. The points
are from the lattice work for this theory, with �=5.85 (diamonds), 6.0 (squares) and 6.1 (circles).
Their comparison should demonstrate that results are lattice-independent. The line corresponds
to the proposed expression , see text.

tension �, so that the suppression factor should be

dn

d⇢
=

dn

d⇢
|semiclassical · e�2⇡�⇢2

(7.7)

If this idea is correct, this suppression factor should be missing at T > Tc, in
which the dual magnetic condensate is absent. But, on the other hand, here quan-
tum/thermal fluctuations generate at high T a similar factor [Pisarski and Ya↵e,
1980]

dn

d⇢
=

dn

d⇢
|T=0 · e�(

2Nc+N
f

3 )(⇡⇢T )
2

(7.8)

related to scattering of quarks and gluons of QGP on the instanton [Shuryak and
Velkovsky, 1994]. Empirically, the suppression factor at all temperature looks Gaus-
sian in ⇢, interpolating between those limiting cases.

Another example of lattice study focusing on instanton contribution to certain
Green functions, is Ref.[Athenodorou et al., 2018], in full quantum vacuum and
with cooling. The original motivation has been extraction of the gluon coupling
↵s(k), so the observable on which this work was focused id the following ratio of
3-point to 2-point Green function (in configurations transformed to Landau gauge)

↵MOM (k) =
k6

4⇡

hG(3)(k2)i2

hG(2)(k2)i3
(7.9)

In Fig.7.5 the results are plotted versus the momentum scale k. At the lower
curve (corresponding to uncooled quantum vacuum with gluons) at large k > 1 GeV
the e↵ective coupling starts running downward, as asymptotic freedom requires.
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requirement that CP violation would vanish if
any pair of masses is degenerate. Indeed, in this

case we would be able to redefine the CKM ma-
trix and eliminate the complex phase.
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was criticized because of gluon scattering on quarks  
one cannot keep momentum small for long!
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B. How do plasma e↵ects modify
quark/lepton production and respective

B,L number violations ?

In the primordial plasma, fermions are also
modified by their interactions with the thermal
medium. While leptons have electroweak in-
teractions only, quarks interact strongly with
ambient gluons, with much a stronger coupling
constant gs. Therefore quark modes acquire
larger masses, and one may wander if those can
prevent the B,L number violation phenomenon
itself.

At this point, a historical comment may be
made. When Farrar and Shaposhnikov [32] re-
alized that the CP violation induced by the
CKM matrix have the “sweet spot” mentioned
above, they focused on the dynamics of the
quarks with small momenta p ⇠ 1GeV ⌧ T .
Specifically, they argued that under certain
conditions the strange quarks are totally re-
flected from the boundary of the bubble (they
assumed the transition to be first order), while
the up/down quarks are not. This scenario has
been later criticized, based on higher order cor-
rections to the quark dispersion curves, and the
conclusions in [32], have been refuted. For ped-
agogical reasons, let us split the refuting ar-
guments in three, reflecting on their increase
sophistication.

The first argument says that the Eu-
clidean thermal formulation with anti-periodic
fermionic boundary conditions, implies that the
minimal fermionic energies are set by the lowest
Matsubara mode

!M = ⇡T ⇠ 300GeV (33)

Indeed the typical fermionic momenta are of
this order, and the CKM-induced CP violation
at this scale is ⇠ 10�19 as we detailed above.

The second argument is based on the emer-
gence of a “thermal Klimov-Weldon” quark
mass

MKW =
gsT
p
6

⇠ 50GeV (34)

induced by the real part of the forward scatter-
ing amplitude of a gluon on a quark.

Both arguments were essentially rejected by
Farrar and Shaposhnikov, who pointed to the
fact that while both e↵ects are indeed there,
there are still quarks with small momenta p ⌧

T,Mq in the Dirac spectrum.
The third argument which is stronger, was

given in [33, 34]. It is based on the decoherence
su↵ered by a quark while traveling in a thermal
plasma, as caused by the imaginary part of the
forward scattering amplitude (related by uni-
tarity to the cross section of non-forward scat-
terings on gluons). Basically, they argued that
if a quark starts with a small momentum, it will
not be able to keep it small for necessary long
time, due to such scattering. The imaginary
part is about

Im(Mq) ⇠ ↵sT ⇠ 20GeV (35)

We now return to the sphaleron explosions
we have presented, and ask how such plasma
e↵ects can a↵ect their quark production. The
most obvious question is that of “insu�cient
energy”. Indeed, if each quark carries a “ther-
mal Klimov-Weldon mass” as the smallest en-
ergy at small momenta, is there even enough
energy to produce the expected 9 quarks? All-
together, these 9 masses amount to about
450 GeV, which is comparable to the total
sphaleron mass (11) at a size ⇢ ⇠ 1 GeV�1.
Therefore, the classical treatment used above,
in which the back-reaction of the quarks on the
explosion were neglected, by solving the Dirac
equation in a background field approximation,
should be significantly modified.

However, there is a simple way around the
“insu�cient energy” argument. In thermal
field theory the sign of the imaginary part of
the e↵ective quark mass operator can be both
positive or negative. This corresponds to the
fact that instead of producing new quarks, the
sphaleron amplitude can instead absorb ther-
mal antiquarks from the plasma.

Still we would argue that, unlike the Farrar-
Shaposhnikov scenario [32], our sphaleron-
induced baryon number violation should sur-
vive all plasma e↵ects. We do not classify
quarks by their momenta, but rather by the
virtualities or eigenvalues of the Dirac opera-
tor �, in the background of sphaleron explosion
solution.
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p
6
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requirement that CP violation would vanish if
any pair of masses is degenerate. Indeed, in this

case we would be able to redefine the CKM ma-
trix and eliminate the complex phase.
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Unlike momenta, topological Dirac zero modes 
 do survive plasma corrections (such as gluon rescattering)!

tested e.g. on the lattice for instantons and instanton-dyons
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It is true that the plasma e↵ect will modify
the spectral density P (�) in a way, that most
of the virtualities � are equal or larger than the
thermal Klimov-Weldon mass (34 )

|�| > MKW

According to Fig. 5, this puts the CP asymme-
try to be of order ⇠ 10�17, way too small for
BAU.

However, a sphaleron explosion is a phe-
nomenon in which gauge topology of the back-
ground field is changing. The topological the-
orems requires the existence of a zero mode
of the Dirac operator in the spectral density,
P (�) ⇠ �(�). (Another way to say it, is to recall
that the sphaleron explosion implies changing
of the Chern-Simons number, which is locked
to the change in the quarks and leptons left-
polarization by the chiral anomaly.) Plasma
e↵ects do indeed modify the gauge fields dur-
ing the sphaleron explosion, perhaps strongly,
O(1) in magnitude, but they cannot change
their topology. Therefore plasma e↵ects can-
not negate the existence of the zero mode: it is
robust, completely immune to perturbations.

For a skeptical reader, let us provide an ex-
ample from practical lattice gauge theory sim-
ulations, which may perhaps be convincing. At
temperature at and above the critical T > Tc,
in a QGP phase, there are plenty of thermal
gluons. And yet, when a configuration with the
topological charge Q = ±1 is identified on the
lattice, an exact Dirac eigenvalue with � = 0 is
observed, within the numerical accuracy, typi-
cally 10�9 or better. Also, the spatial shape of
this eigenvalue is in very good agreement with
that calculated using semiclassical instanton-
dyons [35]. Zillions of thermal gluons appar-
ently have no visible e↵ect on the shape of these
modes, in spite of the fact that the gauge fields
themselves are undoubtedly strongly modified.
Of course, this example is in an Euclidean time
setting, while the sphaleron explosion is in a
Minkowskian time setting. Real time simula-
tions are much more costly and have only been
done with gauge fields without fermions. How-
ever, we are confident that baryon number vi-
olation itself is completely robust, immune to
thermal modifications.

C. Dirac zero mode and related CP
violation

Now that we argued that the Dirac opera-
tor should still have an exact zero mode for
a sphaleron explosion, even in the plasma, we
now further ask how its presence in the Dirac
operator determinant can a↵ect the estimates
of the CP violation we made earlier.

1. Dirac zero mode

Let us return to the Dirac operator (25 ), in
left-right notations. The quark-gluon scatter-
ing is vectorial, so the Klimov-Weldon mass (or
more generally, the forward scattering ampli-
tude at an appropriate momentum) should be
added to the (LL) and (RR) diagonal elements

det

✓
iD/ +MKW +MLR

1

i@/+MKW
M†

RL

◆

Note that the non-diagonal fermion masses (LR
and RL) flipping chirality can only come from
interaction with the Higgs scalar field, violat-
ing chiral symmetry. When there is no Higgs
VEV (at T > Tc), to lowest order the last term
is absent. At next order, it is proportional to
the corresponding Yukawa couplings for di↵er-
ent fermion species.

What we argued above, means that the
plasma-deformed first LL operator iD/ +MKW

should, like the vacuum version, have a zero
eigenvalue. For that, we write

iD/ = (i@/+ gAµ)1̂ + gAµ(M̂CKM � 1̂) (36)

where hats indicate matrices in quark flavors.
The topological zero mode � = 0 follows from
the flavor-diagonal part, as a zero eigenvalue of
the first bracket

(i@/+ gAµ1̂) � = � � (37)

The so called “topological stability” implies
that the zero eigenvalue does not have any per-
turbative corrections.

The remaining part of the Dirac operator
(36) can formally be considered small and thus
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treated perturbatively, providing small modi-
fication of the known explicit solution to the
Dirac equation in the background of sphaleron
explosion. The deviation of the gauge field term
from 1̂ through

gAµ(V̂CKM � 1̂)

would provide vertices for flavor changing
quarks, and the mass term, in the form

MLR
1

i@/+MKW
M†

RL

would provide perturbative corrections to the
quark propagators connecting these vertices.
As we will see, this flavor-dependent part is key
for evaluating the magnitude of CP violation.

2. Quark production probability

As explained by ’t Hooft long ago [28],
the physical meaning of the zero mode of

the instanton (or its analytic continuation to
Minkowski time [26] we imply here) is the wave
function of the outgoing fermion produced. The
CP violation induced by the quarks “on their
way out” appear due to interferences of certain
diagrams with di↵erent intermediate states. In
short, the production probabilities of quarks
and antiquarks are not equal. The method to
calculate the e↵ect was previously developed by
Burnier and one of us [8].

Consider an outgoing quark, accelerated by
the electric field of the sphaleron explosion, and
interacting on its way with the W field twice.
The full probability for the quark production
contains sums over all possible intermediate fla-
vor states. For example, if the quark started as
b-quark, then one has a triple sum over inter-
mediate flavors

Pb =
X

IJK

✓
A

✓
b! I = t, c, u! J = b, s, d

◆
⇥A

✓
J = b, s, d K = t, c, u b

◆◆
(38)

We now note the three key features of this expression:

(i) the intermediate up-quarks t, c, u in each amplitude need not be the same. The inter-
ference of multiple paths in flavor space, induced by the CKM matrix angles, may lead to CP
violation;
(ii) the total number of CKM matrices V̂CKM is four, which is just enough to make this CP
violating contribution nonzero;
(ii) the combination V̂ +

CKM V̂CKM V̂ +

CKM V̂CKM and its complex conjugate is not the same as for
the corresponding (b̄) antiquark.

In light of this, the probability to produce a quark and an antiquark are not equal, i.e.
AAq 6= AAq. More specifically, let us write the convolution for a particular initial up-quark state
labeled as U0,

AAU0 ⇠

X

D1,U,D2

Tr

✓
P̂U0W (x1)V̂CKMSD1,D1(x1, x2)

⇥ W (x2)V̂
+

CKM S̃U1,U1(x2, x3)W (x3)V̂CKMSD2,D2(x3, x4)W (x4)V̂
+

CKM P̂U0

◆
(39)

where V̂CKM is a 3⇥3 CKM matrix (indices not shown) and PU0 at both ends are projectors onto
the original quark type. The propagators S(x, y) are diagonal flavor matrices with their indices

small             not small but does not kill zero mode
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where V̂CKM is a 3⇥3 CKM matrix (indices not shown) and PU0 at both ends are projectors onto
the original quark type. The propagators S(x, y) are diagonal flavor matrices with their indices

Klimov-Weldon mass remains in the R (right) part 
so the effective mass term create  

flavor-dependent phases 
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shown. There are 3 options for each index, D1, D2 = b, s, d, and U0, U1 = t, c, u, so for each quark
the probability has 33 = 27 interfering terms. The intermediate propagator S̃U1,U1 has tilde,
which indicates that it should include the propagation from point x3 to infinity, and its conjugate
propagation from infinity to point x4. Therefore, its additional phase depends on the distance
between these points. The corresponding amplitudes for the antiquarks involve complex conjugate
(not Hermitian conjugate!) CKM matrices relative to the quark amplitude, namely

AAU0 ⇠

X

D1,U,D2

TrP̂U0W (x1)V̂
⇤
CKMSD1,D1(x1, x2)

⇥W (x2)V̂
T
CKM S̃U1,U1(x2, x3)W (x3)V̂

⇤
CKMSD2,D2(x3, x4)W (x4)V̂

T
CKM P̂U0 (40)

The di↵erence in the probability of production
of a quark and antiquark is denoted by

�PQ ⌘ Im
�
AAQ �AAQ

�

We now note that:

(i) the propagators of quarks of di↵erent
flavors between the same relative points have
di↵erent phases;
(ii) the locations in the amplitude x1,2 need
not be the same as the locations x3,4 in
the conjugate amplitude, so in principle we
need to integrate over all of these locations
independently.

For a qualitative estimate of (39-40) we write
the nontrivial flavor-dependent phases in the
propagators as

SQQ = ei�Q

suppressing for an estimate their dependence
on the coordinates, and perform the sums with
U0 referring to all 6 initial types of quarks.
The lengthty result is given in Appendix C.
As already indicated, these phases come from
the last term in the Dirac operator. Apart of
common phase induced by the p/ in it, there
are flavor-dependent phases induced by the last
term in the Dirac operator

�Q =
m2

Q|x1 � x2|

MKW
(41)

Using for coordinate distance travelled the
sphaleron size (maximal at freezout line)

|x1 � x2| ⇡ ⇢max ⇠ 1/10� 1/30GeV�1

we introduce a new (temperature-dependent)
mass scale

M⇢ ⌘

✓
MKW

⇢max(T )

◆1/2

⇠ 40GeV (42)

Using this notation, the additional phases
is just a ratio of (flavor and temperature-
dependent) quark mass to M⇢, squared:

�Q =
m2

Q

M2
⇢

(43)

When the quark masses are smaller than M⇢,
the corresponding phases are small.

3. Amount of CP violation

Let us now recall that we are discussing
the Universe at temperatures across the elec-
troweak transition, with the Higgs VEV v(T )
emerging from zero to eventually its value in
the broken phase as we have it today. For a spe-
cific expression see the lattice result (A6). All
quark masses grow in proportions to the VEV,
and therefore the ensuing CP violation grows.
We will divide this stage of the evolution into
two stages.

Stage 1: In the quark production probabili-
ties, the four vertices with CKM matrices are
connected by three propagators, leading to ex-
pressions cubic in �Q ⇠ (mQ/M⇢)2, after ex-
panding the expressions in Appendix C. The
end of stage 1 happens when the largest of the
phases, that due to the top quark, reaches O(1),
or

mt ⇡ M⇢ ⇠ 40GeV (44)

Outgoing quarks have two interactions with W, 
there are two CKM matrics in amplitude 

 4 in the probability
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and therefore the ensuing CP violation grows.
We will divide this stage of the evolution into
two stages.

Stage 1: In the quark production probabili-
ties, the four vertices with CKM matrices are
connected by three propagators, leading to ex-
pressions cubic in �Q ⇠ (mQ/M⇢)2, after ex-
panding the expressions in Appendix C. The
end of stage 1 happens when the largest of the
phases, that due to the top quark, reaches O(1),
or

mt ⇡ M⇢ ⇠ 40GeV (44)
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At this time all other quark masses are much
smaller than the top quark mass, respective to
their Yukawa couplings, and their phases are
therefore small. The lengthy expressions in Ap-
pendix C can be simplified by expanding these

exponents to first order in the phases. Say,
the one for d quark contains the heaviest quark
masses in the expression, and the correspond-
ing CP asymmetry is

⇠ 2J
m2

b(T )m
2
c(T )

M4
⇢ (T )

⇠ 2J

✓
m2

b(0)m
2
c(0)

mt(0)4

◆✓
mt(0)4

M4
⇢

◆
⇡ J · 1.2 · 10�7

· 350 ⇠ 10�9 (45)

Stage 2: This corresponds to a large top
quark mass mt > M⇢ and the phase �t � 1,
with a rapidly oscillating exponent. Therefore,
we assume

e±i�t ⇡ 0

and drop all factors with top quark phase. If
one starts from a light quark U0 = u, the
resulting expression contains the mass di↵er-
ences with the heaviest remaining masses of b, c
quarks, namely

2J
(m2

b �m2
s)(m

2
c �m2

u)

M4
⇢

(46)

It is similar to the expression we had before,
but with masses continuing to grow. The nu-
merator grows as the fourth power of VEV
⇠ v(T )4, and the denominator approximately
as its second power due to sphaleron size shrink-
age. As a result, the temperature dependence
is ⇠ v2(T ) ⇠ (TEW � T ).

Eventually, the temperature falls to T =
130GeV below which the sphalerons freezeout
completely. The prefactor 2J ⇠ 6 · 10�5 and
the CP asymmetry (46) is about

ACP ⇠ 0.25 · 10�9 (47)

comparable to what one gets by the end of stage
one.

Some remarks are now in order here. Note
that if one starts with the first generation u
quark, the intermediate ones kept are b and c,
of the third and second generations. So, as re-
quired, all three generations are involved. Yet
this does not mean that all 6 quark flavors need

to be involved: in particular the answer�Pu (in
Appendix D) contains a factor (m2

b �m2
s) but

not (m2

d�m2
s), as there is no d quark anywhere.

Thus there is no m2
s in our answer. The situ-

ation is exactly the same as in the exclusive b
decays as we discussed earlier. Only the masses
of the quarks explicitly involved in the process,
not all 6 mass di↵erences, needs to be present.
The full Jarlskog mass factor is not required in
exclusive reactions.

Yet the symmetry between quarks strikes
back: the CP violation for the d quark, �Pd (in
Appendix D), has the same magnitude of the
CP violation (46) but have the opposite sign.
Therefore, in the symmetric phase at T > TEW ,
when orientation of the sphaleron zero mode
in SU(2) group space is spherically symmet-
ric, one has cancellation of the CP violations,
between contributions of sphalerons which pro-
duce more u or more d quarks. Such cancella-
tions is similar to what is seen in leading order
e↵ective Lagrangians, and they are is expected
to be violated if higher order e↵ects, e.g. in-
cluding electromagnetic interactions, are taken
into account.

As the SU(2) symmetry gets broken at T <
TEW (the phase we discuss), there is no more
any symmetry between up and down weak
isospin orientations. Specific Lagrangian for
quark interaction with Z field takes the well
known form

Lq̄qZ = �
g

2cos(✓W )

X

i

q̄iZµ�
µ(giV � giA�

5)qi

(48)
in which vector and axial constant are di↵erent
for up and down quarks:

giV = t(i)� 2Qisin
2(✓W ), giA = t(i)

for light u and d  
the CP asymmetry 

between quark and antiquark  
production is
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At this time all other quark masses are much
smaller than the top quark mass, respective to
their Yukawa couplings, and their phases are
therefore small. The lengthy expressions in Ap-
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It is similar to the expression we had before,
but with masses continuing to grow. The nu-
merator grows as the fourth power of VEV
⇠ v(T )4, and the denominator approximately
as its second power due to sphaleron size shrink-
age. As a result, the temperature dependence
is ⇠ v2(T ) ⇠ (TEW � T ).

Eventually, the temperature falls to T =
130GeV below which the sphalerons freezeout
completely. The prefactor 2J ⇠ 6 · 10�5 and
the CP asymmetry (46) is about

ACP ⇠ 0.25 · 10�9 (47)

comparable to what one gets by the end of stage
one.
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that if one starts with the first generation u
quark, the intermediate ones kept are b and c,
of the third and second generations. So, as re-
quired, all three generations are involved. Yet
this does not mean that all 6 quark flavors need

to be involved: in particular the answer�Pu (in
Appendix D) contains a factor (m2
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s) but

not (m2
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Thus there is no m2
s in our answer. The situ-
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decays as we discussed earlier. Only the masses
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not all 6 mass di↵erences, needs to be present.
The full Jarlskog mass factor is not required in
exclusive reactions.

Yet the symmetry between quarks strikes
back: the CP violation for the d quark, �Pd (in
Appendix D), has the same magnitude of the
CP violation (46) but have the opposite sign.
Therefore, in the symmetric phase at T > TEW ,
when orientation of the sphaleron zero mode
in SU(2) group space is spherically symmet-
ric, one has cancellation of the CP violations,
between contributions of sphalerons which pro-
duce more u or more d quarks. Such cancella-
tions is similar to what is seen in leading order
e↵ective Lagrangians, and they are is expected
to be violated if higher order e↵ects, e.g. in-
cluding electromagnetic interactions, are taken
into account.

As the SU(2) symmetry gets broken at T <
TEW (the phase we discuss), there is no more
any symmetry between up and down weak
isospin orientations. Specific Lagrangian for
quark interaction with Z field takes the well
known form

Lq̄qZ = �
g

2cos(✓W )

X

i

q̄iZµ�
µ(giV � giA�

5)qi

(48)
in which vector and axial constant are di↵erent
for up and down quarks:

giV = t(i)� 2Qisin
2(✓W ), giA = t(i)

which is much larger than for nonzero modes!
signs for u and d are opposite 

but there is no symmetry 
due to Higgs VEV
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Baryon asymmetry is 
due to out-of-equilibrium sphalerons, 

Which have probabilities different from antisphalerons 
Due to CP-odd effects: CKM in quark determinant (?) or others (?)

Such CP violation is needed 
 to explain BAU 

our estimate based on CKM gave
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
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
tFO � tEW
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Here ACP is the CP asymmetry, the relative
di↵erence between baryon number production
and annihilation in a single sphaleron transi-
tion. The second factor in square bracket is
the out-of-equilibrium sphaleron rate normal-
ized to the total entropy density sEW /T 3

EW =
2⇡2

45
106.75, which amounts to about 3.2 ·10�18.

The next factor is the cosmological time in units
of the electroweak temperature, which is long
and about

TEW tEW ⇡ 2.2 · 1015 (55)

The fourth (last) bracket is the available time
till freezeout normalized to the total time. Us-
ing Friedmann evolution numbers in Appendix
A one gets

tFO � tEW

tEW
⇡ 0.5 (56)

Since the entropy in the adiabatic expansion
of the Universe is conserved, it is the same at
the BBN time which is mostly in form of black
body photons. Standard Bose gas relation be-
tween the entropy density and the photon den-
sity is n� = 0.1388s� . Substituting all these es-
timates in (54) gives the baryon-to-photon ratio

✓
nB

n�

◆
= 7.6 · 10�2ACP (57)

Since the phenomenological value for this ratio,
from the BBN fits, is known to be

✓
nB

n�

◆

BBN

= 6 · 10�10 (58)

we conclude that the amount of CP violation
required to produce the observed BAU is

ACP ⇡ 0.8 · 10�8 (59)

Our estimates of the CP asymmetry above gave
about ACP ⇠ 10�9, an order of magnitude
smaller than needed to explain BAU. We think
that this discrepancy is still inside the uncer-
tainty of our (quite crude) estimates (59).

VII. HELICAL MAGNETOGENESIS

The symmetry breaking by the Higgs VEV
at T < Tc leads to mass separation of the orig-
inal non-Abelian field A3

µ into a massive Zµ

and a massless aµ, related by a rotation involv-
ing the Weinberg angle. The expanding outer
shell of the sphaleron explosion contains mass-
less photons and near-massless quarks and lep-
tons u, d, e, ⌫.

The anomaly relation implies that the non-
Abelian Chern-Simons number during the ex-
plosion defines the chiralities of the light
fermions, which can be transferred to the so
called magnetic helicity

Z
d3xAB ⇠ B2⇠4 ⇠ const (60)

The configurations with nonzero (60) are called
helical. We conclude that the primordial
sphaleron explosions may seed the helical clouds
of primordial magnetic fields. Since the
sphaleron rate is small, �/T 4 < 10�7, these
seeds are produced independently from each
other, as spherical shells expanding luminally.

A. The “inverse cascade” of magnetic
fields

The requirement for the inverse cascade e↵ect
is chiral unbalance which is at the origin of the
CME. Locally the trapped and co-moving light
fermions produced by the sphaleron explosion
are chiral. The time during which chirality is
conserved is given by the appropriate fermion
masses. For magnetic fields it is the electron
mass, which at the sphaleron freezeout time is

me(TFO) = me
v(TFO)

v(0)
⇠ 20KeV (61)

The size growth of the chiral (linked) mag-
netic cloud is di↵usive. For a magnetically
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At this time all other quark masses are much
smaller than the top quark mass, respective to
their Yukawa couplings, and their phases are
therefore small. The lengthy expressions in Ap-
pendix C can be simplified by expanding these

exponents to first order in the phases. Say,
the one for d quark contains the heaviest quark
masses in the expression, and the correspond-
ing CP asymmetry is
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Stage 2: This corresponds to a large top
quark mass mt > M⇢ and the phase �t � 1,
with a rapidly oscillating exponent. Therefore,
we assume

e±i�t ⇡ 0

and drop all factors with top quark phase. If
one starts from a light quark U0 = u, the
resulting expression contains the mass di↵er-
ences with the heaviest remaining masses of b, c
quarks, namely
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It is similar to the expression we had before,
but with masses continuing to grow. The nu-
merator grows as the fourth power of VEV
⇠ v(T )4, and the denominator approximately
as its second power due to sphaleron size shrink-
age. As a result, the temperature dependence
is ⇠ v2(T ) ⇠ (TEW � T ).

Eventually, the temperature falls to T =
130GeV below which the sphalerons freezeout
completely. The prefactor 2J ⇠ 6 · 10�5 and
the CP asymmetry (46) is about

ACP ⇠ 0.25 · 10�9 (47)

comparable to what one gets by the end of stage
one.

Some remarks are now in order here. Note
that if one starts with the first generation u
quark, the intermediate ones kept are b and c,
of the third and second generations. So, as re-
quired, all three generations are involved. Yet
this does not mean that all 6 quark flavors need

to be involved: in particular the answer�Pu (in
Appendix D) contains a factor (m2

b �m2
s) but

not (m2

d�m2
s), as there is no d quark anywhere.

Thus there is no m2
s in our answer. The situ-

ation is exactly the same as in the exclusive b
decays as we discussed earlier. Only the masses
of the quarks explicitly involved in the process,
not all 6 mass di↵erences, needs to be present.
The full Jarlskog mass factor is not required in
exclusive reactions.

Yet the symmetry between quarks strikes
back: the CP violation for the d quark, �Pd (in
Appendix D), has the same magnitude of the
CP violation (46) but have the opposite sign.
Therefore, in the symmetric phase at T > TEW ,
when orientation of the sphaleron zero mode
in SU(2) group space is spherically symmet-
ric, one has cancellation of the CP violations,
between contributions of sphalerons which pro-
duce more u or more d quarks. Such cancella-
tions is similar to what is seen in leading order
e↵ective Lagrangians, and they are is expected
to be violated if higher order e↵ects, e.g. in-
cluding electromagnetic interactions, are taken
into account.

As the SU(2) symmetry gets broken at T <
TEW (the phase we discuss), there is no more
any symmetry between up and down weak
isospin orientations. Specific Lagrangian for
quark interaction with Z field takes the well
known form

Lq̄qZ = �
g

2cos(✓W )

X

i

q̄iZµ�
µ(giV � giA�

5)qi

(48)
in which vector and axial constant are di↵erent
for up and down quarks:

giV = t(i)� 2Qisin
2(✓W ), giA = t(i)

which is in the right ballpark, 
within the accuracy of our crude estimates!

Issue needs more studies …

D.Kharzeev, E.S, I.Zahed Phys.Rev.D 102 (2020) 7, 073003 • e-Print: 1906.04080

https://inspirehep.net/authors/988810
https://arxiv.org/abs/1906.04080
https://inspirehep.net/authors/988810
https://arxiv.org/abs/1906.04080


Hybrid'(cold)'scenario'(cont)'
•  Topological)charge))))))))))

Q)='GGdual'is'also'
localized''

•  The'topological'
transi:ons'happen'
only)inside)(some)of))
the)“hot)spots”)

•  Hot)spots)take)
volume)frac=on)of)
few)percents,)
sphalerons)in)them)
also)have)P)of)few)
percents)

•  =>Γ/T4'about'10@4,''
•  Integrated'in':me'10@3'
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We discuss a new family of multi-quanta bound states in the Standard Model, which exist due to
the mutual Higgs-based attraction of the heaviest members of the SM, namely, gauge quanta W,Z

and (anti)top quarks, t̄, t. We use a self-consistent mean-field approximation, up to a rather large
particle number N . In this paper we do not focus on weakly-bound, non-relativistic bound states,
but rather on “bags” in which the Higgs VEV is significantly modified/depleted. The minimal
number N above which such states appear strongly depends on the ratio of the Higgs mass to the
masses of W,Z, t̄, t: For a light Higgs mass mH ⇠ 50GeV bound states start from N ⇠ O(10),
but for a “realistic” Higgs mass, mH ⇠ 100GeV , one finds metastable/bound W,Z bags only for
N ⇠ O(1000). We also found that in the latter case pure top bags disappear for all N, although
top quarks can still be well bound to the W-bags. Anticipating cosmological applications (discussed
in a companion paper) of these bags as “doorway states” for baryosynthesis , we also consider the
existence of such metastable bags at finite temperatures, when SM parameters such as Higgs, gauge
and top masses are significantly modified.

I. INTRODUCTION

A. Motivation

In the Standard Model (SM), the interac-
tion of particles includes an attractive Higgs
exchange. For a two-particle system it is not
di�cult to see under which condition a Higgs
exchange would lead to bound states of such
particles. Unfortunately, one finds that the cor-
responding critical Higgs mass lies far below the
current experimental bound mexp

H
& 116GeV .

But one should not be discouraged too early
by this example. Being a scalar, the Higgs
generates universal attraction between all kinds
of particles. Furthermore, the strength of the
attraction is proportional to their mass, sim-
ilar in this respect to the gravitational force.
Gravity, feeble as it is, is able to hold together
planets, stars and even create closed systems
(black holes), because the rather weak cou-
pling can be compensated by a large number
N of participating particles. Unlike vector-field
based forces induced by electric, weak or color
charges, both gravity and scalar exchanges are
exempt from “charge screening” and become in-

creasingly stronger for large number of parti-
cles. However, there is an important di↵erence
with gravity in that the Higgs boson is neither
massless, nor particularly light in comparison
to W,Z or t. This leads to the following ques-
tion: What happens with heavy multi-quanta
states when the Higgs mass is increased, from
a near-zero value, to MH ⇠ O(100GeV ) where
it may be soon found. This is the main subject
to be addressed in this work.

An instructive analogy is provided by nuclear
physics. It is convenient to describe such situa-
tion by a (much-simplified) Walecka model, in
which the nuclear forces can be approximately
described by the � and ! meson exchanges.
The correlated two-pion state � is “the Higgs
boson of the nuclear physics”, obtaining VEV
in chiral symmetry breaking. The � and ! me-
son masses set a scale 1/m�,! ⇠ 0.3 fm for the
range of nuclear forces. Naively it is too small
compared to nuclear sizes (several fm) or to the
typical inter-nuclear distances n�1/3

⇠ 1.5 fm.
Furthermore, because of similarity of masses
m� ⇠ 600MeV,m! ⇠ 770MeV , as well as cou-
plings, the sigma-induced attraction is nearly
canceled by the omega-induced repulsion. The
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I. INTRODUCTION

A. Motivation

In the Standard Model (SM), the interac-
tion of particles includes an attractive Higgs
exchange. For a two-particle system it is not
di�cult to see under which condition a Higgs
exchange would lead to bound states of such
particles. Unfortunately, one finds that the cor-
responding critical Higgs mass lies far below the
current experimental bound mexp

H
& 116GeV .

But one should not be discouraged too early
by this example. Being a scalar, the Higgs
generates universal attraction between all kinds
of particles. Furthermore, the strength of the
attraction is proportional to their mass, sim-
ilar in this respect to the gravitational force.
Gravity, feeble as it is, is able to hold together
planets, stars and even create closed systems
(black holes), because the rather weak cou-
pling can be compensated by a large number
N of participating particles. Unlike vector-field
based forces induced by electric, weak or color
charges, both gravity and scalar exchanges are
exempt from “charge screening” and become in-

creasingly stronger for large number of parti-
cles. However, there is an important di↵erence
with gravity in that the Higgs boson is neither
massless, nor particularly light in comparison
to W,Z or t. This leads to the following ques-
tion: What happens with heavy multi-quanta
states when the Higgs mass is increased, from
a near-zero value, to MH ⇠ O(100GeV ) where
it may be soon found. This is the main subject
to be addressed in this work.

An instructive analogy is provided by nuclear
physics. It is convenient to describe such situa-
tion by a (much-simplified) Walecka model, in
which the nuclear forces can be approximately
described by the � and ! meson exchanges.
The correlated two-pion state � is “the Higgs
boson of the nuclear physics”, obtaining VEV
in chiral symmetry breaking. The � and ! me-
son masses set a scale 1/m�,! ⇠ 0.3 fm for the
range of nuclear forces. Naively it is too small
compared to nuclear sizes (several fm) or to the
typical inter-nuclear distances n�1/3

⇠ 1.5 fm.
Furthermore, because of similarity of masses
m� ⇠ 600MeV,m! ⇠ 770MeV , as well as cou-
plings, the sigma-induced attraction is nearly
canceled by the omega-induced repulsion. The
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Why should one study these multi-quanta states? From a methodical point 
of view, they are a new class of manybody systems, beyotnd atoms and nuclei

•C. D. Froggatt and H. B. Nielsen, Surveys High  
Energ. Phys. 18, 55 (2003), hep-ph/0308144;  
12 t make bound state via Higgs exchange  

M. Y. Kuchiev, V. V. Flambaum and 
E. Shuryak, Phys. Rev. D 78, 077502 (2008) arXiv:
0808.3632 

•Not with realistic Higgs mass 
M_H>50 GeV

Can be ``dorway states” 
 facilitating production of electroweak 

Sphalerons 

We calculated lowest states of W/Z and tops 
In Higgs-Depleted bags 

Unfortunately no bound multi-tops for any number 
With W/Z in the lowest mode there are bound bags 

But one needs hundreds of quanta!


