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Introduction

Overview of computational methods



Introduction

Analytic methods for Feynman integrals

 Typical analytic methods involve expressing Feynman integrals in terms of
classes of iterated integrals
« Multiple polylogarithms
* Iterated integrals over Eisenstein series

« Elliptic multiple polylogarithms over the torus or an elliptic curve

« Strengths of analytic methods: » Drawbacks of analytic methods:
« Branch-cuts and analytic structure is « The analytic continuation may be difficult to
manifest (through the symbol map) perform

 Specialized algorithms can be developed for « Many Feynman integrals lie outside the

evaluating the relevant classes of functions known classes of functions



Introduction

Numerical methods

 Prototypical example:

« Sector decomposition and numerical integration (FIESTA, pySecDec)

 Strengths of humerical methods: « Drawbacks of numerical methods:

« Numerical integration is fully algorithmic and « Numbers might not expose symmetries

general purpose and/or structures underlying the integrals

» Applicable to integrals with many scales « Performance can lack behind analytic

methods
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Semi-numerical methods

« Semi-numerical methods perform as much as possible of the computation analytically, before

resorting to numerical approximations
« We may set up differential equations in analytic form, and then solve these differential equations
 Numerically using finite difference methods [Mandal, Zhao, 1812.03060]

« Semi-analytically through one-dimensional series expansions [1907.13156, 1907.13234,
1911.06308, 2006.05510]

« Strengths of series expansion methods: * Drawbacks:

 State of the art performance on many types of Feynman  « Simplification of the differential equations is

integrals not fully algorithmic
« Speed improves as more points are computed  Derivation of boundary conditions requires

- Analytic continuation of Feynman integrals becomes simple Some manual effort



Introduction

Series expansions

» Series expansions have been featured various times in the past literature.

 For single-scale problems, see e.g:

S. Pozzorini and E. Remiddi, Precise numerical evaluation of the two loop sunrise graph
master integrals in the equal mass case, Comput. Phys. Commun. 175 (2006) 381-387,

[hep-ph/0505041].

U. Aglietti, R. Bonciani, L. Grassi, and E. Remiddi, The Two loop crossed ladder vertex
diagram with two massive exchanges, Nucl. Phys. B789 (2008) 45-83, [arXiv:0705.2616].

R. Mueller and D. G. Oztiirk, On the computation of finite bottom-quark mass effects in

Higgs boson production, JHEP 08 (2016) 055, [arXiv:1512.08570].

« For multi-scale problems, see for example:

K. Melnikov, L. Tancredi, and C. Wever, Two-loop gg — Hg amplitude mediated by a
nearly massless quark, JHEP 11 (2016) 104, [arXiv:1610.03747].

K. Melnikov, L. Tancredi, and C. Wever, Two-loop amplitudes for qg — Hq and q@ — Hg
mediated by a nearly massless quark, Phys. Rev. D95 (2017), no. 5 054012,
[arXiv:1702.00426].

R. Bonciani, G. Degrassi, P. P. Giardino, and R. Grober, Analytical Method for
Nezt-to-Leading-Order QCD Corrections to Double-Higgs Production, Phys. Rev. Lett. 121
(2018), no. 16 162003, [arXiv:1806.11564]|.

B. Mistlberger, Higgs boson production at hadron colliders at N*LO in QCD, JHEP 05
(2018) 028, [arXiv:1802.00833|.

R. N. Lee, A. V. Smirnov, and V. A. Smirnov, Solving differential equations for Feynman
integrals by expansions near singular points, JHEP 03 (2018) 008, [arXiv:1709.07525|.

R. N. Lee, A. V. Smirnov, and V. A. Smirnov, Evaluating elliptic master integrals at special
kinematic values: using differential equations and their solutions via expansions near
singular points, JHEP 07 (2018) 102, [arXiv:1805.00227|.

R. Bonciani, G. Degrassi, P. P. Giardino, and R. Grober, A Numerical Routine for the

Crossed Vertex Diagram with a Massive-Particle Loop, Comput. Phys. Commun. 241
(2019) 122-131, [arXiv:1812.02698|.

R. Bruser, S. Caron-Huot, and J. M. Henn, Subleading Regge limit from a soft anomalous
dimension, JHEP 04 (2018) 047, [arXiv:1802.02524].

J. Davies, G. Mishima, M. Steinhauser, and D. Wellmann, Double-Higgs boson production in
the high-energy limit: planar master integrals, JHEP 03 (2018) 048, [arXiv:1801.09696].

J. Davies, G. Mishima, M. Steinhauser, and D. Wellmann, Double Higgs boson production

at NLO in the high-energy limit: complete analytic results, JHEP 01 (2019) 176,
[arXiV: 1811. 05489].

B. Mistlberger, Higgs boson production at hadron colliders at N*LO in QCD, JHEP
05 (2018) 028 [1802.00833)].
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Series expansions

« Some of the previous literature was problem tailored. For example, by:

» Treating single-scale problems by expanding only at singular points and deriving recurrence

relations for the series coefficients [Lee, Smirnov, Smirnov, 1709.07525, 1805.00227]
[Anastasiou, Duhr, Dulat,

» Considering multi-scale cases by expanding in only one parameter

Herzog, Mistlberger, 1503.06056]

 An (arguably) more general setup was (Figure borrowed from 1907.13234)

demonstrated in [F. Moriello, 1907.13234] for the

Figure 1: The four planar integral families contributing to two-loop H+j-production in

computation of planar integrals relevant to H+; A B
production at NLO ep:
Yi‘ k1—ps _ﬁ:—pz +p}l/,’
- Simultaneously, in a larger collaboration, we s 4 %
. . 3 k1—ks
applied these methods to the computation of 2 /;\
% ki1+p1 k1—ka—p2 m

non-planar H+j integrals [Bonciani et al, 1907.13156]

P1 p3
\ ki+p1+p2 k1 —ko /
1
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[Frellesvig et al, 1911 .06368]
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Series expansions

* The main steps of the series expansion method are as follows:

« Reduce multi-scale problems to a single-scale problem by integrating along a one-

dimensional contour

 Split up the contour into multiple segments such that series expansions converge

on each segment

» Find series solutions of the integrals along each segment, and fix boundary

conditions by matching neighbouring segments

« Cross thresholds by assigning +ié to logarithms and algebraic roots in the solutions



Introduction

DiffExp

A general implementation of these methods was made into the Mathematica package DiffExp,
introduced in arXiv:2006.05510, and hosted at https://gitlab.com/hiddingm/diffexp

DiffExp accepts (any) system of differential equations of the form

d —

%f({s}, ) =AJ{She Az =) AP (a)
k=0

for which the matrix entries are combinations of rational and algebraic functions

It enables one to numerically integrate various multi-scale Feynman integrals at arbitrary points

in phase-space, and at precisions of tens of digits (or higher)

The Feynman integrals do not have to be in canonical form and may also be of “elliptic”-type or

associated with more complicated geometries.


https://gitlab.com/hiddingm/diffexp

Differential equations

The method of differential equations



Differential equations

Differential equations

» Start from a family of scalar Feynman integrals:

[ n+m —a;
s N .
Ial,...,an+m — / (H ddkz) Hn+1 DC?;% 7D’i — _qf;? + m@Q - Z(S
=1 1= 2

 Derivatives of Feynman integrals can be expressed in the same family.

By IBP-reduction we may then obtain a closed system of the form:

. . [Kotikov, 1991], [Remiddi, 1997]
df = Z M fds [Gehrmann, Remiddi, 2000]

ses

 For some vector of master integrals f



Differential equations

Differential equations in a canonical basis

« We may simplify the differential equations by a change of basis

e LetB = Tf, then we have:

887;

« The canonical basis conjecture claims that 9T :

) 5 (0, T) T ' +TM,, T '] B.

dB = edAB

« Furthermore, if the integrals are polylogarithmic, we have:

dA =) Cidlog(l;)
1eA

[Henn, 2013]



Differential equations

Canonical basis

* The formal solution can be written as a path-ordered exponential: [Chen, 1977]
dB = ¢ (dA) B = B= Pexp [e f,y df&] Eboundary ~(z) : [0,1] = CIS

« Which can be expanded in terms of Chen's iterated integrals:

— BO(y(0)+ T A ()% x [ 4 (dA) () BED ((0))
(0)) I; Z/ / Y 2 /0 J
» More concisely, consider the e expansion B =) B¢, then:
i>0
3(1) (i—1) 3(1) OA Ovs(x
BO (( /AB 1+ BIG0) | where A, =Y 20 783(:)




Differential equations

Canonical basis

* Thus, more compactly, we focus on integrals of the type:

B9 (~(1 / A,.BYdz + BW(4(0))

* When dA =", _, C;dlog(l;) and when 4 contains only (simultaneously)
rationalizable algebraic functions the results are expressible in terms of MPLs:

t—&l

© o dt
G(al,...,an;z):/ G(ag,...,an;t), G(Gz)=1
0

 This provides a fully analytic solution of the differential equations, which can be

evaluated using GiNaC [Vollinga, Weinzierl, hep-ph/0410259]



Differential equations

Series expansions - preview

* In the presence of non-rationalizable roots, the results may not be expressible in

terms of MPLs at all orders in €. [Brown, Duhr, arXiv:2006.09413]
* |n this case, series expansions come to the rescue!

1
e Starting from B (y(1)) = f A, B Vdz + B9 (5(0)), we may perform the expansion:
0

k
A, =2" Z C,z’ + 0O (:EkJrl)}
p=0
* Then integration becomes straightforward: / z™ log(z)" = 2™ ch log(z

* E.g. [273/51og?(z)dx = 32%/° (21og®(z) — 10log(z) + 25)



Differential equations

Boundary conditions

* To solve the system of differential equations, we need to supply boundary conditions at some

suitable kinematic point or limit

* One approach is to use sector decomposition to obtain numerical data at some point:

 Start from a point in the Euclidean region, where FIESTA and (py) SecDec have favorable run time.
« Obtain numerics in other regions by solving the differential equations

« The precision is limited to the precision of the boundary data

- Alternatively, we may obtain boundary conditions analytically:

» Consider some asymptotic limit where particles go on-shell, or internal masses vanish.
« Obtain solutions in closed-form in ¢, ideally in terms of ratio’s of gamma functions

« The precision is unlimited, and we may obtain results at any order in €



Differential equations

Boundary conditions (Analytic form)

 Typically, we consider a limit where most of the external scales vanish, such that

the Feynman integrals simplify as much as possible.
« However, we can not in general commute the limit and the integration.

* Let’s consider the example of the massive bubble:

e 210g< —p —\/4m2 )
evE d 1 \/ —p?—\/4m3—p
rl—e /d k1 2 B 2 2 Ofe)
VT (—k2 + m2) (_ (k1 + p) +m2) V —p*\/4m?2 — p?
2 (log (—p*) —1
* In the limit m? = x, with x | 0, we obtain: ~ — (log (~p l 08(2)) + O(x)



Differential equations

Boundary conditions

B 2 (log (—p2) — log(:}c)) N 0(33)1
D2

* Now, suppose we had started directly in the massless limit. We'd find:

ywe (;-d/2 [ 1 _ 2 2log (—r?) .
6 ( / ) /d kl(—k%) (— (k1 +p)2) p*e p? +0©)

» The kinematic singularity has been transformed into a dimensionally regulated pole, yielding
a different result than before!

« How do we obtain boundary conditions without computing the integral in a generic mass

configuration first? (which would defeat the purpose)



Differential equations

Boundary conditions

* The solution is to use the method of expansions by regions.

[See works by Beneke and Smirnov]

» There is a particularly simple formulation in the parametric representation,

which is implemented in the publicly available Mathematica package asy.m

See e.g. [Jantzen, Smirnov, Smirnov, 1206.0546]
« Recall the Feynman parametrization:

n a;—1

l ld o’ d Id

fon = (i) (0= 2) [ ) ([ oy Jue t0mr ot
SN (a 2) A”l[ 2 I'(a;)

1=1

" tal =Y (-1 taidag A+ Adaj A -+ A day,
J J
j=1

A”_lz{[alzazz...:an]ERIP”_I1a¢20,1§i§n}



Differential equations

Expansion by regions

Kinematic invariants and masses

/

» Suppose we are interested in a kinematic limit s; — s; = "s; fori =1,...,|S

 Then there exists a set of regions {R;}, where R; = (r;1,...,7m,) IS avector

of rational numbers.

* For each region R; we rescale the Feynman parametrized integral in the

following manner: «a; — z"ia;, doj — xday, s; — Vs,
\ ) )
Y Y
Each Feynman parameter scales In addition, we take our
according to the given region desired kinematic limit

» The asymptotic limit is then given by summing over the contributions of each

region, expanding on x, and integrating.



Differential equations

Expansion by regions

 Let’'s have another look at the massive bubble. The Feynman parametrization is:

VBT (e + 1)
grl—e

/ dardas (ar + as)* (aim? + azm® + 2a10m? — ozlozgpQ)_l_e
A
« We feed asy.mthe U and F polynomials, and obtain the regions:

Ry = {0,0}, Ry=1{0,—-1}, Rs;={0,1}

. . € —1—e€
 Leading to: = F( L fA daydo ( (vay + a2)* (2203 — pParas + 2zanas + o)
+ (g + a2)2 (35'041 plagas + 2xa oy + :coz%) e

1—e¢
+x7¢ (a1 + :13052)2 ( 2 —p?aras + 2raqas + Tl %) )

 For the purpose of computing boundary conditions, we often only need the leading

term of the expansion with respect to the line parameter



Differential equations

Expansion by regions

At leading order in x, we obtain:

“‘I'(e e —1d€ —1—e¢
P L{et]) [ daidos (:1: oy Mt (—p*aq + m?az) +

+a7 lag T (o +a2)* (—p?) T T acas T (aam? - azPQ)_e_l)

« Although we have a sum of terms, each piece is simpler to integrate than the
Feynman parametrization of the massive bubble. Performing the integrations

ields: —e—1
P ()T I 2o | 2 (1og (<)  loge) +0(e)
['(—2¢) P P’

« Which agrees with the result we found before!
* Note as well that the boundary conditions are just ratios of gamma functions



Series expansions

Series solutions to differential equations



Series expansions

Solving non-canonical systems

« We saw previously how to find series expansions for a canonical-form system

» Next consider a more general system of partial differential equations of the form:
o - _ v(z) : [0,1] = CI¥] o -

Szf({s}ﬂe):ASzf({S}vﬁ) =

—

f(:]j, E) — Aa}f(xa 6)7

0 O
« We will restrict ourselves to the following conditions on the € expansion:
A:E(xae) — ZA:(I:k)(x)eka f(.fﬁ,E) — Zf_(k)(x)ek
k=0 k=0

» The condition on the basis integrals f is trivial, as we can always multiply out the
highest pole.

 The finiteness condition on A, (x, €) can typically also be instated by performing
appropriate € rescalings of the basis integrals.
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Solving non-canonical systems

« After plugging in the € expansions, we have that:

k—1
O feo=Acflae) = | 0f9 = ADFD 4" AL
j=0

« We can decompose these differential equation further

* Let{f,...f, | be a set of “coupled” integrals, and relabel f,, = g1, f;, = g2, -

« Then | 9,5 = Mg* + 5

Where: My, = (A1) 5’5’”—2{@9) .;“é(w—“) .f;”}

. 0] TiJ
\ | JE
Y | . J
Homogeneous part: the same at all Inhomogeneous part: subtopology

orders in € terms & lower orders in €




Series expansions

Solving non-canonical systems

« We consider integrals to be “coupled” when they depend on each other at finite order in e
upon repeated differentiation. For example, if d, f; contains a component of integral f;, and

vice-versa, then f; and f; are coupled together.

* To integrate the differential equations, we should proceed at the lowest order in € and
integrate from the lowest sectors / topologies, up to the highest. We then move to the next

order in € and continue.

« How do we read off an integration order directly from ASCO), satisfying these observations?



Series expansions

Integration sequence

- Consider a graph G, which has an edge f; — f;, if the derivative of f; includes a

contribution from f; at order eV,

* Next, determine the strongly connected components of ¢

» These are sets of vertices for which there is a directed path between every pair of

vertices.

« Note: every vertex is connected to itself by definition

» The strongly connected components are the coupled integrals. Next, we consider

the graph of strongly connected components, called the “condensation” of G



Series expansions

Integration sequence

—

« Example of the condensation —@

of a directed cyclic graph: .\< ﬂ./’. ’
The condensation has edges
between two str. conn.
components, when there is an

edge between its integrals in
the original graph G

The condensation is an acyclic *— 331
graph defining a partial I
ordering, from which we read

off the integration order.

Picture borrowed from https://commons.wikimedia.org/wiki/File:Graph Condensation.svg



https://commons.wikimedia.org/wiki/File:Graph_Condensation.svg

Series expansions

Solving non-canonical systems

« We have now decomposed the differential equation such that we have to solve for

each coupled block g at order e* a system of the form: 8,5*) = Mg*) + (¥

 Following the previously described integration order, ORE always available from

previously computed data.

« We can split up the task in two parts:
 1: Solve the homogeneous diff. egns: 6x§’(k) — Mg’(@

2. Obtain solutions to the full system of diff. eqns

* In the following we will drop the subscripts for brevity.
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Homogeneous differential equations

* Consider 0,9 = Mg

« Strategy (based on combination of standard techniques):
1. Combine the system into a p-th order differential equation for g;

2. Find p (homogeneous) solutions for g; using the Frobenius method and

reduction of order

3. Solve for the remaining g; in terms of g;
* Detailed steps can be found in [MH, 2006.05510].

» The result is a matrix of solutions F, satisfying OF = MF



Series expansions

Inhomogeneous differential equations

 Next, we consider the full system 0,9 = Mg + b

* We |leave out the derivation, and provide the solution below:

p
g’:Zéj,G:F(/FlB—I—E)
j=1

1 - - . :
Where B = E(b’ ..., b) contains the inhomogeneous terms along the columns,
and where E = diag(ey,...,e,) is a diagonal matrix of integration constants to

be determined by boundary values.
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Inhomogeneous differential equations

« If we reintroduce a superscript for the order in € we have that:

P
g = 2 9,60 = F(J FF1B® + E®)
=1

- We need to compute F and F~1 only once. Higher orders in ¢ are obtained by two matrix
multiplications, and a single integration (which is implemented using an efficient

replacement rule.)

« This compares favorably to a straightforward “variation of parameters” implementation,

which involves computing p determinants of matrices of size (p — 1) X (p — 1) for each

order in €. (Take into account the matrix entries are themselves series expansion.)
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Line segmentation

» The series solutions have a finite radius of convergence.

» By concatenating solutions centered at different line segments we can reach any

point in phase-space. How do we choose where to center them?

« We may choose the line segments such that each expansion is evaluated at

most 1/k the distance to the nearest singularity, where k > 1.

 To cross singularities, we center an expansion at the singularity




Series expansions

Line segmentation

» For example, suppose: Xsing = (...,—0.095,0,4,16, ...)

Xstart = 0, Xend — 6

« Then we may pick the following partitioning into 6 line segments, such that each evaluation

happens at most % the distance to the nearest singularity:

[0.0474,0.142]  [0.427, 1.28] 2., 6]
0.0949 0.854 4
______ e — + x + .
0 0285 219 6
[-0.0474, 0.0474] [1.28, 3.09] X Singularity
[0.142, 0.427] @ Expansion point

@ Matching / evaluation point
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Analytic continuation

* The series solutions centered at singularities may contain logarithms and square
roots.

« Logarithms appear by integration of poles 1/x.

« Square roots can arise from the homogeneous solutions (when the indicial equation has a
half-integer root), or from the basis definition.
By transferring an id-prescription to the line parameter, we can perform the
analytic continuation of these functions. In particular we can let:
log(x + i6) = log(x), Vo +id =z
log(x — i) = log(z) — 27ib,,, Vi —id = (0, —0n) VT



Series expansions

Analytic continuation

« We don't like to carry theta functions around in the series expansions (for
performance reasons), so we may instead use replacement rules.

« For example, if x carries —id, and we evaluate at a point x < 0, we let:

log(z) — log(z) — 2mi, o — —Vx

« Additional comments:

» The is-prescriptions can be determined from the Feynman prescription

 Typically, we should avoid crossing two singular regions at the same time
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Mobius transformations

« Using Mobius transformations we may improve the convergence of the
1 1

T 1042 1-a

expansions. For example, consider: f(x)

e Then: f(z)=9— 101z + 999z% — 10001z> 4+ 99999z* — 1000001z° + O(z)°

* Next, consider the Mdbius transformation: x = 112_?’%, so that for y € [-1,1], we

have x € [-1/10,1].

202y

20273 202y°
° ° — —_— 1 2 T
We then have: f(y) =9 - —— +18y" - — 11

« And numerically we find: Syp0f(y = 11/13) = —0.335377
flx=1/2)=1/3, Sipof(x=1/2) = —1.31477...-107,

+ 18y* — + O(y)°




Series expansions

Mobius transformations

* Thus, we may improve the integration strategy in the following way:
* Find the singularity whose real part is nearest on the left of the origin

 Find the singularity whose real part is nearest on the right of the origin

» Map these respective singularities to -1, and 1.

 Disadvantages:

« Mobius transformations may slow down the series expansions of the
matrices, partly negating their speedup. (Perhaps this can be improved in

future versions of DiffExp.)
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Pade approximants

« Lastly, we may use (diagonal) Padé approximants to accelerate the convergence
of our series. These are rational functions, whose series expansion matches the

original series. For example:
2 3 brt 72 212% 3327 42928 7152° 2431210

xr U
Vitor=1+=— - - - -
TS TR T 6 128 7256 1024 ' 2048 32768 | 65536 262144

S10(V1+2)|pm1je — V1+1/2=-272-107°
222 3312 1123 55x%
1+ o T 716 T "1 + 768

 Padé approximant: T~ 352 | 17522 | 2525 | 2524 25
PP lto~ 1+ 55+ 5 + 556 + 3302 — 7608

(Pas(V14+2)|p=1/2 —/1+1/2) = —3.47-1071°

* Downsides: 1. Requires higher working precision
2. Computation of the Padé approximants takes time

_I_O (35‘11)
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Examples



Results

Higgs plus jet production @ NLO
« Main production mode of the Higgs boson @ LHC is via gluon-gluon fusion

» The Higgs particle does not couple directly to gluons. The interaction is mediated by a heavy

quark loop, so that next-to-leading order concerns two-loop diagrams

» To this date, no NLO computation is available of the whole p;-spectrum, including quark-mass
effects for all quark flavors

« An NLO computation including the top-quark mass but neglecting bottom-quark mass has been

performed using sector decomposition for the integrals [Jones, Kerner, Luisoni, 2018]

- Various computations have also been done in HEFT (some up to N3LO)  e.g.: [Anastasiou, Duhr, Dulat,
Herzog, Mistlberger, 1503.06056].

[Chen, Gehrmann, Glover, Huss,
Mistlberger, Pelloni, 2102.07607]



Higgs + jet integrals

* Integrals relevant for H+j production at NLO

with full heavy quark mass dependence

« Dependence on three scales (after normalizing

out mass dependence)

« Families A, F, and G contain elliptic sectors

s = (p1 +P2)2’ t = (p1 +P3)2
p3=(p1+patps) =s+t+u

mgq

Results

R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, MH, L.
Maestri, F. Moriello, G. Salvatori, V. A. Smirnov

[Bonciani et al, 1609.06685]

B iC iD

A
P
QL& P1+p2+p3 ,’
k1—ps3 ka—p3 F 4
4 /
ko+p1+p2
i
\$gfk2
2
k1+p1
i

e

/

[Bonciani et al, 1907.13156]

p’s/
ki+pi+p2 k1 —Fko
—_— —_—

1
%-@H&a

ka—p3 \
P1tp2+ps \
\

[Frellesvig et al, 1911.06308]
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Family F (>1<) @Q%B 8012% p12©p12 p13\/p13 p23©p23

2 3 4,5 6,7 8,9

Master integrals 2 pa) i pE
- A P2

« IBP-reduction: Py P3 2 Dy
10,11 12 13 14 15,16 17
« 73 master integrals P12 P13 pi D4 P13
P4 D4 P4 P13 D2 P_ls< Py P2 P4
« Default FIRE basis: 0(1 GB) p3 P2 P23 P2
18,19,20 21,22,23 24,25,26 27 28,29,30 31,32
- More suitable (pre- P P2 PN Pa p1 P4 Iz p1
P3 P2 P D2 % P4 P3 P4
canonical) basis: 0(100 MB) . o py—s 7 - - -
_ , _ 3334 ° 35,36 37,38 39,40 41,42,43 44,45 46
» Possible using either FIRE or .
. 1 oy P by, Pl P4 b, Pl P2 oy P ps p pi P2
KIRA : - : 2 - S
D3 p3 \p4 pP3 P3 P D2 D4
, , 47-51 52 53 54,55 56,57 58-61
Differential eqns: 0(1 0 MB) D2 Do Py . | Fig: Master integrals with numbering.
. P1 P13
[Bonciani et al, 1907.13156]
p3 NZ! Pa P3 N2 N
N R “ | Elliptic sectors




Family G
Master integrals

 |BP-reduction:

« 84 master integrals
« Default FIRE basis: O(1 GB)

« More suitable (pre-canonical)
basis: 0(100 MB)

» Possible using either FIRE or
KIRA

« Differential eqns: 0(10 MB)

[Bonciani et al, 1911.06308]

P12 P4

.
P4 Opé pi2/ \pi2  pu P13 P23 P23
3 4,5 6,7 8,9
P1 P3 P3
P3
P13 P23
13 15 16
p3 P2 P1
P12 P4 Da
D4 P13 P23
19-21 22-24 25-27 28-30
P23 P2 P1
P1 P4 P1 P3 P4 P3
-p4 P4 P2
34,35 36 37 38,39 40-42
I D3 D3 3 p1p
pP1 Ps P2 Pys P2
Pl ‘8 4 P2 P1 pPa,
50-52 53-57 58-62 63-66
Di P3 3 P3 ﬁ Da
D4 P4
p 1 p% P4
- 2675 s0sa = | Elliptic sectors




Results

Boundary conditions of family F

« All boundary conditions for family F:  (s,,p%,m?) — (ws,xt, zpi, m?)

lim By = e*7T'(e + 1)*(m?) %,

x—0

lim By ~ 27¢ (we27€e(m2)_e(—t)_er(2e +1) cot(mf)) :

x—0

. limB;=0 fori=3,...,72.

x—0
2 —4s—t
lim Brg ~ 1" (—4%27663 83 % _ 22 _ t; (m2)=¢(—)~T(2¢) cot(we)) .

* Requires computation of numerous integrals:



Results

Boundary conditions of family F

IntSteps = Association[{

G[6,{0,90,2,0,1,0,2,08,0}]; » {{"W", as »1-a3}, {"Int", {a,, 8, w}}, {"Int", {a;, 8, 1}}, {"Save"}},

G[6, {0,0,2,1,0,0,2,0,0}]; » {{"W", ay »1-a3}, {"Int", {a,, 8, ®}}, {"Int", {a;, @, 1}}, {"Save"}},

G[6, {0,0,2,1,0,2,0,0,0}]; » {{"0W", ag »1-a3}, {"Int", {a,, 8, ®}}, {"Int", {a;, @, 1}}, {"Save"}},

G[6, {8,90,2,2,0,1,0,0,0}]; » {{"W", ay »1-a3}, {"Int", {a,, 8, ®}}, {"Int", {a;, @, 1}}, {"Save"}},

G[6, {06,1,0,0,2,0,2,0,0}]; » {{"%", as »1-a,}, {"Int", {a;, 8, w}}, {"Int", {a,, O, 1}}, {"Save"}},

G[6, {6,1,0,0,2,2,0,0,0}]; » {{"W", ag »1-as}, {"Int", {a;, 8, ®}}, {"Int", {as, @, 1}}, {"Save"}},

G[6, {8,2,0,0,1,0,2,0,0}]; » {{"W", as »1-a,}, {"Int", {a,, 8, w}}, {"Int", {a,, @, 1}}, {"Save"}},

G[6, {1,0,0,0,2,0,2,0,0}]; » {{"W", ay »1-a,;}, {"Int", {ay, 8, w}}, {"Int", {a,, @, 1}}, {"Save"}},

G[6, {1,0,2,0,0,2,0,0,0}]; » {{"W", ag »1-a3}, {"Int", {ay, 8, w}}, {"Int", {a;, @, 1}}, {"Save"}},

G[6, {6,0,1,1,1,0,2,0,0}]; » {{"W", ay »1-as -a;}, {"Int", {a,, 8, ®}}, {"Int", {as, 8, 1-a;}}, {"Int", {a,, @, 1}}, {"Save"}},

G[6, {6,0,1,1,1,0,3,0,0}]; » {{"W", a3 »1-as -a,}, {"Int", {a,, 8, ®}}, {"Int", {as, 8, 1-a,}}, {"Int", {a,, @, 1}}, {"Save"}},

G[6, {8,0,2,1,1,0,2,0,0}]y » {{"W", ay »1-a; -a,}, {"Int", {a,, 8, ®}}, {"Int", {a;, 8, 1-a,;}}, {"Int", {a,, @, 1}}, {"Save"}},

G[6, {6,1,0,1,1,0,2,0,0}]; » {{"W", ay »1-a5}, {"Int", {a;, 6, ®}}, {"Int", {ay, O, ®}}, {"Int", {as, @, 1}}, {"Save"}},

G[6, {6,1,0,1,1,0,2,0,0}], > {{"W", ay »1-a,}, {"Int", {a,, 8, 1}}, {"Resc", a3}, {"W", @ 2 1-a,}, {"Int", {ag, O, w}}, {"Int", {a,, O, 1}}, {"Save"}},
G[6,{8,1,1,0,1,2,0,0,0}]; » {{"W", a3 >1-a}, {"Int", {a,, 8, ®}}, {"Int", {as, @, 1}}, {"Int", {as, 8, ®}}, {"Save"}},

G[6, {6,1,1,0,1,3,0,0,0}]; » {{"0", ay »1-as}, {"Int", {a;, 8, ®}}, {"Int", {as, @, 1}}, {"Int", {as, O, ®}}, {"Save"}},

G[6,{8,1,1,0,2,2,0,0,0}]; » {{"W", a3 »1-a}, {"Int", {a;, 8, ®}}, {"Int", {as, @, 1}}, {"Int", {ag, 8, ®}}, {"Save"}},

G[6,{6,1,1,1,0,2,0,0,0}]; » {{"W", ag »1-a;3}, {"Int", {a,, 8, w}}, {"Int", {a;, O, w}}, {"Int", {a;, @, 1}}, {"Save"}},

G[6,{0,1,1,1,0,2,0,0,0}],» {{"W", ag »1-a3}, {"Int", {a;, 8, 1}}, {"Resc", ag}, {"W", @y 2 1-a,}, {"Int", {ag, @, w}}, {"Int", {a,, @, 1}}, {"Save"}},
G[6,{0,1,1,2,0,2,0,0,0}], 2 {{"W",as »1-a3}, {"Int", {a;, 0, 1}}, {"Resc”, ag}, {"W", a; »1-a,}, {"Int", {ag, O, w}}, {"Int", {a,, @, 1}}, {"Save"}},
G[6,{8,2,2,1,1,0,0,0,0}]; » {{"W", ay »1-as}, {"Int", {as, ©, 1}}, {"Resc”, ag}, {"W", a; 2 1}, {"Int", {a;, 0, w}}, {"Int", {ay, 0, ®}}, {"Save"}},

G[6, {1,0,1,0,1,0,2,0,0}]; » {{"W", a3 »1-as -y}, {"Int", {a,, O, w}}, {"Int", {as, @, 1-a,}}, {"Int", {a,, O, 1}}, {"Save"}},

G[6, {1,0,1,0,1,0,3,0,0}]; » {{"W", a3 »1-as -a,}, {"Int", {a, 8, ®}}, {"Int", {as, 8, 1-a,}}, {"Int", {a,, @, 1}}, {"Save"}},

G[6,{1,0,1,0,1,2,0,0,0}]; » {{"W", a3 »1-as -as}, {"Int", {a;, 0, w}}, {"Int", {as, @, 1-ax}}, {"Int", {ag, O, 1}}, {"Save"}},

G[6, {1,0,1,0,1,3,0,0,0}];» {{"W", a3 »1-a, -ag}, {"Int", {a;, 8, ®}}, {"Int", {as, 8, 1-as}}, {"Int", {as, @, 1}}, {"Save"}},

G[6, {1,0,1,0,2,0,2,0,0}];> {{"W",a; »1-a5 -}, {"Int", {a;, 8, ®}}, {"Int", {as, O, 1-a,}}, {"Int", {a@,, @, 1}}, {"Save"}},

G[6, {1,0,2,0,1,2,0,0,0}]; » {{"W", a3 »1-as -ag}, {"Int", {a,, 8, ®}}, {"Int", {as, @, 1-as}}, {"Int", {as, @, 1}}, {"Save"}},

G[6, {1,1,0,1,1,0,1,0,0}], » {{"W",as >1-a;}, {"Int", {a,, @, 1}}, {"Resc”, ag}, {"OW", @y »1-a,}, {"Int", {ag, O, ®}}, {"Int", {ay, O, 1}}, {"Int", {a,, @, ®}}, {"Save"}},
G[6, {1,1,0,1,2,0,1,0,0}], > {{"W", as »1-a,}, {"Int", {a;, 0, 1}}, {"Resc”, a3}, {"W", @, > 1-a;}, {"Int", {a;, O, ®}}, {"Int", {a,, @, 1}}, {"Int", {a;, 8, ®}}, {"Save"}},
G[6,{1,1,1,1,0,1,0,0,0}],» {{"W",ay »1-a3}, {"Int", {a;, O, 1}}, {"Resc"”, ag}, {"W", ay »1-a,}, {"Int", {ag, O, ®}}, {"Int", {a,, @, 1}}, {"Int", {a;, O, ®}}, {"Save"}},
G[6,{1,1,1,1,0,2,0,0,0}], » {{"W", ag »1-a,}, {"Int", {a;, 0, 1}}, {"Resc", a3}, {"W", @y 2 1-a,}, {"Int", {a;, O, ®}}, {"Int", {a,, @, 1}}, {"Int", {a,, 6, ®}}, {"Save"}},
G[6,{1,1,1,1,1,1,1,-2,08}], 2 {{"W", a3 2 1-a5 -ag -a,}, {"Int", {as, 8, 1-a5 -a,}}, {"Int", {as, 8, 1-a,}}, {"Int", {a,, O, 1}}, {"Resc", ag}, {"OW", a3y 2 1-a; -a,}, {"Int", {ag, @, ®}}, {"Int", {a;, @, 1-a,}}, {"Int", {a,, @, 1}}, {"Save"}},
G[6,{1,1,1,1,1,1,1, -1, -1}], » {{"W", a3 2 1-as -ag - @}, {"Int", {as, 0,1-a5 -a,}}, {"Int", {as, 0,1-a,;}}, {"Int", {ay, @, 1}}, {"Resc", a3}, {"OW", @y 2 1-a; -a,}, {"Int", {a3, O, ®}}, {"Int", {a;, 0, 1-a,}}, {"Int", {a,, O, 1}}, {"Save"}},
G[6,{1,1,1,1,1,1,1,6, -2}],» {{"W", a3 2 1-a5 -as - @}, {"Int", {as, 0, 1-a5 -a,}}, {"Int", {as, 8, 1-a,}}, {"Int", {ay, ©, 1}}, {"Resc", ag}, {"W", @y 2 1-a; -a,}, {"Int", {ag, 0, ®}}, {"Int", {a;, 0, 1-a,}}, {"Int", {a,, @, 1}}, {"Save"}}
s



Results

Higgs + jet integrals 1907.13156, 1911.06308
« We can obtain 3-dimensional plots, if we sample enough points. Consider the

parametrization:

8T T4z C871(z—1) , 13
tOp (Za Z)t . S = 95 ’ L= 95 ? Py = 25 )
bottom (I, 2)y: 5 = 323761 . _ 3237611 (z — 1) , 323761
R G e - 3612 T
(lz) = (0,1) (,z) = (1,1)

« Which maps the physical regions of TR
the top quark and bottom quark g B e My

contributions to the unit square: boee oo o




Results

Higgs + jet integrals
Plots sampled from 10000 points on an evenly spaced grid.

Re(BY3), (top mass) Im(BY3), (top mass)

Re(B%), (bottom mass) Im(BLy), (bottom mass)

Family G Family F

Example of timing: obtaining 10000 points for family G, on a 4-core
laptop CPU took about 19.5 hours for the top quark contributions.



Results

3-loop banana graph

* First, we consider the equal-mass case:

Ibanana _ efYEE : 2 a,—%(2—26) - ddk D—al D—CLQ D—ag D—a,4
aiasasag Z«ﬂ_d/g (m ) H v 1 2 3 4
1=1

4~

T't‘S

Dy =—ki+m?, Dy=—-ki+m®, Ds=—ki+m?, Dy=—(k1+ks+ks+p1)’+m’

» The differential equations are given by:

o — (eIBgem™ e(1+ 3 I (1 + 36) (1 + 4e) Iy, I )

64—2t+t24+(84+1)%e  2(t+20)(2e+1) 6(2e+1) 2
T t(t—16)(t—4) t(t—16)(t—4) ~ t(t—16)(t—4) = t(t—16)
. 3t(3e+1) _ 2(t+8)ett+4 3e41 0
o, BParana — t(t—4) t(t—4) t(t—4)
4(4e+1) —3e—1
0 — : 0
0 0 0 0

« With t = p?/m?

z§banana



Results

3-loop banana graph

« Next, let us obtain suitable boundary conditions

« The Feynman parametrization is given by:

. —3e—1 ‘
Iffffma — 283’7EI’(36 + 1) (mz) pietl / daidasdasday (ayasaz + ajagas + asagas+
A

de 2 2 2 2 2 2
a1a2a4) (oagagozl:r; + Q40T + 3004 T + Q3T + Qo T + Q3 O T+

oz%ozgozlac + oaga4a1:£ + a§a4oz13: + dagazaq1x + 04204304?1:1: + a2a§a4x + a§a3a4x+

—3e—1
+a2a3a4a1)

* Where we lett = —1/x.

« We will compute boundary conditions in the limit x — 0, which is equivalent

to the limit where the mass vanishes.



Results

3-loop banana graph

« We use the method of expansions by regions and asy.m to obtain the regions.

° They are g|ven by gl i {07 _15 _13 _1}3 RQ i {Ov _1: _130}5 RS i {0,0,0,0},
4_{070107_1}3 R5_{03171a0}7 RG—{0,0,].,O},

R'T — {07 _1:05 _1}a RS — {O: _11050}7 RQ — {050707 1}:

RIO — {09 1: 17 1}3 Rll — {0: Oa 17 1} ; Rl? — {07 17 0: 0} )

R13 — {0,0,—1,—1}, R14 — {0,1,0,1}, R15 :{0,0,—1,0}.
 Their contributions work out to:

Ry 3~ve 3 Ro eV ex T (—€)?I(e)? R3 3e37ex3 T IT(—€)*T(3¢€)
[17, ~ e’ T (€)” L7 ~ T(—2¢) ; L3t ~ T(—4¢) ;
IR4 2e37¢ex? TIT(—€)3T(e)T'(2¢) IR5 eV exTIT(—€)?T ()3 IR6 3ve(¢)3

1111 ™ T(—3¢) o i1 Y T(—2¢) ; 1111 ~ L€ (€)°,

IR7 e3VCexTIT(—€)?I ()3 IRg 2e37¢ex? TIT (—€)3T (€)' (2€) IRQ 213637611(6)3

1111 ™ T(—2¢) ’ 1111 "~ T(—3¢) 1111 Y ;
IRIO 2¢%7 e T (=€)’ T (e)T(2¢) IR11 e ext TN (—€)?T(e)° IR12 37€ ()3

1111 ™~ T(—3¢) RSB Uh N T(—2¢) ; 1111 ~ L€ (€)°,

IR13 e3VCexTIT(—€)?T ()3 IR14 N e3Vex T (—€)?I(€)3 IR15 2e37€ex? TIT(—€)3T (€)' (2¢)

1111 ™ T'(—2€) a 1111 T(—2¢) , 1111 ™ T'(—3¢)



Results

3-loop banana graph

« Summing over all contributions, we obtain the following result:

7banana 210 663766$6+1F(—6)2F(6)3 N 8637€ex2€+1f(—6)3F(6)F(26) N 363766373€+1I‘(—6)4F(36)
H ['(—2¢) I'(—3e¢) ['(—4e)
+ 4xe’I(e)® + O(2?) .

banana __ _3~e 3
Itg = €e7I(e)

 Next, we show how to obtain results for any values of p# using DiffExp



Results

DiffExp

 Typical usage of the package:

Set configuration options using the method LoadConfiguration[opts ]

Prepare a list of boundary conditions using PrepareBoundaryConditions [bcs , line ]

Then we can find series solutions along a line using the function:

IntegrateSystem[bcsprepared , line ]

Or one can transport the boundary conditions to a new point using:

TransportTo[bcsprepared , point |



Results

3-loop banana graph
 Load DiffExp:

Get[FileNameJoin[ {NotebookDirectory[], "..", "DiffExp.m"}]11];

Loading DiffExp version 1.0.2
Author: Martijn Hidding. Email: hiddingm@tcd.ie.

 Set the configuration options and load the matrices

EqualMassConfiguration = {
DeltaPrescriptions -» {t-16+16},
MatrixDirectory -» NotebookDirectory[] <> "Banana_EqualMass Matrices/",
UseMobius -» True, UsePade -» True

}s
LoadConfiguration[EqualMassConfiguration];
DiffExp: Loading matrices.
DiffExp: Found files: {dt ©@.m, dt_1.m, dt_2.m, dt_3.m, dt_4.m}
DiffExp: Kinematic invariants and masses: {t}
DiffExp: Getting irreducible factors..
DiffExp: Configuration updated.
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3-loop banana graph

 Prepare the boundary conditions along an asymptotic limit:

EqualMassBoundaryConditions = {
IIPII
R ]
IIPII
S |

6e3Euler~Gannnac—:(_%)1”5eGamma[—e]zGamma[e]3

e (L+3€) (1+4e)

4 e3 EulerGamma e Gamma [G] 3
- +
t Gamma[-2 €]
g @3 Fulercamnac (_ %)1"26 € Gamma[-¢]® Gamma[e] Gamma[2e] 3 e?Fulercammac (_ %)1"36 e Gamma[-€]% Gamma[3 €]
+
Gamma[-3 €] Gamma[-4 €]

e3 EulerGamma € €3 Gamma[€] 3

} // PrepareBoundaryConditions[#, <|t-> -1/x|>] &;

DiffExp: Integral 1: Ignoring boundary conditions.
DiffExp: Integral 2: Ignoring boundary conditions.
DiffExp: Assuming that integral 3 is exactly zero at epsilon order @.

DiffExp: Prepared boundary conditions in asymptotic limit, of the form:

> ? ? ? ?
? ? ? ? ?
Dl'F'FEXp: O[X]Sl ( ) X+0[X]3/2 ( ) x+o[x]3/2 ( ) X+O[X}3/2 ( )X+O[X]3/2
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3-loop banana graph

» Next, we transport the boundary conditions:

Transportl = TransportTo[EqualMassBoundaryConditions, <|t-> -1|>];
Transport2 = TransportTo[Transportl, <|t-> x|>, 32, True];

1.
DiffExp: Transporting boundary conditions along (‘te——‘} from x = 0. to x = 1.
X

DiffExp: Preparing partial derivative matrices along current line..
DiffExp: Determining positions of singularities and branch-cuts.
DiffExp: Possible singularities along line at positions {©.}.
DiffExp: Analyzing integration segments.

DiffExp: Segments to integrate: 3.
8. (-1.+1.x)

X

DiffExp: Integrating segment: {‘t-e

DiffExp: Integrated segment 1 out of 3 in 20.8565 seconds.
DiffExp: Evaluating at x = 0.0625
DiffExp: Current segment error estimate: 5.14483x10 3!

DiffExp: Total error estimate: 5.14483x10 !
-1.+1.Xx

N3 LLCvne ThtAamnatrina canmmant. /|+ . \



Results

 Lastly, we plot the result:

3-loop banana graph

ResultsForPlotting = ToPiecewise[Transport2];
Quiet[ReImPlot[{ResultsForPlotting[[3, 41]1([x], ResultsForPlotting[[3, 5]1]1[x]}, {x, ©, 32},

ClippingStyle - Red, PlotLegends-a{"Bi”'u "Bf”"}, AxesLabel - {
MaxRecursion - 15, WorkingPrecision - 100] |
800 |
600

400

200 |

-200
-400

~600 f

n 2

p~/m

"}, PlotRange » {-700, 850},



Results

3-loop banana graph
e Timing:
« Moving from p? = —oo to p? = 30 at a precision of 25 digits takes about 90 sec, where we computed
the top sector integrals up to and including order 3.

« Moving from p? = —o0 to p? = 30 at a precision of 100 digits takes a bit under 20 min, where we

computed the top sector integrals up to and including order €3.

 Obtaining 100+ digits at p? = —100 up to and including order 3 takes about 2.5 min.

. ng) :

%)

4.082413202704059607801991461045097339855501253774222434496563798314848283907330199489603248642178129
-0.7713150915227857546258559692543676298350939151980774607908277236769934490973612004866036340787026038
-15.52268532416518855576696548019433617730937578226039207428302008586262767404183548619606743796239099
78.125097281480016929867/90482079302619114776011817121195506011258285334682242128391076363566162968586
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3-Loop banana graph

In the unequal mass case, we may choose the “precanonical” basis:

( banana banana banana banana banana banana
E1_1122 9 611212 3 €]i221 3 612112 3 612121 ) 612211 )

e(1+ 3e)IPEn®, e(1 4 3e) IP8arme, e(1 + 3e) Ipgpene,
e(1 + 3e)Ipaema ) e(1 + 3e) (1 + 4e) Ipipee,

3 rbanana _3 ybanana 3 rbanana _3 ybanana
L e Lorn s e LT € 4o €0 40 J

B’banana —

The unequal mass case is significantly more difficult to compute for DiffExp, due to the presence

of 11 coupled master integrals.

The series expansions grow wildly at intermediate stages of the calculations, which puts the linear

algebra routines off track.

Therefore, we must work at a high working precision (1000+), and rescale the line parameters in a

way that the series coefficients don't become too large at high orders
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3-Loop banana graph

« We provide 55 digits of basis integral B;; below, in the point
(p? =50,m% =2,m5 =3/2,m4 =4/3,m5 =1)

B =0
Bﬁ) = 5.1972521136965043170129578538563652405618939122389078645
+1 6.8755169535390207501370685645538902299559024551830956594

Eﬁ?)::——T19580108112094060899523361698928478948780687053899075733
+ 1 31.7436703633693090908402932299011971913508950649494231047

Eﬁi)::-—121.5101152068177565203392807541216084962880772908306370668
— 1 40.7690762360202766453775999917172226537428258529145754746

Eﬁi)::125Iﬂl3388023605534745593764004798958232118632681257073923
— 1 229.9200257172388589952062757571215176834471783495112755027

* This point can be obtained in about 23 min.
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4-Loop banana graph

« We can also compute higher loop banana graphs.

4 5
banana eEe a—2(2—2¢) d —a1 y—az My—a —a4 Y—a
Ia1a2a3a4 — (iﬂ-d/2> (m2) (H/d ]{Z) Dl D2 D3 3D4 D5 5
1=1

Dl = —k%+m2, DQ = —k%+m2, D3 = —k§+m2
Dy = —k+m? Ds=—(k +ko+ks+ks+p) +m?

« We consider the following basis of “precanonical” masters:
banana
By = eli122:
By = €(2e + 1)I1}155"
B3 = €(2¢ + 1)(4e 4 1)Ibanana
By = €(2¢ + 1) (4e + 1)(5e + 1)IP5pana

__ _4vbanana
Bs = € 111110
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4-Loop banana graph

We may find boundary conditions by imposing the vanishing of non-physical singularities.

This allows a determination of the integrals completely from the differential equations,

without any need for asymptotic expansions.

This follows the approach of:

« [Chicherin, Gehrmann, Henn, Lo Presti, Mitev, Wasser, 1809.06240]

- [Abreu, Ita, Moriello, Page, Tschernow, Zeng, 2005.04195]

First, we need to provide an overall normalization for the basis. This is provided by the

tadpole integral which is equal to: IPaRane = e47E¢ed(€)4



Results

4-Loop banana graph

» Then we do the following:
« We compute the general solution of the top sector integrals at t = 0.

» The expansions contain powers of logarithms, we set their coefficients to zero, which

solves some of the indeterminate constants.

* Next, we transport and center an expansion at t = 1. There are again logarithms in the

expansions, and we set their coefficients to zero.

« We repeat this a final time and get rid of a non-physical singularity at t = 9.

 Only the physical singularity at t = 25 remains at the end and all coefficients are fixed



Results

4-Loop banana graph

 Our original expansion was centered at t = 0, where we now find the results:

%] 0.5626161626035411 0.3475481638835365 1.911555944481455 ©0.2718352134528369
%] 1.923605373745244 0.6752648394943755 6.876325052991839 -1.339280364786555
%] 7.989117602399249 10.23095239518146 7.206853721986161 86.05832181407076
%] 39.94558801199625 91.100634998790354 —-72.59332146214688 900.8362379685953
1.000000000000000 %] 3.289868133696453 -1.602742537546126 6.493939402266829

 Or, moving to the point t = 50, we have:

(%] -0.127301395 + ©.060055594 1 ©.44510796 + ©.05196919 1 -3.6356361 + 2.3160967 1 -3.337360 - 16.053530 1
%] ~-0.6629555 + 1.5090835 1 ~4.6446551 - 6.2746996 1 24.255982 - 2.263457 1 ~9.971355 + 57.386664 1
%] 4.6398127 + 9.9513277 i ~-41.998524 + 31.366660 1 -130.68313 - 120.45461 1 327.35602 - 310.64441 i
(%] 50.934939 + 28.927728 1 77.63780 + 297.73512 1 -952.72123 + 736.44670 1 -1977.1722 - 1153.1457 1
1.0000000 7] 3.2898681 -1.6027425 6.4939394
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Special functions (extra)

* As a simple exercise, we can also use DiffExp for evaluating MPLs. For example:

G(1,2;2) 0 7= 0 /G(1,2;2)
9.1 G(Zz) | =10 0 G(2; 2)
1 0 0 0 1

 For which the boundary conditions are (0,0,1) at z = 0.

» After building a wrapper function, we can evaluate any MPL.:
G[1, 2, 3] /. G- GEvaluate // AbsoluteTiming
{e.210704, (-3.770321147614654297611933 + @. x 10%/ i) +9.59146 x 10 %° pm |

G[-1+I,1/2,1/4] /.G - GEvaluate // AbsoluteTiming

{@. 224892, (-0.037843655542722548767317976280272 - ©.032401313158193018998614285553716 1) + 2.91955 x 10 ** pm}
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Special functions (extra)

« Under normal circumstances, the timing lacks (considerably) behind GiNaC.

 But, in certain edge cases, we can beat GiNaC:

G[1l, 2, 3, 4, 5] /. G -» GEvaluate // AbsoluteTiming Ginsh[G[1, 2, 3, 4, 5], I{X"x}] // AbsoluteTiming

G[1, 2, 3, 4, 5, 6] /. G- GEvaluate // AbsoluteTiming Ginsh[G[1, 2, 3, 4, 5, 6], {x~x}] // AbsoluteTiming

G[i, 2, 3, 4,5, 6, 7] /. G- GEvaluate // AbsoluteTiming Ginsh[G[1, 2, 3, 4, 5, 6, 7], {Xx- x}] // AbsoluteTiming

G[1, 2,3, 4,5, 6, 7, 8 /. G- GEvaluate // AbsoluteTiming Ginsh[G[1, 2, 3, 4, 5, 6, 7, 8], {x-x}] // AbsoluteTiming
Gf1,2,3,4,5,6, 7,8, 9] /. G- GEvaluate // AbsoluteTiming Ginsh[G[1, 2, 3, 4, 5, 6, 7, 8, 9], {x > x}] // AbsoluteTiming

G[ri, 2, 3, 4, 5,6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20] /. G » GEvaluate // AbsoluteTiming

{0.091646, 1.6095226224403311158810149666544926923}

0.390622, 0.71789987161399442910474431842108605647 i
{1.08976, (1.60952262244033111588101496665449269230020513047 + 0. x10 *° i) +3.70371x10 *® pm} { ’ =

45 a8 {2.40738, -0.26582341298336027219930343877387480812}
{1 .67828, (0 .x10777 +0.71789987161399442910474431842108605646469682529 J'L) +5.19787 x 10" pm}

I {14.3798, -0.0841723822988754201685446103049463215116 1}

{2.41852 , (-0.26582341298336027219930343877387480773417067112 + 0. x 107°° i) +4.73081x 10748 pm}

{84.4906, 0.023286104182601022207577211044712622530}
{3 .32486, (0 .x107% - 0.084172382298875420168544610304946321745592846631 1'1) +2.6084x10 % pm}
{4.45558 s (0 .023286104182601022207577211044712620080786210006 + 0. x 10 1 1'1) +6.62625x10 pm}

{26.3489, (0.x107" - 4.6560546132501809204467164540854133971365381x10 ** i) + 3.59355x 10 > pm}



Results

Special functions (extra)

« We can also evaluate generalized hypergeometric functions, such as the Appell

functions. For example, we have with Fi(z,y) = Fi(a, by, b, c;z,9)

O*Fy (z,y 0*Fy(z,y OF (z,y OF (z,y
w(l—a:)%—l—y(l—m)#y)—l—[c—(a—l—bl—1—1)39] 18(3; ) — b1y 1(‘53; ) —aby Fi(z,y) =0
azFl(mJy) azFl(may) aFl(way) aFl(way)
l—y)——— 1— — b 1 —b — aby F =0
y(1-y) Y +z(1-y) 920y +lc—(a+b+1)y 9y 2T aby F1 (z,y)
: : . 0 0 1
« This can be combined into: Fi(z,y) , . Fi(,y)
O | OyFi(z,y) | = |7 = = OyF1(,y)
—ct+z+az+h (ltalby
0, Fy(z,y) R L e = A STC )
Fi(z,y) 0 1 0 Fi(z,y)
abs (z—2y)bi+(z—y)(—c ay+ybs) (—1+z)ab,
ay ayFl (ZL‘, y) — | y—? : (i1+y1)fy(—miﬁg = (—1+y;;(—as+y) ayFl(xa y)
BwFl(a:,y) 0 —mb—_ly mb__zy 893F1($7y)
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« Using the boundary conditions (1,ab,/c, ab;/c) at x = y = 0, we may use DiffExp to evaluate

the Appell F1 for arbitrary (real) x, y.

» Forexample, Fy(1,1/2,-3/2,5;3/20,1/2) :

Lo ab2 abil
F1BoundaryConditions = {1, —_—, —}
C

/.{a-»1,bl>1/2,b2-5-3/2, c->5}//
(o}

PrepareBoundaryConditions[#, {x1-»>3/20x, y1>1/2x}] &;

Res = TransportTo[F1BoundaryConditions, F1BoundaryConditions[[1]]]; // EchoTiming
Res[[2, 1, 1]] +pmRes[[3, 1, 11] // N[#, 40] &

0.437219

4- 0.8683725567150101477163534326556218507347 + 1.78536x 10 >* pm

 Although the timing is not competitive with other methods, this approach might be
straightforward to generalize to other hypergeometric functions. In addition, we can do e

expansions of HGFs. Lastly, the analytic continuation is straightforward in this approach.



Conclusion

Conclusion

 Series expansion methods provide an efficient way to evaluate

Feynman integrals

 Series expansion methods allow for obtaining high-precision

numerical results for beyond elliptic type integrals

 The Mathematica package DiffExp can be used for computing user-

provided systems of differential equations



Thank you for listening!



