Uncovering Hidden New Physics Patterns at High-Energy Colliders

Cambridge University Cavendish-DAMPT seminar, Feb 25th 2021

Darius A. Faroughy

Overview

- Motivation
- Build step by step a probabilistic model for event data
- BSM jet physics application

Based on: 1904.04200 2005.12319 - Jernej F. Kamenik - Barry Dillon - Manuel Swezc

Introduction

- Since 2012, the SM has been experimentally verified.
- Strong motivations for physics beyond the SM:

Insert here favorite motivations for BSM_

• Many BSM theories address some of these problems:

Insert here favorite BSM theories_

• High-energy hadron colliders like the LHC play a fundamental role in BSM searching.

So far null results! Why?

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Exotics Physics Searches

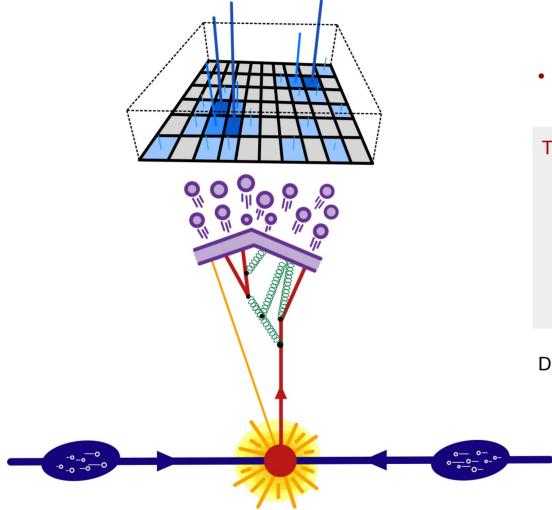
Contact: ATLAS Exotics Working Group Conveners

ATLAS

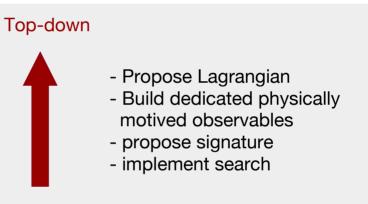
EXPERIMEN

This page contains public results from the ATLAS Exotics Working Group, which is searching for physics beyond the Standard Model with a signature-based program. Our aim is to cover all experimentally viable signatures focusing on non-supersymmetric models from Extra Dimensions and mini Black Holes to Dark Matter, extended Higgs models, and Compositeness to name a few.

Signature-Based approach

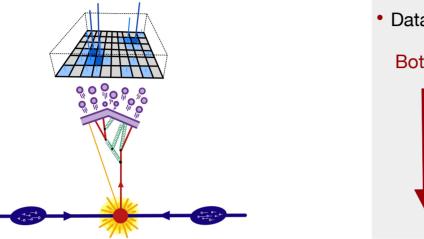


• Signature-based approach:



Driven completely by our theoretical biases...

Complementary approach



Data-based approach:

- Select a data representation
- Model the data
- Train on data
- Build event classifiers
- Extract signature
- Characterize BSM signal

• Relies completely on our ability to model collider data

Collider data is very complex!

• Advances in Unsupervised Machine Learning (ML) offer an opportunity to pursue this approach

	Farina et al (2018), Roy et al (2019) Cerri et al (2018)	
	Metodiev et al (2018), Collins et al (2019), Amram et al (2020) Metodiev, Thaler (2018), Komiske et al (2019), Alvarez et al (2019) Andreassen et al (2018, 2019)	Unsupervised ML Semi-supervised ML

Take-away messages of this talk:

- It is possible to write down <u>simple</u> statistical models for generic collider events, useful for unsupervised event classification tasks.

Latent Dirichlet Allocation (Bayesian Probabilistic Generative Model)

- Use these models to discover resonances in jet substructure! $tar{t}$ - W'

Data representation for events

• At the lowest level a collider event is a:

A collection of reconstructed four-momenta of the visible f hal states from the scattering process.

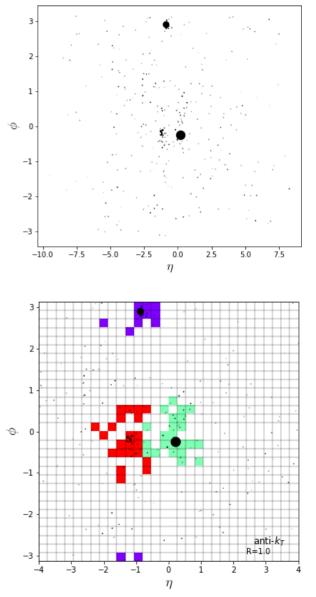
$$e = \{p_1, p_2, \cdots, p_n\} \begin{cases} p_1 = (\eta, \phi, p_T)_1 \\ p_2 = (\eta, \phi, p_T)_2 \\ \vdots \\ p_n = (\eta, \phi, p_T)_n \end{cases}$$

$$n \sim \mathcal{O}(10^2 - 10^3)$$
 High-dimensional phase space

High-level representations:
 - clustering
 - applying cuts
 - build physically motivated observables
 - ...

$$\begin{cases} j_1 = (\eta, \phi, p_T)_1 \\ j_2 = (\eta, \phi, p_T)_2 \\ j_3 = (\eta, \phi, p_T)_3 \end{cases} \implies e = \{m_{12}^2\}$$

Low-dimensional phase space



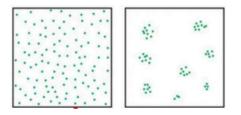
Darius A. Faroughy / Zurich U. 4

Event data as random point patterns

• Event: sequence of 'measurements' living in some vector space of observables.

$$e = \{o_1, o_2, \cdots, o_n\}$$
 $o_i \in \mathcal{O} \subset \mathbb{R}^k$

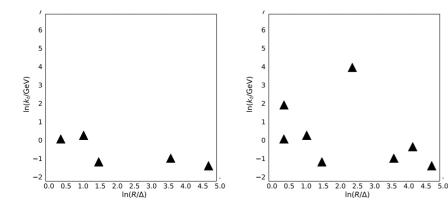
- Distribution of points: $e(o) = \sum_{i=1}^{n} \delta^{(k)}(o o_i)$ n is a random variable
- Suggests that individual events are realizations of a stochastic point process in ${\cal O}$

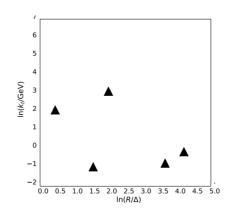


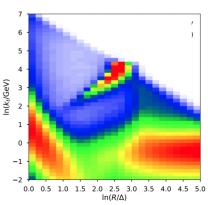
Poisson process

• Events are typically sparse and irregular point patterns:

example: Lund jet plane







Probabilistic models for events

• What is the joint probability of an ensemble of collider events?

$$\mathcal{D} = \{e_1, \cdots, e_N\}$$
 $\mathcal{P}(\mathcal{D}|\alpha) = \prod_{j=1}^N p(e_j|\alpha)$

What is the joint probability of a single collider event?

 $\mathcal{P}(e|\alpha) = \mathcal{P}(\{o_1, \cdots, o_n\}|\alpha)$

How can we model this probability in a simple, yet, useful way?

Goal: event classification (not event generation!)

• We impose three model-building assumptions for the event probability:

(1) Exchangeability of measurements.

(2) Discretization of the observable space.

(3) Multiple *latent* categories contribute to the event-generating process.

Assumptions are data-independent

1) Exchangeability

• Exchangeability of event measurements (i.e. Permutation symmetry)

$$\mathcal{P}(e) = \mathcal{P}(\{o_1, o_2, o_3, \cdots\}) = P(\{o_{\pi(1)}, o_{\pi(2)}, o_{\pi(3)}, \cdots\}) \qquad \pi \in \mathcal{S}$$
(permutation group)

De Finnetti's representation theorem (1931):

A sequence of measurements is exchangeable if and only if there exists a *latent* variable ω and two distributions p and P such that

$$\mathcal{P}(e) = \int_{\Omega} \mathrm{d}\omega \, P(\omega) \prod_{i=1}^{n} p(o_i | \omega)$$

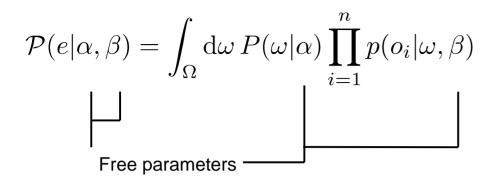
Latent space "Prior" "Likelihood"

Justifies Bayesian methods!

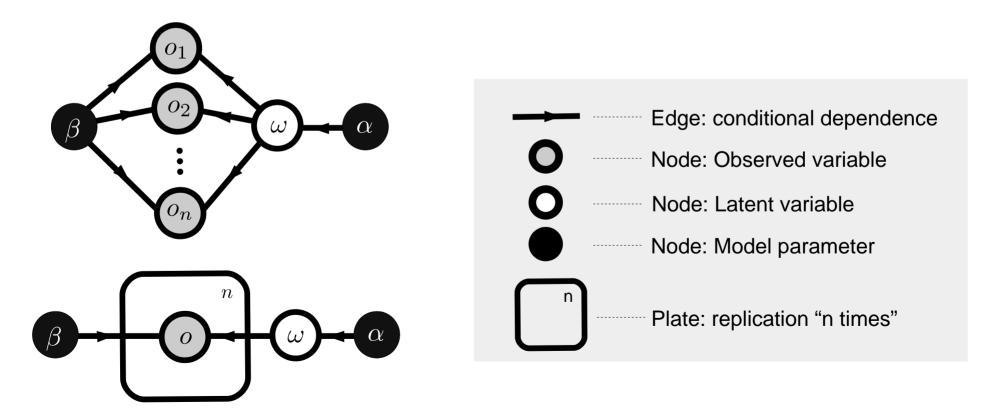
- Measurements are considered conditionally independent given a latent variable $\omega \in \Omega$
- Exchangeable not to be confused with independent and identically distributed (iid) !! $\mathcal{P}(e) = \prod \mathcal{P}(o_i)$
- We will need extra model-building assumptions to f k p, P, omega

n

i=1



• Graph models:



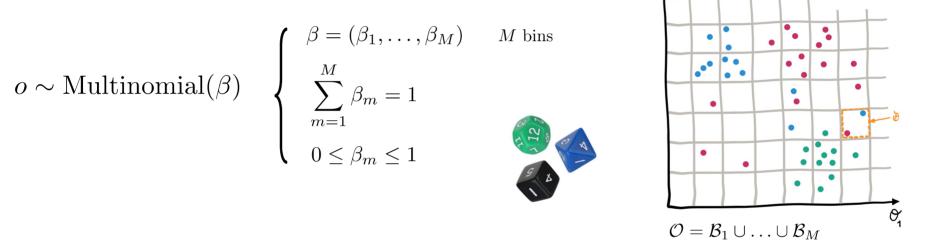
2) Event data discretization

•
$$\mathcal{P}(e|\alpha,\beta) = \int_{\Omega} d\omega P(\omega|\alpha) \prod_{i=1}^{n} p(o_i|\omega,\beta)$$

What to take for $p(o|\omega,\beta)$?

q

• Binned measurements:



- Multinomial from Poisson process in ${\cal O}\,$:

$$\begin{array}{ll} \textbf{Counts per-bin:} & N(\mathcal{B}) \equiv \#\{o \in \mathcal{B}\} & \longleftarrow & N(\mathcal{B}) \sim \mathrm{Poisson}(\lambda_{\mathcal{B}}) \,, & \lambda_{\mathcal{B}} = \int_{\mathcal{B}} \prod_{k=1}^{k} \mathrm{d}\mathcal{O} \ \mu(\mathcal{O}_{1}, \ldots, \mathcal{O}_{k}) \\ & \text{Non-homogenous intensity function} \end{array}$$

Total Count:
$$N = \sum_{\mathcal{B}} N(\mathcal{B}) \iff N \sim \operatorname{Poisson}(\lambda), \quad \lambda = \sum_{\mathcal{B}} \lambda_{\mathcal{B}}$$

$$P(N(\mathcal{B}_1), \cdots, N(\mathcal{B}_M) | N) = \prod_{\mathcal{B}} \frac{\operatorname{Poisson}(\lambda_{\mathcal{B}})}{\operatorname{Poisson}(\lambda)} = \frac{N!}{N(\mathcal{B}_1)! \cdots N(\mathcal{B}_M)!} \prod_{m=1}^{M} \left(\frac{\lambda_m}{\lambda}\right)^{N(\mathcal{B}_m)}$$

$$\beta_m \equiv \lambda_m / \lambda$$

Ø

Multinomial Distribution!

3) Multiple Latent Categories

•
$$\mathcal{P}(e|\alpha,\beta) = \int_{\Omega} d\omega P(\omega|\alpha) \prod_{i=1}^{n} p(o_i|\omega,\beta)$$

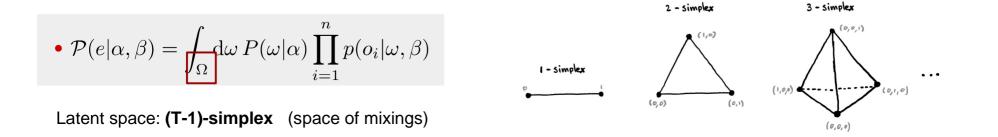
What to take for ther latent variable?

• Event measuremnts are generated from **multiple** latent Multinomial distributions over ${\cal O}$

 $p(o|\beta_t) \quad t = 1, \dots, T$

• Themes*: distributions encoding different physical contributions to a single event.

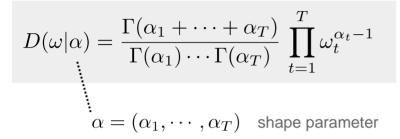
* Terminology from Natural Language processing (NLP)



•
$$\mathcal{P}(e|\alpha,\beta) = \int_{\Omega} \mathrm{d}\omega P(\omega|\alpha) \prod_{i=1}^{n} p(o_i|\omega,\beta)$$

What to take for the prior distribiton $P(\omega)$?

• Dirichlet distributions:



• Belongs to the exponential familiy and is **conjugate** to the multinomial.

• Two-theme model (T = 2):

$$D(\omega|\alpha_{1}, \alpha_{2}) \text{ is the Beta distribution over [0,1]}$$

$$\begin{cases}
f \text{ ht: } \alpha_{1} = \alpha_{2} = 1 \\
\text{uni-modal bell-shape: } \alpha_{1}, \alpha_{2} > 1 \\
\text{uni-modal J-shape: } \alpha_{1} > 1, \alpha_{2} < 1 \\
\text{bi-modal U-shape: } \alpha_{1}, \alpha_{2} < 1
\end{cases}$$

0.4

0.6

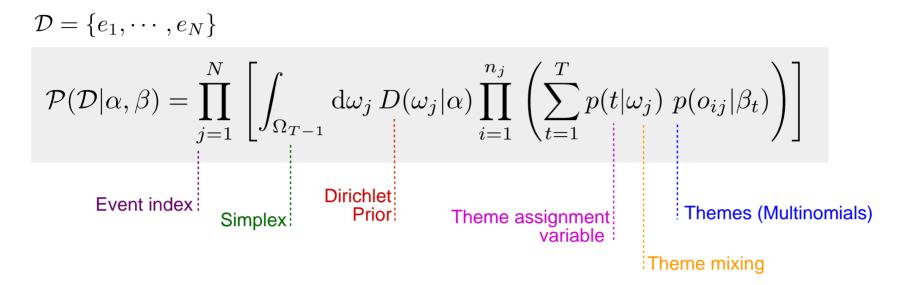
0.8

1.0

0.2

0.0

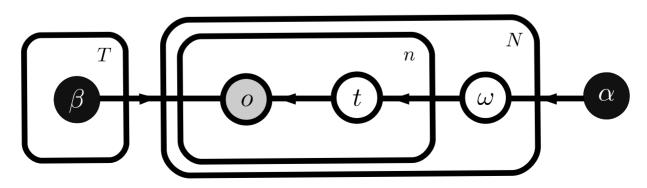
Latent Dirichlet Allocation (LDA)

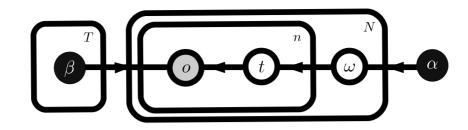


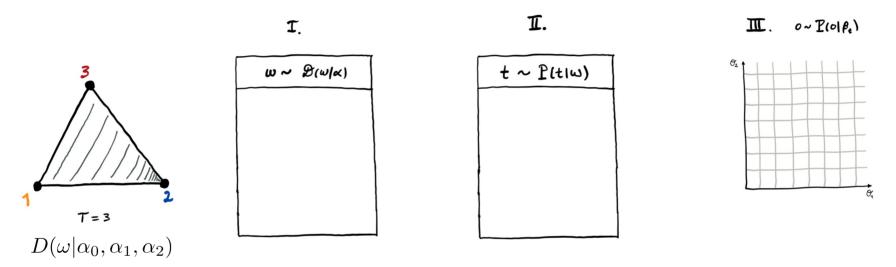
LDA is a mixed-membership model.

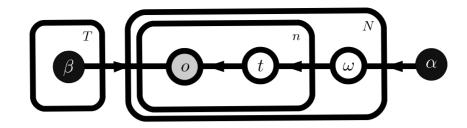
Individual events are described by mixture of multiple themes:

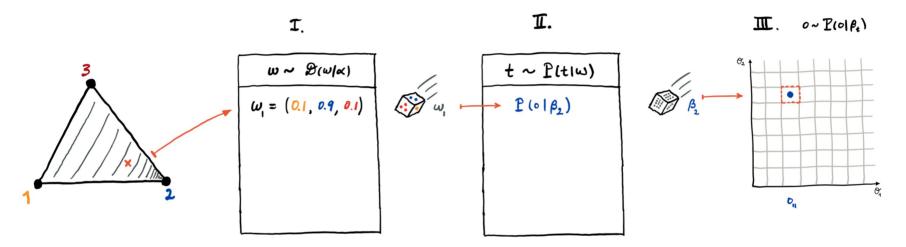
• LDA graphical model:



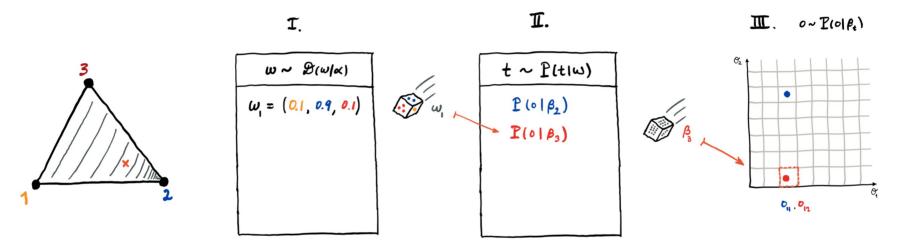




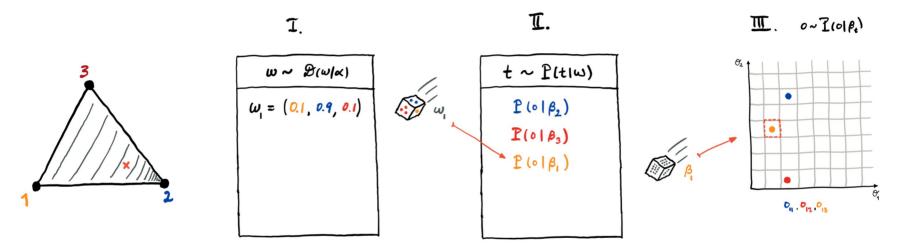




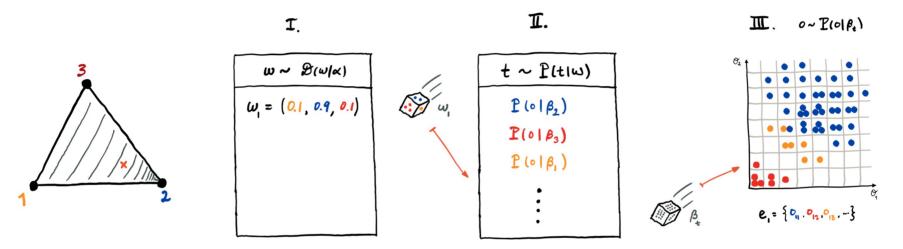




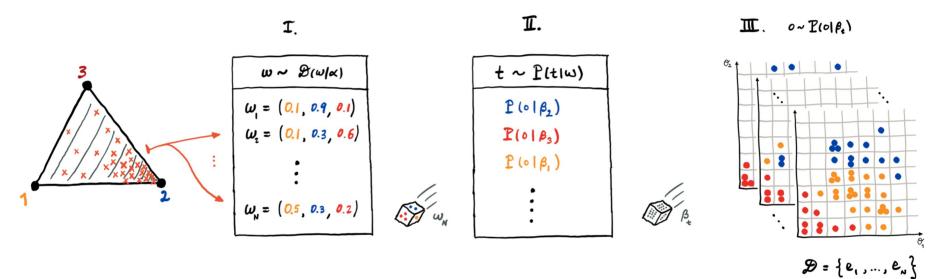


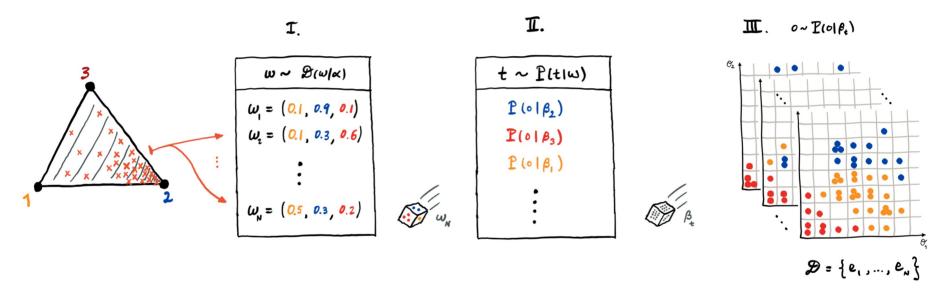






n ω





• Mixed-Membership Models not to be confused with Mixture models!

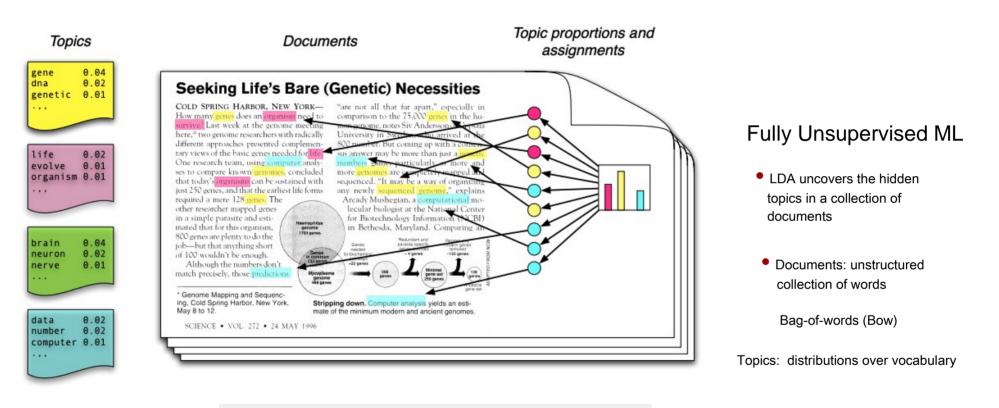
All measurments in an event come from only <u>one</u> theme...

Topic Models for texts

LDA conceived for Natural Language Processing

Blei, Ng, Jordan, Journal of Machine Learning Research, 3 (2003) 993-1022.

over 30K citations!



• Text / Collider Physics correspondance:

corpus ------ event samples document ----- event vocabulary ------ space of observables word ----- bin topic ----- histogram

Learning the latent variables

• The posterior for an event:

$$p(\omega, t, \beta | e, \alpha, \eta) = \frac{p(\omega, t, \beta, e | \alpha, \eta)}{p(e | \alpha, \eta)} \cdots \sum_{t} \int d\omega d\beta \, p(\omega, t, \beta, e | \alpha, \eta) \quad \text{``evidence''} \quad \text{Intractable integral!}$$

• Variational inference: inference problem \longrightarrow optimization problem

 $\label{eq:Kullback-Liebler} \mbox{Kullback-Liebler divergence} \quad d_{\rm KL}[q,p] = \langle \log q \rangle - \langle \log p \rangle + \underbrace{\log p(e)}_{\mbox{Log-evidence....}} \mbox{still intractable}$

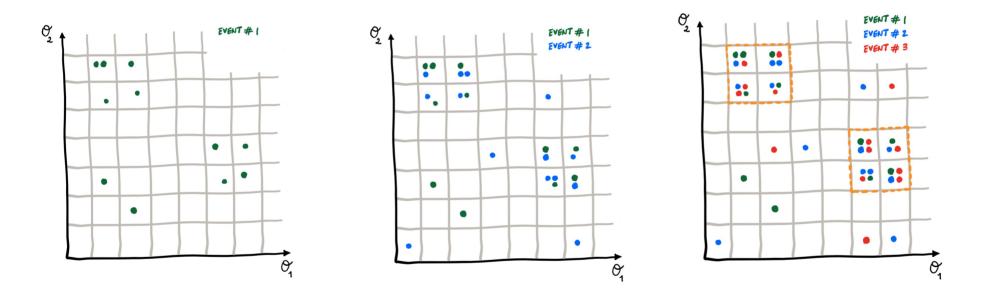
Instead we maximize evidence lower-bound (ELBO):

$$q^* = \operatorname*{argmax}_{q \in \mathcal{Q}} \mathcal{L}[q] \qquad \qquad \mathcal{L}[q] := \langle \log p \rangle - \langle \log q \rangle \\ \log p(e) = d_{\mathrm{KL}}[q, p] + \mathcal{L}[q] \implies \log p(e) \ge \mathcal{L}[q]$$

Co-ocurrences

- What does LDA learn?
- LDA learns by identifying recurring measurement patterns

Captures the statistical dependencies between event measurements in the event ensemble



Finds Co-ocurrences between event measurement throughout the event sample.

(LDA clusters in the same themes measurments that tend to co-occur together)

Two-theme LDA classifiers

• For most applications we wish to classify events into two categories

We focus on Two-theme LDA models T = 2

• This gives rise to two possiblel binary classifiers:

1) Likelihood-ratio of themes: $L(e|\alpha) := \prod_{o \in e} \frac{p(o | \beta_2)}{p(o | \beta_1)} \qquad \begin{cases} L(e|\alpha) > c \implies e \in C_1 \\ L(e|\alpha) \le c \implies e \in C_2 \end{cases}$

2) 'Cluster' assignment:

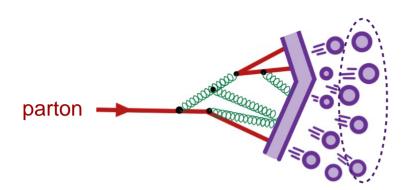
$$w(e|\alpha) := \omega(\alpha)|_e$$
 Probability of event
belonging to f ist
cluster (theme)

$$\begin{cases} w(e|\alpha) > c \implies e \in \mathcal{C}_1 \\ w(e|\alpha) \le c \implies e \in \mathcal{C}_2 \end{cases}$$

LDA can be interpreted as a fuzy clustering algorithm

Both classifiers yield similar performances

Application to jet substructure



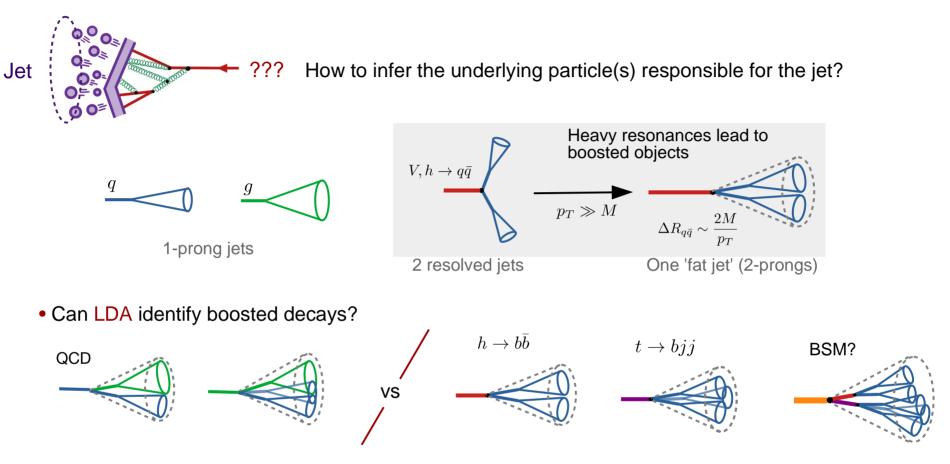
Jets are collimated spray of hadrons

• Jet clustering: sequential recombination schemes

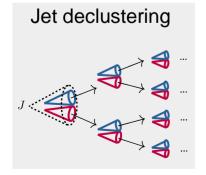
$$d_{ij} = \min\left\{p_{T_i^{2\alpha}}, p_{T_j^{2\alpha}}\right\} \left(\delta_{ij} + \frac{\Delta R_{ij}^2}{R^2}\right) \qquad \begin{cases} \alpha = -1 & \text{anti-kT} \\ \alpha = 0 & \text{Cambridge/Aachen (CA)} \\ \alpha = +1 & \text{kT} \\ R = \mathcal{O}(1) \text{ jet cone radius} \end{cases}$$

jet merging criteria: $d_{ii} \ge d_{ij} \implies i \cup j \rightarrow k \quad p_k^\mu = p_i^\mu + p_j^\mu$

The jet classification problem



• Jet substructure observables that resolve the inner structure of (fat) jets:

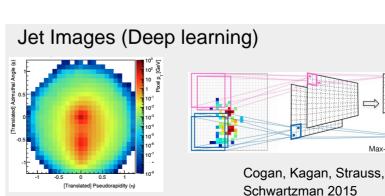


Jet shapes

Angularities

N-subjettiness

Energy correlation functions...

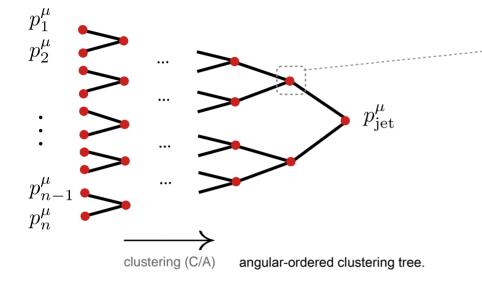


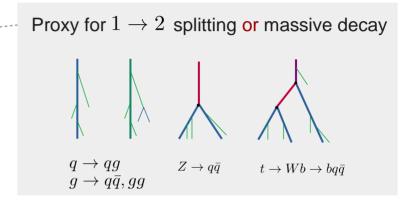
19

Max-Pooling

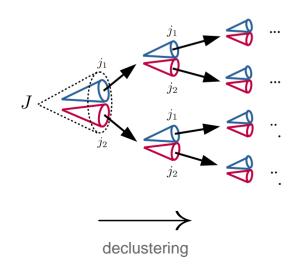
Jet clustering history

- Jet clustering hierarchy is sensitive to the underlying physics.
- Jet binary tree: proxy for the radiation pattern during jet formation.





• Jet declustering:



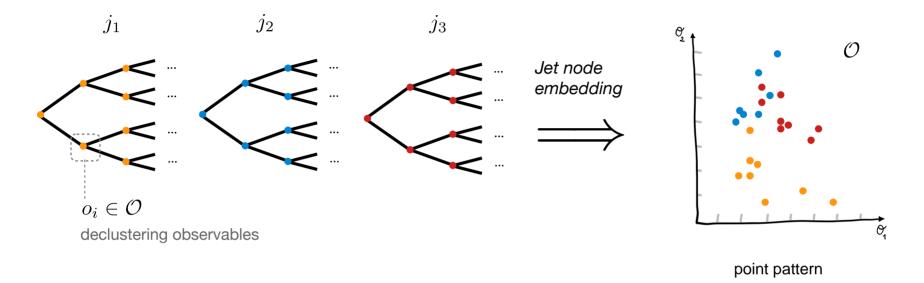
• Jet tagging/grooming:

Decluster jet iteratively following hardest branch until some "hard/collinear" branching condition is identif ed...

Mass-drop tagger & mMDT HEP & JH Top taggers Soft-drop tagger/groomer Butterworth, Davison, Rubin, Salam 2008 Dasgupta, Fregoso, Marzani, Salam 2018 Kaplan, Rehermann, Schwartz & Tweedie 2008 Larkoski, Marzani, Soyez, Thaler 2014 Dreyer, Necib, Soyez, Thaler 2018

Simpler data representation for jets

• Ordering in jet declustering procedure is ignored!



• For full events, can include jet kinematical "labels" based on some jet ordering.

• De Finnetti represenatation of jet:

$$\mathcal{P}(\checkmark) \simeq \int_{\Omega} \mathrm{d}\omega \, \mathcal{P}(\omega) \prod_{\bullet \in j} \mathcal{P}(\bullet | \omega)$$

Justification: The 1->2 splitting pattern is dominated by QCD soft/collinear emissions, only a handful of splittings are relevant for identifying the underlying hard physics for jet/event classification

Text analogy: syntaxic structure of the document is removed when extracting the topics (bag-of words)

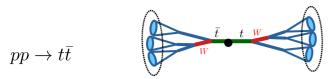
Jet declustering observables

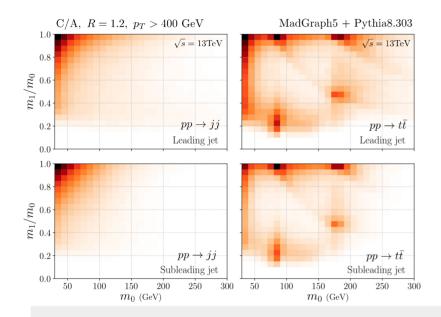
 $o_i \in \mathcal{O}$ $j_0 \to j_1 j_2$

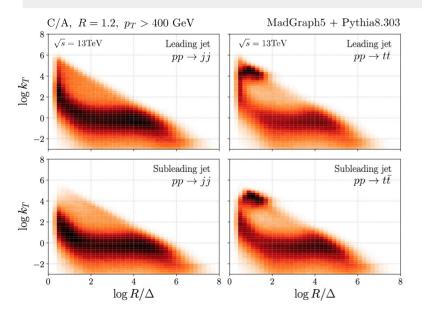
• Train LDA on full events with 2 types of substructure observables:

$$\text{Mass observables:} \quad \mathcal{O}_{\text{Mass}} = \left\{ \ell, m_{j_0}, \frac{m_{j_1}}{m_{j_0}} \right\} \quad m_{j_0} > 30 \text{ GeV} \\ \ell \text{ Label indicating to which jet the measurement beings too, with jets ordered by mass.} \\ \text{Lund observables:} \quad \mathcal{O}_{\text{Lund}} = \left\{ \ell, \log(k_l), \log\left(\frac{R}{\Delta R}\right) \right\} \quad \underset{\text{Dreyer et al}}{\text{Primary Lund plane Dreyer et al}} \left(2018 \right) \\ \hline \\ \frac{1}{1000} \int_{\frac{1}{2}}^{000} \int_{\frac{1}{2}}^{000$$

• Top-quarks vs QCD

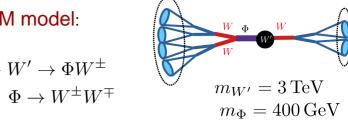


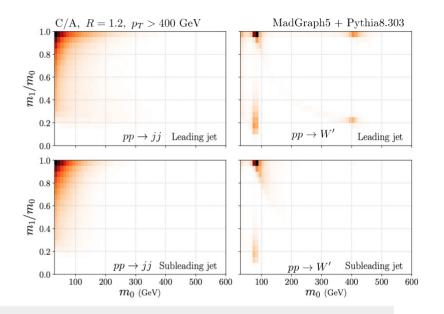


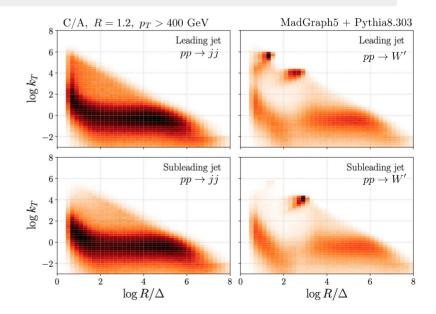


• BSM model:

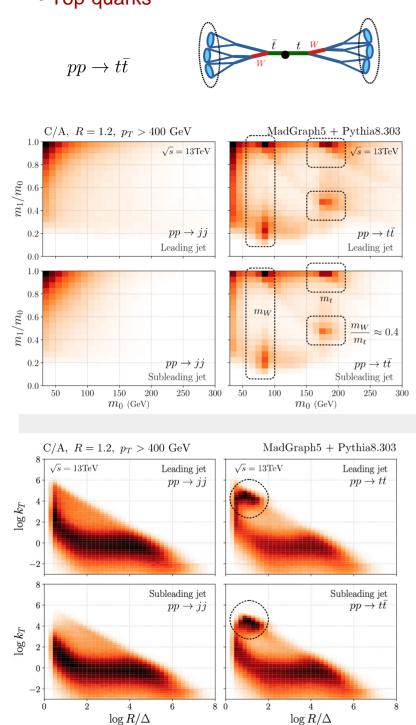
 $pp \to W' \to \Phi W^{\pm}$



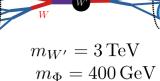


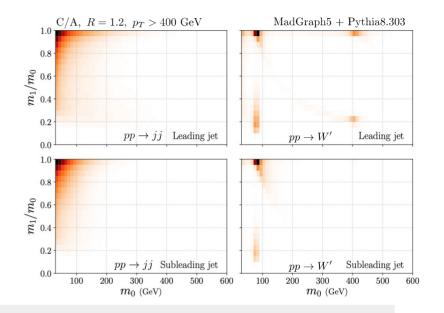


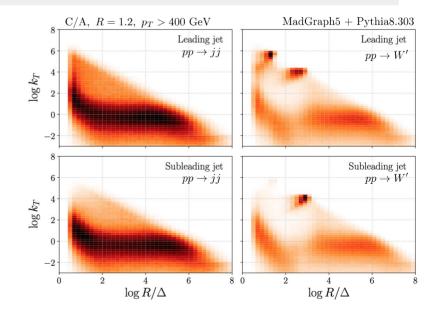
• Top-quarks



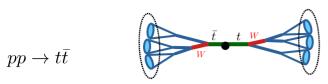
• **BSM model**: $pp \rightarrow W' \rightarrow \Phi W^{\pm}$

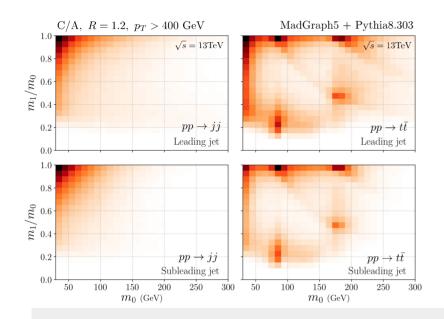


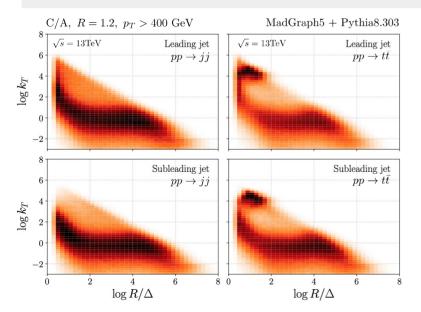




• Top-quarks



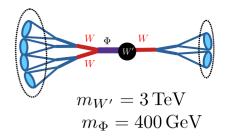


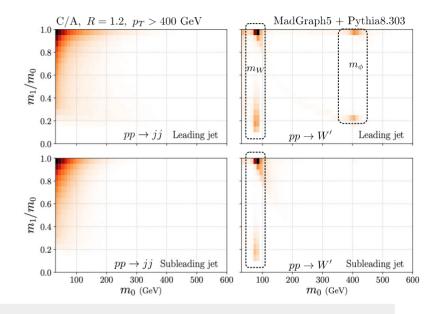


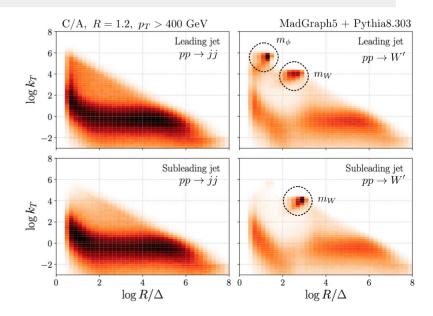
• BSM model:

 $pp \to W' \to \Phi W^{\pm}$

 $\Phi \to W^{\pm} W^{\mp}$



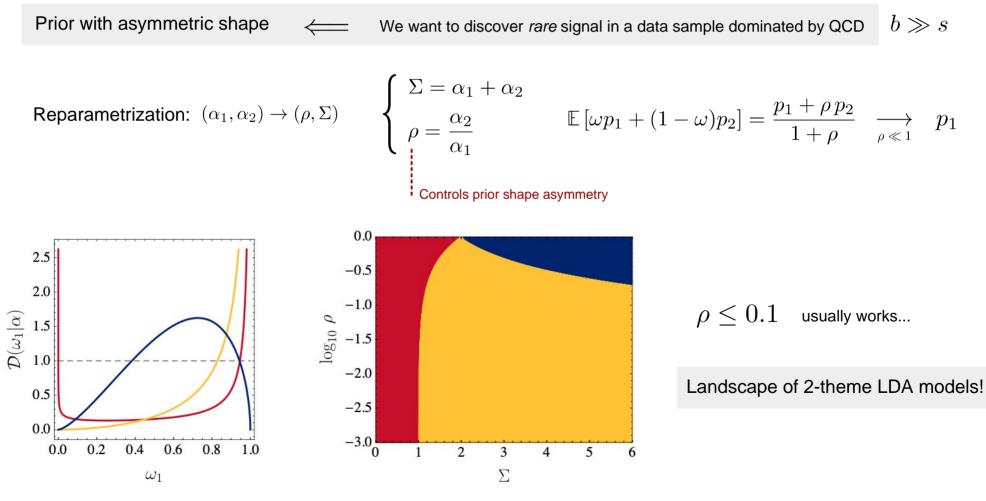




Rare signals with LDA

• Two-theme LDA:

- If LDA works well: $\begin{cases} p_1 := p(o|\beta_1) & 1^{\text{st}} \text{ theme: should include most QCD features} \\ p_2 := p(o|\beta_2) & 2^{\text{nd}} \text{ theme: should include most signal features (e.g. BSM)} \end{cases}$
- Which Dirichlet prior for the theme mixture? $\omega \sim D(\omega | \alpha_1, \alpha_2)$



Back to 1995: 're-discovering' Top-quarks

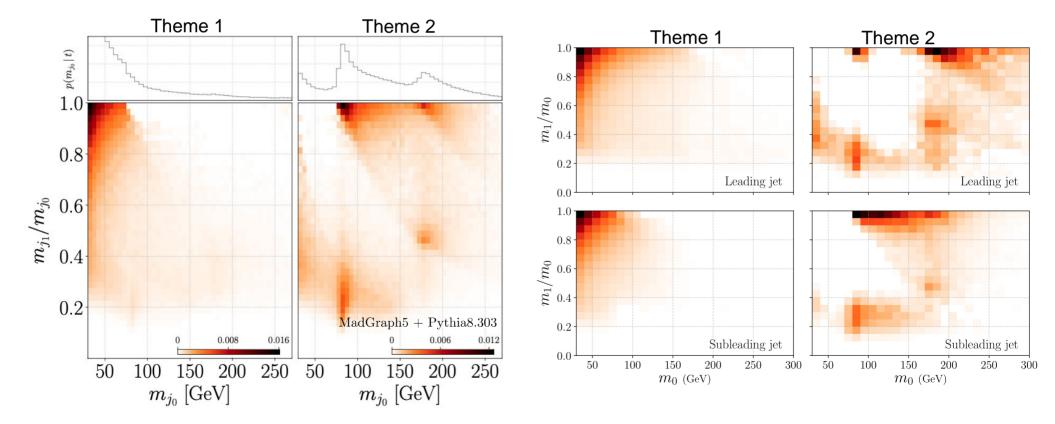
- Train two-theme LDA on mixed (unlabelled) QCD + tops sample ~ 50k events
- Training performed with Gensim (python package)
- Unsupervised classifier results:

Proof of concept:
$$s/b = 1$$

 $\mathcal{O}_{\text{Mass}} = \left\{ m_{j_0}, \frac{m_{j_1}}{m_{j_0}} \right\} \quad (\rho, \Sigma) = (1, 1)$

Small signal:
$$s/b = 0.05$$

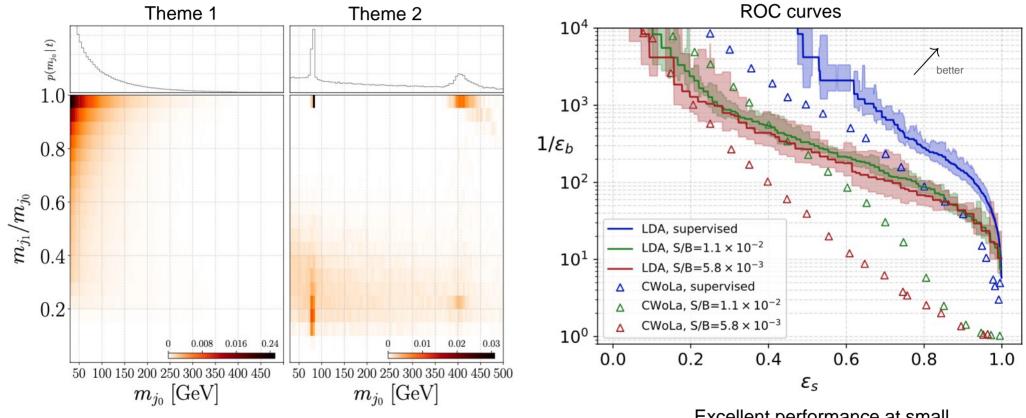
 $\mathcal{O}_{\text{Mass}} = \left\{ \ell, m_{j_0}, \frac{m_{j_1}}{m_{j_0}} \right\} \quad (\rho, \Sigma) = (0.1, 1.5)$



Uncovering BSM physics

$$pp \to W' \to \Phi W^{\pm}, \ \Phi \to W^{\pm} W^{\mp}$$
 $2.7 \le m_{JJ} \le 3.2 \text{ TeV}$

~ 100k events s/b = 0.01 $\mathcal{O}_{\text{Mass}} = \left\{ m_{j_0}, \frac{m_{j_1}}{m_{j_0}} \right\}$ $(\rho, \Sigma) = (0.1, 1)$

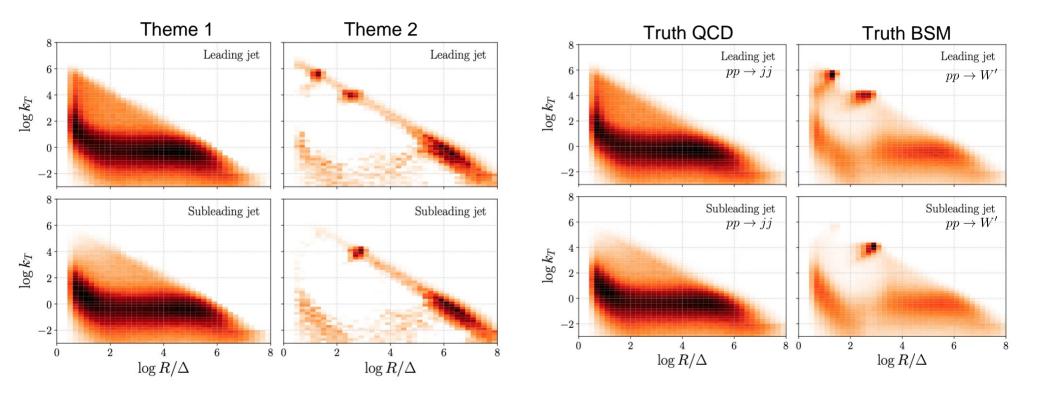


Excellent performance at small signal-to-background ratios!

Uncovering BSM physics from the Lund plane

$$pp \to W' \to \Phi W^{\pm}, \ \Phi \to W^{\pm} W^{\mp}$$

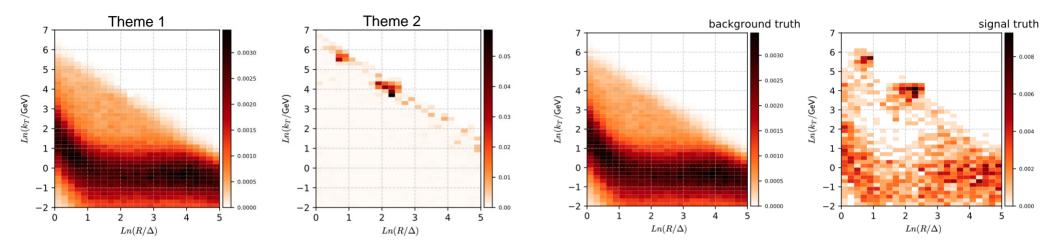
~ 100k events
$$s/b = 0.01$$
 $\mathcal{O}_{\text{Lund}} = \left\{ \ell, \log(k_t), \log\left(\frac{R}{\Delta R}\right) \right\}$ $(\rho, \Sigma) = (0.1, 1)$



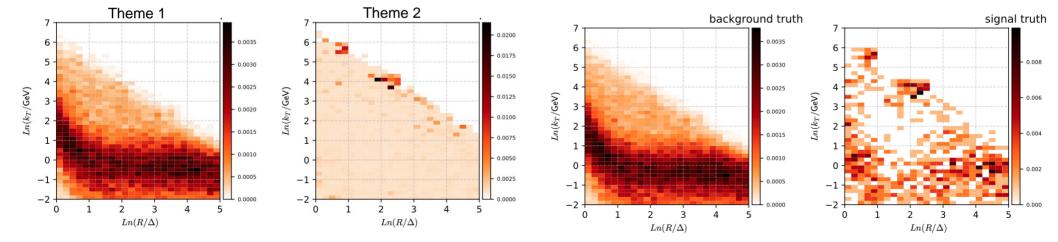
LDA discovers the hard/colinear splittings of the massive resonance decays in the Primary lund plane.

• What if we train on much less events?

 $\begin{cases} 10k \text{ QCD events} \\ 100 \text{ signal events} \end{cases} s/b = 0.01 \qquad \mathcal{O}_{\text{Lund}} = \left\{ \log(k_t), \log\left(\frac{R}{\Delta R}\right) \right\} \qquad (\rho, \Sigma) = (0.0009, 5.2) \end{cases}$



$$\begin{cases} 1600 \text{ QCD events} \\ 40 \text{ signal events} \end{cases} s/b = 0.025 \qquad \mathcal{O}_{\text{Lund}} = \left\{ \log(k_t), \log\left(\frac{R}{\Delta R}\right) \right\} \qquad (\rho, \Sigma) = (0.09, 4.0) \end{cases}$$



• LDA works well with small data samples!

• What if there is NO signal?

Theme 2 Theme 1 7 7 ln(k_t/GeV) Sort, non-perturbative 0.0030 Hard-colliner QCD 0.035 6 Primary Lund-plane regions 6 5 5 0.030 Asymmetric Dirichlet prior 0.0025 4 4 0.025 hard collinear large ty ISR (la $Ln(k_T/\text{GeV})$ $Ln(k_T/\text{GeV})$ 0.0020 3 -3 0.020 $(\rho, \Sigma) = (0.1, 1)$ 2 -0.0015 2 0.015 1 -1 0.0010 0.010 Manue non-pert. (small k 0 0 0.0005 0.005 $^{-1}$ $^{-1}$ $\ln(R/\Delta)$ -2 0.0000 -2 0.000 0 2 3 4 5 0 3 5 1 1 2 Δ $Ln(R/\Delta)$ $Ln(R/\Delta)$ leading jet ▼ • 4 QCD events: sub-leading jet 7 6 6 6 6 5 -5 5 5 . 4 4 4 $Ln(k_T/\text{GeV})$ N W 3 -3 -3 2 -2 -2 -2 1 1 -1. 1 0 0 0 0 -1 $^{-1}$ $^{-1}$ $^{-1}$ -2 --2 -2 -2 0 ò ò 5 2 4 5 2 4 5 2 4

3

 $Ln(R/\Delta)$

Ó

Train ~ 100k QCD events

3

 $Ln(R/\Delta)$

1

3

 $Ln(R/\Delta)$

3

 $Ln(R/\Delta)$

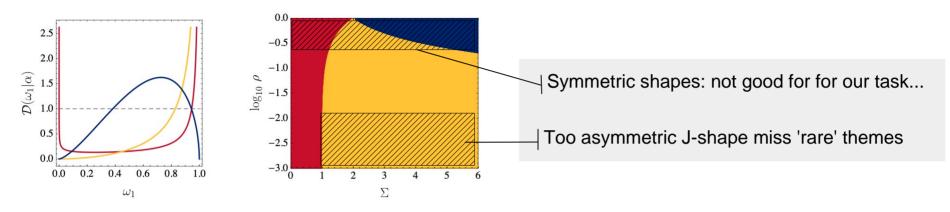
4

5

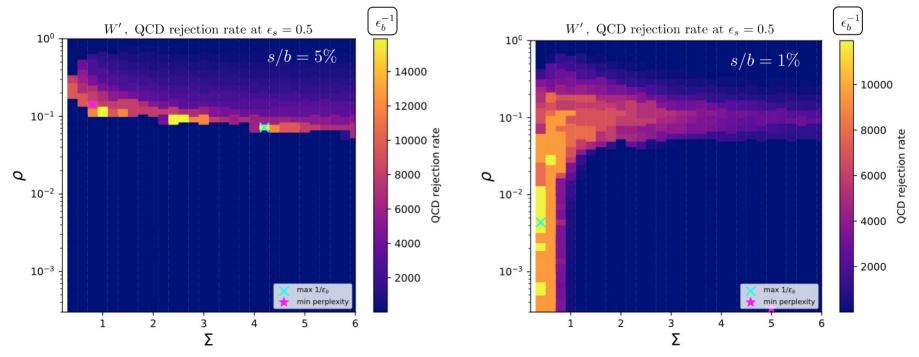
2

Landscape of 2-theme LDA models

• (ρ, Σ) - plane



• Event classifcation performance over the LDA landscape:



Perplexity

• We need a criteria for selecting from all models in the Landscape the one with the "best" performance.

We need a statistical goodness-of-ft test for the generative model.

• Perplexity:

For an event sample $\mathcal{D} = \{e_1, \dots, e_N\}$

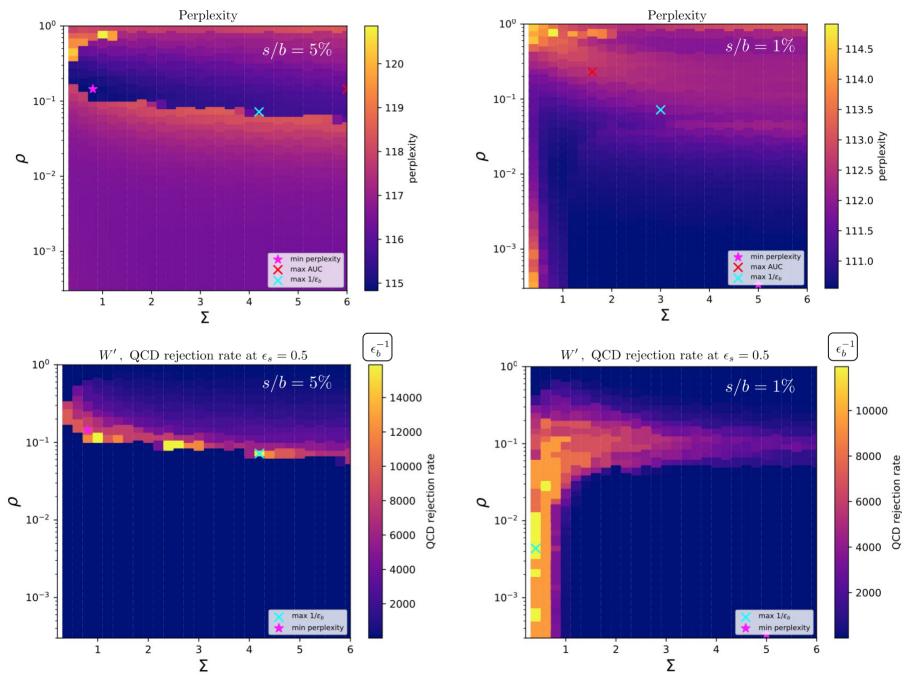
$$perplexity(\mathcal{D}) := 2^{-b} \qquad b = \frac{1}{n_{\text{tot}}} \sum_{j=1}^{N} \log p(e_j) \approx \frac{1}{n_{\text{tot}}} \sum_{j=1}^{N} \mathcal{L}(e_j)$$

$$Total number of measurements \qquad ELBO$$

• Perplexity is the measure of how well a generative model f ts the data sample.

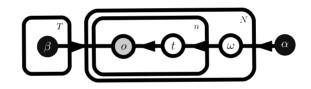
Good models have a lower perplexity score, i.e. a greater probability it generated the observed data.

Trained ~1000 2-theme LDA models

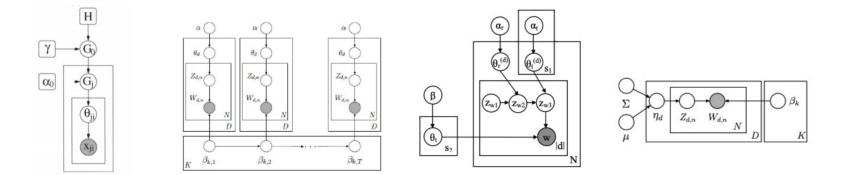


Summary

- We need new model indendent ways of searching for BSM physics at the LHC.
- We showed that simple generative probabilistic models can be used to describe generic data representations for collider events.
- Under broad assumptions we arrived to the Latent Dirichlet Allocation (LDA) model.
- We demonstrated that LDA can be used to uncover heavy resonances in dijet samples in a fully unsupervised manner.
- LDA is just one possible probabilistic model...



It can used as a building block for more complex probilistic models for collider events.



Thank You!

SIArxiv beta

About us

IArxiv beta

Developed by:

Ezequiel Alvarez (ICAS) Daniel de Florian (ICAS) Federico Lamagna (CAB CNEA) Cesar Miquel (Easytech) Manuel Szewc (ICAS)

Powered by:

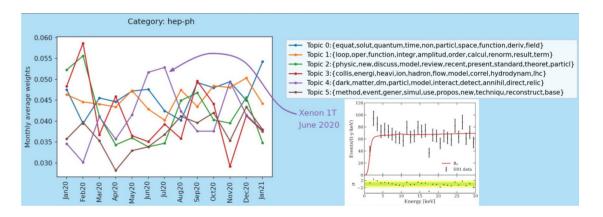
icas.unsam.edu.ar easytechgreen.com unsam.edu.ar

iarxiv.org

iarxiv.org

 \equiv

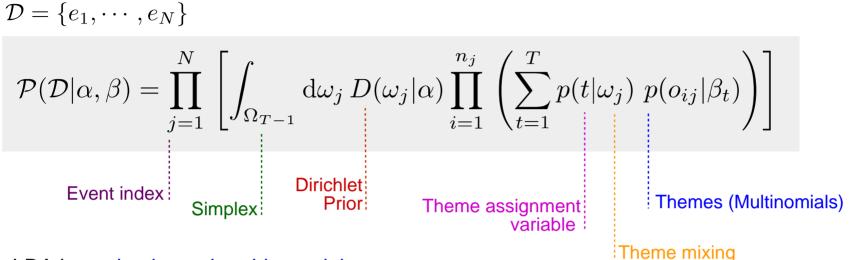
Uses LDA to sort daily papers by learning users topic preferences



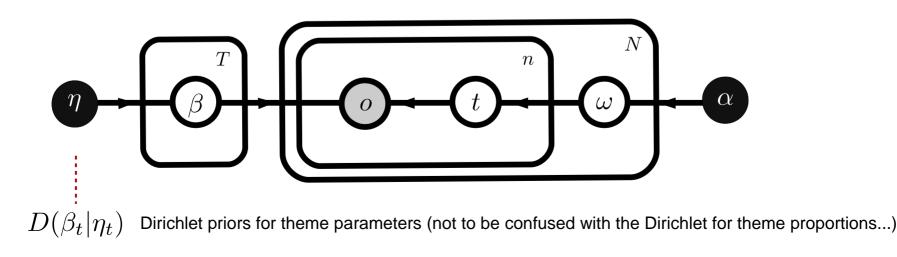
LDA discovered the Xenon 1T anomaly

Backup

Latent Dirichlet Allocation (LDA)



- LDA is a mixed-membership model.
- Individual events are described by mixture of multiple themes:
- 'Smoothed' LDA graphical model:



Choose Q f exible enough to approximate posterior... but simple enough for efficient optimization.

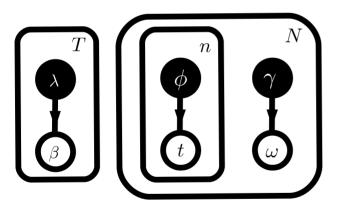
• "Mean-field" variational family:

$$q(\theta|\mu) = \prod_{i} q(\theta_i|\mu_i)$$

• LDA variational inference:

$$q(\omega, t, \beta | \lambda, \phi, \gamma) = q(\omega | \gamma) q(t | \phi) q(\beta | \lambda)$$

LDA mean-field approximation



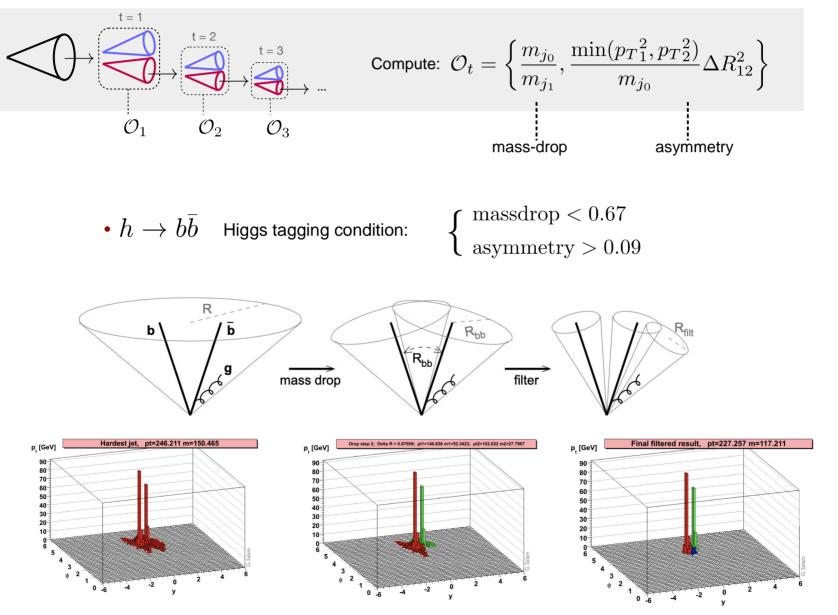
 $\begin{aligned} q(\omega) &= \text{Dirichlet}(\omega|\gamma) \\ q(t) &= \text{Multinomial}(\phi) \\ q(\beta) &= \text{Dirichlet}(\beta|\lambda) \end{aligned}$

$$(\lambda^*, \phi^*, \gamma^*) = \operatorname*{argmax}_{(\lambda, \phi, \gamma)} \mathcal{L}[q(\omega, t, \beta) | \lambda, \phi, \gamma)]$$

Mass-drop tagger or BDRS tagger

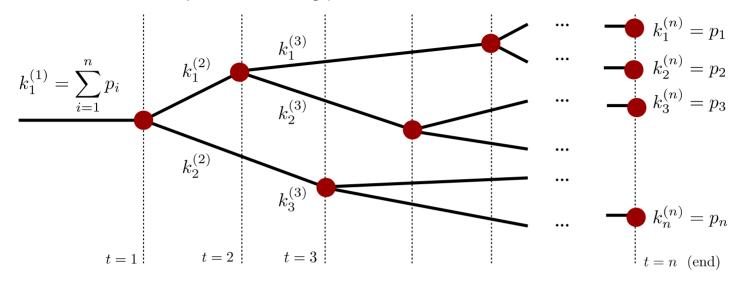
• Travel through 'hardest' branch of the declustering tree

Cluster with C/A algorithm with R=1.2



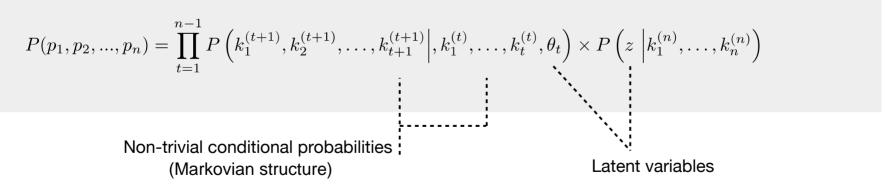
Probabilistic model for jet formation?

• If we are faithful to the jet declustering process:



• Probabilitic model for a jet:

QCD-aware RNN



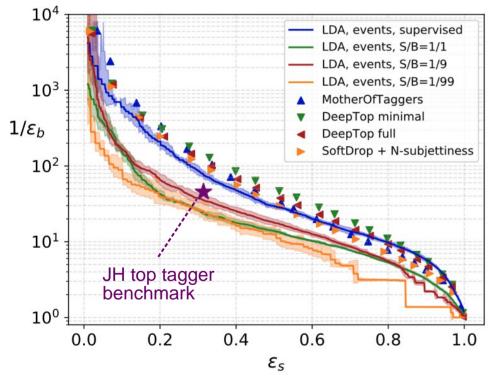
JUNIPR framework Andreassen , Feige, Frye, Schwartz 2019

Louppe, Cho, Becot, Cranmer 2017

Not clear how to generalize to unsupervised jet/event classification tasks

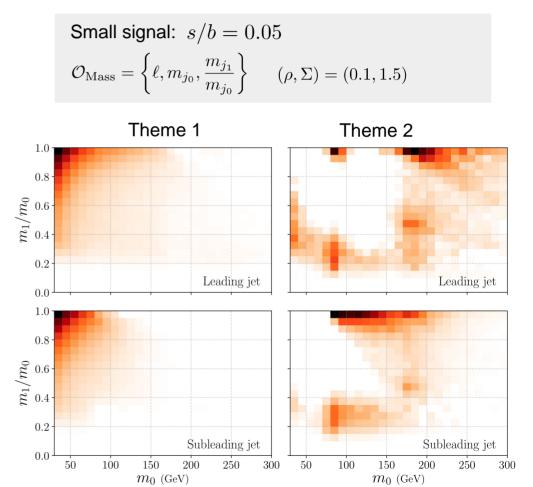
Back to 1995: 're-discovering' Top-quarks

- Train two-theme LDA on mixed (unlabelled) QCD + tops sample ~ 50k events
- Training performed with Gensim (python package)
- Unsupervised mass-drop classifier results:

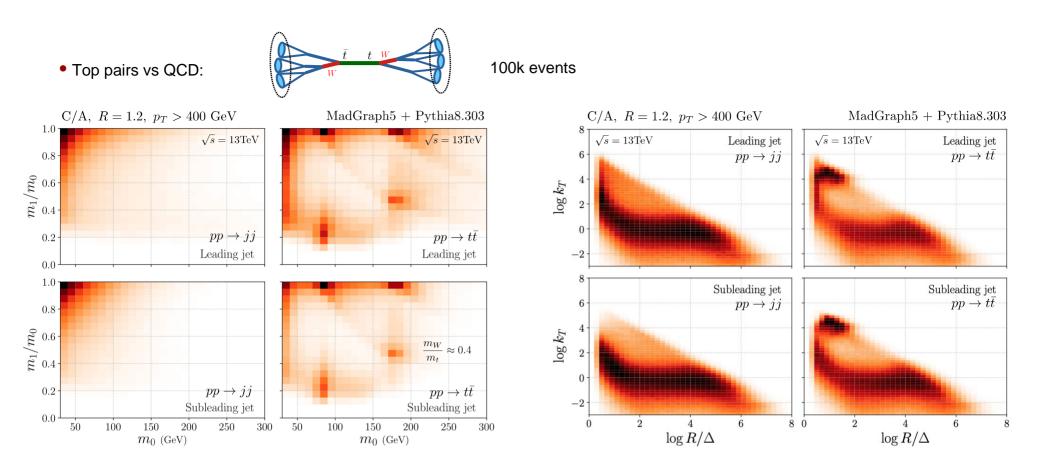


LDA classifier performance:

Moderate performance for unsupervised LDA classifiers



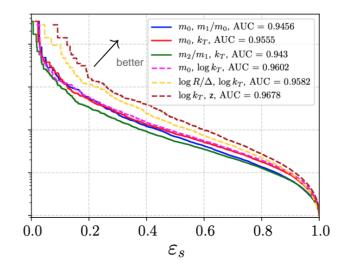
Darius A. Faroughy / Zurich U. 36

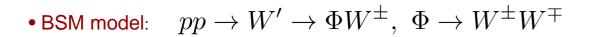


• substructure observable performance: AUC / ROC (Receiver Operator Characteristic) curves

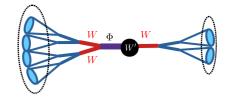
$$L_{NP}(e) = \prod_{o \in e} \frac{p_{\text{truth}}(o|s)}{p_{\text{truth}}(o|b)}$$

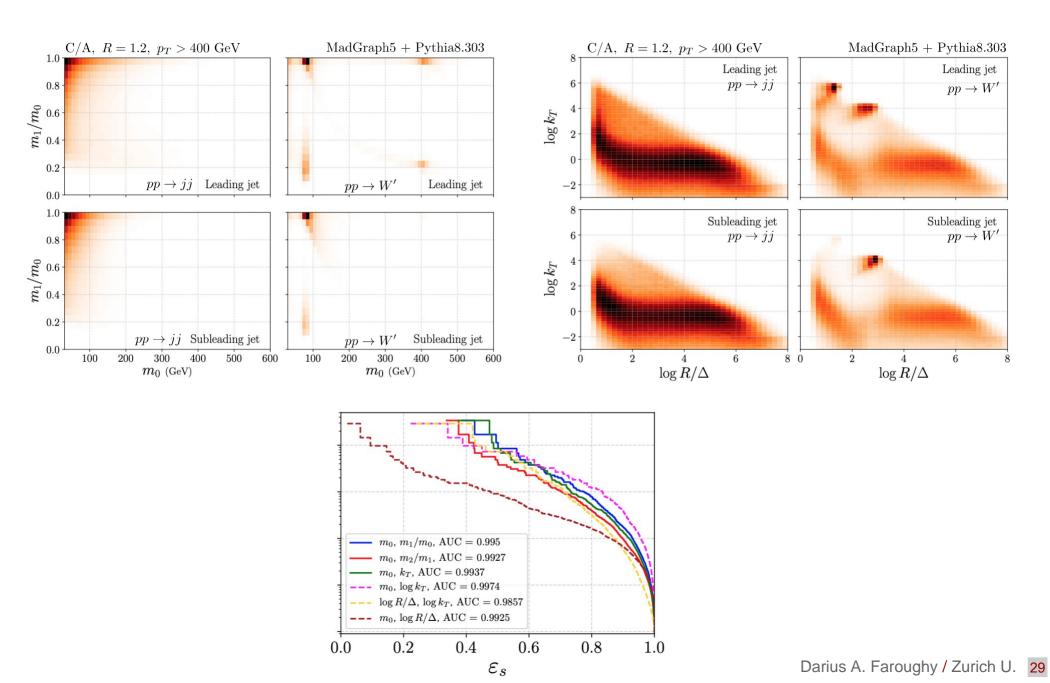
Neyman-Pearson classif er

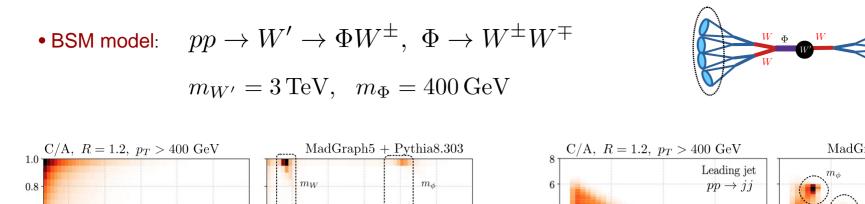


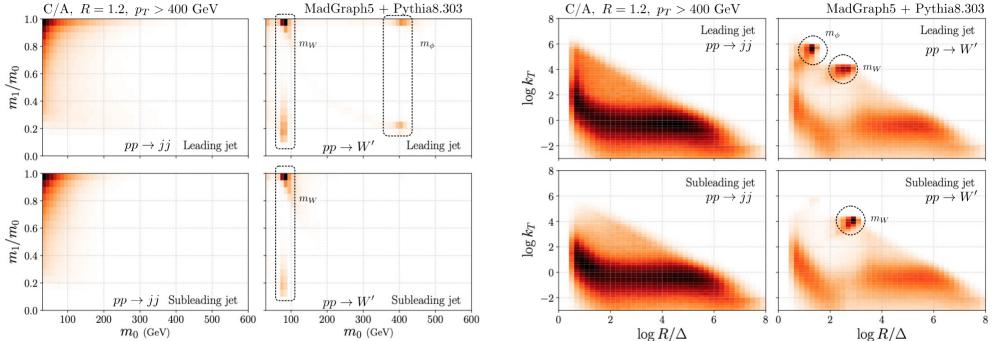


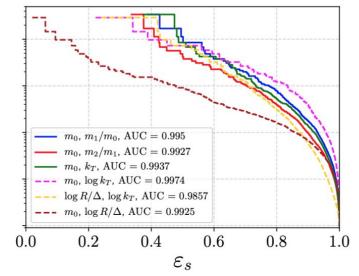
$m_{W'} = 3 \,\text{TeV}, \ m_{\Phi} = 400 \,\text{GeV}$



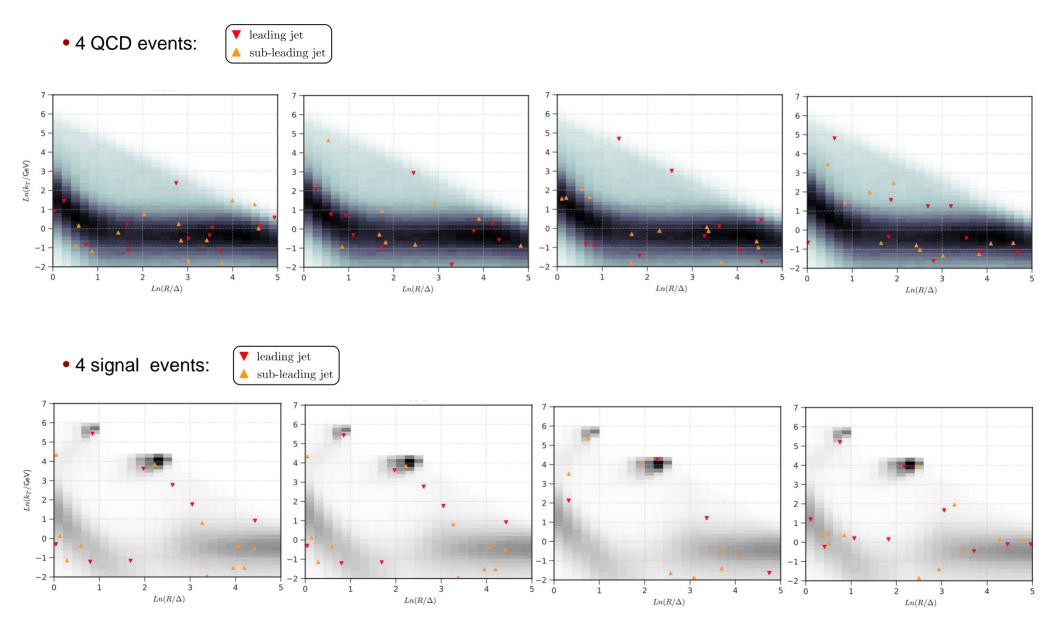








Point pattern co-ocurrences in the Lund plane



• What if there is NO signal?

Train ~ 100k QCD events

Theme 1

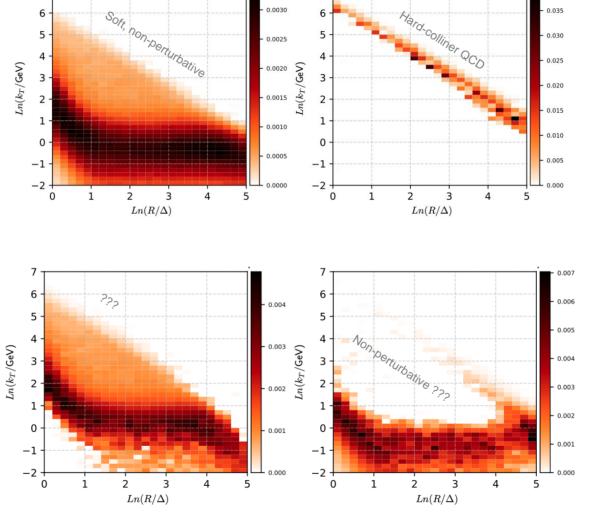
7

Asymmetric Dirichlet prior

$$(\rho, \Sigma) = (0.1, 1)$$

Symmetric Dirichlet prior

 $(\rho, \Sigma) = (0.75, 1.8)$



Theme 2

Unphysical sculpting of data?

Perplexity

• We need a criteria for selecting from all models in the Landscape the one with the best performance without using truth data.

We need a statistical goodness-of-ft for the generative model.

• Perplexity:

For an event sample $\mathcal{D} = \{e_1, \dots, e_N\}$

$$perplexity(\mathcal{D}) := 2^{-b} \qquad b = \frac{1}{n_{\text{tot}}} \sum_{j=1}^{N} \log p(e_j) \approx \frac{1}{n_{\text{tot}}} \sum_{j=1}^{N} \mathcal{L}(e_j)$$

$$Total number of measurements \qquad ELBO$$

• Perplexity is the measure of how well a generative model f ts the data sample.

Good models have a lower perplexity score, i.e. a greater probability it generated the observed data.

Trained ~1000 LDA models

