Mixed QCD-EW corrections to Z and W boson production and their impact on the W mass measurements at the LHC

Arnd Behring

Institute for Theoretical Particle Physics (TTP) Karlsruhe Institute for Technology

based on arxiv:1909.08428 [hep-ph], arxiv:2005.10221 [hep-ph], arxiv:2009.10386 [hep-ph] and arxiv:2103.02671 [hep-ph]

in collaboration with

- Federico Buccioni, Fabrizio Caola (Oxford)
- Maximilian Delto, Matthieu Jaquier, Kirill Melnikov (KIT)
- Raoul Röntsch (CERN)

May 14th, 2021 - HEP phenomenology joint Cavendish-DAMTP seminar

Precision tests of the Standard Model

- Standard Model is a renormalisable QFT
- A finite number of parameters have to be fixed from experiments, e.g.,

$$m_Z$$
, G_F , $\alpha_s(M_Z)$, $\alpha_{em}(m_Z)$, m_H , m_t , m_b , ..., V_{CKM}

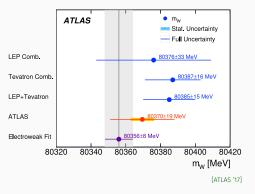
- Every measurement beyond that can be used to cross-check its consistency
- With the choice of input parameters above, we can predict the mass of the W boson

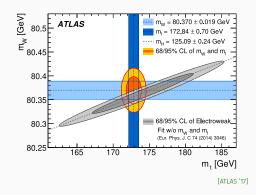
$$m_W^2 = m_Z^2 \left(1 - \frac{\pi \alpha (1 + \Delta r(m_t, m_H, m_Z, \alpha, \dots))}{\sqrt{2} G_F m_Z^2} \right)$$

Parameter		Free in fit	
M_H [GeV]	125.1 ± 0.2	yes	125.1 ± 0.2
M_W [GeV]	80.379 ± 0.013	_	80.359 ± 0.006
Γ_W [GeV]	2.085 ± 0.042	-	2.091 ± 0.001
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1882 ± 0.0020
Γ_Z [GeV]	2.4952 ± 0.0023	-	2.4947 ± 0.0014
$\sigma_{\rm had}^0$ [nb]	41.540 ± 0.037	-	41.484 ± 0.015
R_{ℓ}^{0}	20.767 ± 0.025	-	20.742 ± 0.017
R_{ℓ}^{0} $A_{\mathrm{FB}}^{0,\ell}$	0.0171 ± 0.0010	_	0.01620 ± 0.0001
$A_{\ell}^{(\star)}$	0.1499 ± 0.0018	_	0.1470 ± 0.0005
$\sin^2 \theta_{\text{off}}^{\ell}(Q_{FB})$	0.2324 ± 0.0012	_	0.23153 ± 0.0000
$\sin^2 \theta_{\text{eff}}^{\ell}(\text{Tevt.})$	0.23148 ± 0.00033	_	0.23153 ± 0.0000
A_c	0.670 ± 0.027	_	0.6679 ± 0.00021
A_b	0.923 ± 0.020	_	0.93475 ± 0.0000
$A_{FB}^{0,c}$	0.0707 ± 0.0035	_	0.0736 ± 0.0003
$A_{FB}^{\tilde{0},\tilde{b}}$	0.0992 ± 0.0016	_	0.1030 ± 0.0003
$R_c^{\tilde{0}D}$	0.1721 ± 0.0030	_	0.17224 ± 0.0000
	0.21629 ± 0.00066	-	0.21582 ± 0.0001
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	$1.27^{+0.07}_{-0.11}$
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$
$m_t \; [\text{GeV}]^{(\nabla)}$	172.47 ± 0.68	yes	0.00
$\Delta \alpha_{\text{bad}}^{(5)}(M_Z^2)^{(\dagger \triangle)}$	2760 ± 9	yes	2758 ± 9
$\alpha_s(M_Z^2)$	_	ves	0.1194 ± 0.0029

[Gntter 18]

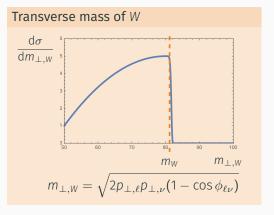
Precision W mass measurements

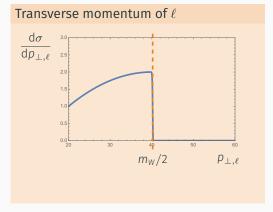




- Measurements of m_W have come a long way
- · ATLAS has measured $m_W = (80\,370\pm19)\,\mathrm{MeV}$ [ATLAS '17]
- \cdot ATLAS and CMS collaborations aim to reduce uncertainty to $\mathcal{O}(10\,\text{MeV})$
 - \rightarrow would rival precision from global electroweak fits
 - \rightarrow would mean $\mathcal{O}(0.01\%)$ uncertainty

Need observables that are sensitive to m_W :

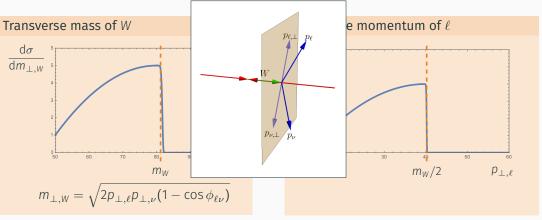




At LO and with idealized detectors both observables have sharp kinematic edges.

 \rightarrow Very sensitive observables

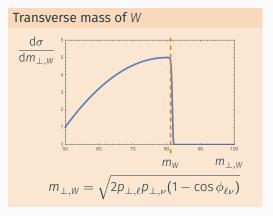
Need observables that are sensitive to m_W :

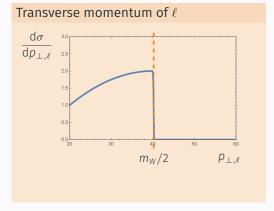


At LO and with idealized detectors both observables have sharp kinematic edges.

 \rightarrow Very sensitive observables

Need observables that are sensitive to m_W :

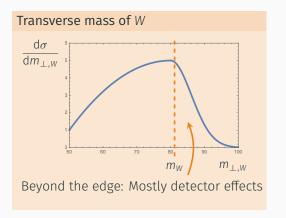


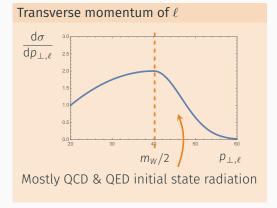


At LO and with idealized detectors both observables have sharp kinematic edges.

 \rightarrow Very sensitive observables

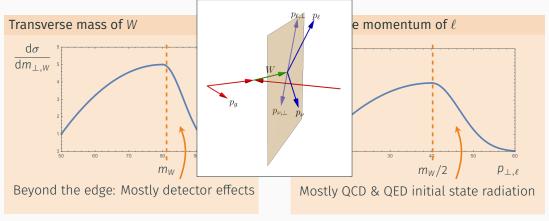
Need observables that are sensitive to m_W :





Starting from NLO and with realistic detectors the edges are washed out

Need observables that are sensitive to m_W :



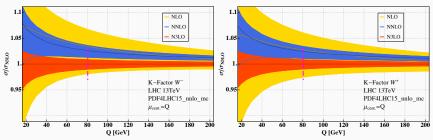
Starting from NLO and with realistic detectors the edges are washed out

Theory predictions for m_W measurements at hadron colliders

- Need very precise predictions for differential distributions for W and Z production
- · Standard tools: Collinear factorisation and perturbation theory

$$d\sigma = \sum_{ij} \int dx_1 dx_2 f_i(x_1) f_j(x_2) d\sigma_{ij}(x_1, x_2) \qquad d\sigma_{ij} = \sum_{n,m} \alpha_s^n \alpha^m d\sigma_{ij}^{(n,m)}$$

• Typically reaches $\mathcal{O}(1\%)$ or worst uncertainties for inclusive observables



[Duhr, Dulat, Mistlberger '20]

Theory predictions for m_W measurements at hadron colliders (cont.)

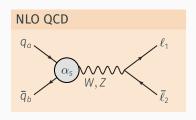
To measure m_W to a precision of $\mathcal{O}(10 \,\text{MeV})$ we have to control theory uncertainties to a level of about $\mathcal{O}(0.01\%)$.

 \rightarrow Straightforward application of standard tools falls short of required precision.

Consequences:

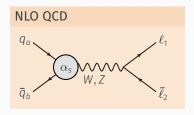
- 1. We cannot hope to predict distributions to this precision from first principles. Instead:
 - Measure 7 distributions
 - · Parametrise them in QCD-motivated way
 - Transfer them to W distributions (bulk of QCD does not distinguish between W and Z)
- 2. Small effects that distinguish between Z and W bosons may matter.
 - ightarrow Electroweak corrections are obvious examples of such effects.

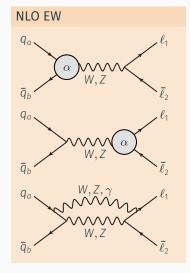
Electroweak and QCD corrections to on-shell W and Z production



ightarrow Only corrections to the initial state

Electroweak and QCD corrections to on-shell W and Z production





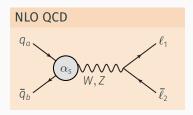
 $\rightarrow \text{initial state corrections}$

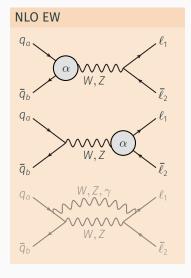
 $\rightarrow \text{final state corrections}$

→ non-fact. corrections [Dittmaier, Huss, Schwinn '14]:

$$\sim \mathcal{O}\left(\alpha \frac{\Gamma}{m_V}\right) \sim \mathcal{O}\left(\alpha^2\right)$$

Electroweak and QCD corrections to on-shell W and Z production





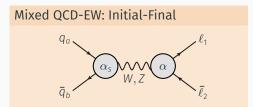
 \rightarrow initial state corrections

 \rightarrow final state corrections

→ non-fact. corrections [Dittmaier, Huss, Schwinn '14]:

$$\sim \mathcal{O}\left(\alpha \frac{\Gamma}{m_V}\right) \sim \mathcal{O}\left(\alpha^2\right)$$

Mixed QCD-EW corrections to on-shell W and Z production



- Correction of NLO \otimes NLO type
- Previously investigated
 [Dittmaier, Huss, Schwinn '15] [Carloni Calame et al. '16]
- Estimated impact on m_w measurement:

$$\delta m_W \sim \mathcal{O}(15 \, \text{MeV})$$

Mixed QCD-EW: Initial-Initial $q_a = \underbrace{q_a \times \alpha_s \alpha_{W,Z}}_{Q_b} \ell_1$

- Correction of NNLO type
- Generated lots of recent activity
 [De Florian, Der, Fabre '18] [Cieri, de Florian, Der, Mazzitelli '20]
 [Bonciani, Buccioni, Rana, Triscari, Vicini '19]
 [Bonciani, Buccioni, Rana, Vicini '20] [Dittmaier, Schmidt, Schwarz '20]
 [Buonocore, Grazzini, Kallweit, Savioni, Tramontano '21]
- Subject of this talk

[Delto, Jaquier, Melnikov, Röntsch '19] [Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch '20] [AB, Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch '20] [AB, Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch '21]

Mixed QCD-EW corrections to on-shell W and Z production

Mixed QCD-EW corrections to $pp \to W/Z$ have been discussed for many years Calculation became possible due to progress on several bottlenecks

- Double Virtual: Complicated integrals with internal and external masses
 → Progress on differential equations, iterated integrals etc.
- Real Virtual: Sufficiently stable numerics close to singular limits
 → OpenLoops can provide this in an automated way
- Double Real: IR singularities require NNLO subtraction scheme $\longrightarrow \text{Profit from progress on NNLO QCD subtraction schemes}$
- \rightarrow We derive estimates for shifts of W mass due to mixed QCD-EW corrections

Mixed QCD-EW corrections to on-shell W and Z production

Mixed QCD-EW corrections to $pp \to W/Z$ have been discussed for many years Calculation became possible due to progress on several bottlenecks

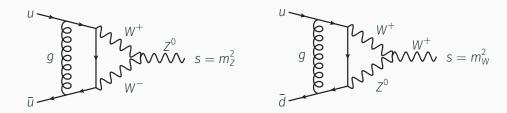
- Double Virtual: Complicated integrals with internal and external masses

 → Progress on differential equations, iterated integrals etc.
- Real Virtual: Sufficiently stable numerics close to singular limits
 → OpenLoops can provide this in an automated way
- Double Real: IR singularities require NNLO subtraction scheme

 → Profit from progress on NNLO QCD subtraction schemes
- ightarrow We derive estimates for shifts of W mass due to mixed QCD-EW corrections

Two-loop amplitudes

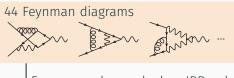
Form factors for on-shell W and Z bosons



What needs to be calculated? \rightarrow Only on-shell form factors (Narrow-width approximation simplifies the problem)

- · Z: Mixed QCD-EW corrections are known [Kotikov, Kühn, Veretin '07]
- W: Mixed QCD-EW corrections were not yet publicly available
 - ightarrow We calculated the missing integrals and completed the form factor

Calculation of the W form factor



This is a non-trivial, but tractable calculation.

Feynman rules, γ algebra, IBP reductions, ...

35 master integrals

$$I \sim \int \frac{[d^d k_1][d^d k_2]}{[k_2^2 - m_W^2] \dots [(k_2 - p_{12})^2 - m_Z^2]}$$

10 MI with internal W and Z
→ Calculated using differential equations

$$\partial_z I(z,\varepsilon) = A(z,\varepsilon)I(z,\varepsilon)$$
 with $z = \frac{m_W^2}{m_Z^2}$

25 MI known in the literature

[Aglietti, Bonciani '03] [Aglietti, Bonciani '04] [Bonciani, Di Vita, Mastrolia, Schubert '16] with the equal mass case (z = 1) as boundary conditions

Results can be expressed in terms of well-understood iterated integrals (GPLs)

$$G_{a,\vec{b}}(y) = \int_0^y \frac{G_{\vec{b}}(t)}{t-a} dt$$
, $G_a(y) = \int_0^y \frac{1}{t-a} dt$, $G_0(y) = \ln(y)$, $z = \frac{y}{(1+y)^2}$

The result for the form factor can be brought into a compact form.

Infrared poles are predicted by a "Catani-like" formula:

$$\begin{split} \left\langle F_{\text{LW}+\text{LV}^2}^{\text{QCD} \otimes \text{EW}} \right\rangle &= \left(\frac{\alpha_{\text{S}}(\mu)}{2\pi} \frac{\alpha_{\text{EW}}}{2\pi} \right) \left[I_{12,\text{QCD}} \cdot I_{12,\text{EW}} + \frac{e^{\varepsilon \gamma_{\text{E}}}}{\Gamma(1-\varepsilon)} \frac{H_{\text{QCD} \otimes \text{EW}}^W}{\varepsilon} \right] \left\langle F_{\text{LM}} \right\rangle \\ &+ \left(\frac{\alpha_{\text{S}}(\mu)}{2\pi} \right) I_{12,\text{QCD}} \left\langle F_{\text{LV}}^{\text{fin,EW}} \right\rangle + \left(\frac{\alpha_{\text{EW}}}{2\pi} \right) I_{12,\text{EW}} \left\langle F_{\text{LV}}^{\text{fin,QCD}} \right\rangle \\ &+ \left\langle F_{\text{LW}+\text{LV}^2}^{\text{fin,QCD} \otimes \text{EW}} \right\rangle. \end{split}$$

The result for the form factor can be brought into a compact form.

Infrared poles are predicted by a "Catani-like" formula:

$$\begin{split} \left\langle F_{\text{LVV}+\text{LV}^2}^{\text{QCD} \otimes \text{EW}} \right\rangle &= \left(\frac{\alpha_{\text{S}}(\mu)}{2\pi} \frac{\alpha_{\text{EW}}}{2\pi} \right) \left[I_{\text{12,QCD}} \cdot I_{\text{12,EW}} + \frac{e^{\varepsilon \gamma_{\text{E}}}}{\Gamma(1-\varepsilon)} \frac{H_{\text{QCD} \otimes \text{EW}}^W}{\varepsilon} \right] \left\langle F_{\text{LM}} \right\rangle \\ &+ \left(\frac{\alpha_{\text{S}}(\mu)}{2\pi} \right) I_{\text{12,QCD}} \left\langle F_{\text{LV}}^{\text{fin,EW}} \right\rangle + \left(\frac{\alpha_{\text{EW}}}{2\pi} \right) I_{\text{12,EW}} \left\langle F_{\text{LV}}^{\text{fin,QCD}} \right\rangle \\ &+ \left\langle F_{\text{LVV}+\text{LV}^2}^{\text{fin,QCD} \otimes \text{EW}} \right\rangle. \end{split}$$

Building blocks:

$$\begin{split} I_{12,\text{QCD}} &= \left[\frac{e^{\varepsilon \gamma_E}}{\Gamma(1-\varepsilon)}\right] \left(\frac{\mu^2}{M_W^2}\right)^{\varepsilon} \left[-2C_F \cos(\pi \varepsilon) \left(\frac{1}{\varepsilon^2} + \frac{3}{2\varepsilon}\right)\right] \\ I_{12,\text{EW}} &= \left[\frac{e^{\varepsilon \gamma_E}}{\Gamma(1-\varepsilon)}\right] \left(\frac{\mu^2}{M_W^2}\right)^{\varepsilon} \left[-Q_u Q_d \cos(\pi \varepsilon) \left(\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon}\right) + (Q_d - Q_u) Q_W \left(\frac{1}{\varepsilon^2} + \frac{5}{2\varepsilon}\right)\right] \\ H_{\text{QCD} \otimes \text{EW}}^W &= C_F \left[Q_u^2 + Q_d^2\right] \left(\frac{\pi^2}{2} - 6\zeta_3 - \frac{3}{8}\right) \end{split}$$

The result for the form factor can be brought into a compact form.

Infrared poles are predicted by a "Catani-like" formula:

$$\begin{split} \left\langle F_{\text{LVV}+\text{LV}^2}^{\text{QCD} \otimes \text{EW}} \right\rangle &= \left(\frac{\alpha_{\text{S}}(\mu)}{2\pi} \frac{\alpha_{\text{EW}}}{2\pi} \right) \left[I_{\text{12,QCD}} \cdot I_{\text{12,EW}} + \frac{e^{\varepsilon \gamma_{\text{E}}}}{\Gamma(1-\varepsilon)} \frac{H_{\text{QCD} \otimes \text{EW}}^W}{\varepsilon} \right] \left\langle F_{\text{LM}} \right\rangle \\ &+ \left(\frac{\alpha_{\text{S}}(\mu)}{2\pi} \right) I_{\text{12,QCD}} \left\langle F_{\text{LV}}^{\text{fin,EW}} \right\rangle + \left(\frac{\alpha_{\text{EW}}}{2\pi} \right) I_{\text{12,EW}} \left\langle F_{\text{LV}}^{\text{fin,QCD}} \right\rangle \\ &+ \left\langle F_{\text{LVV}+\text{LV}^2}^{\text{fin,QCD} \otimes \text{EW}} \right\rangle. \end{split}$$

- Pole structure almost factorises into NLO QCD × NLO EW
- Finite remainder $\left\langle F_{\text{LW}+\text{LV}^2}^{\text{fin,QCD}\otimes \text{EW}}\right\rangle$ also consists of a factorising (NLO QCD \times NLO EW) and a non-factorising part

```
\Re \widetilde{\mathcal{M}}_{\mathrm{mix}} =
                      (Q_u^2 + Q_d^2)C_F\left[\frac{1}{\epsilon}\left(-\frac{3}{16} + \frac{1}{4}\pi^2 - 3\zeta_3\right) + \left(\frac{3}{8} - \frac{1}{2}\pi^2 + 6\zeta_3\right)\ln\left(\frac{M_W^2}{u^2}\right) + \frac{1}{4}\frac{(27z + 13)(1 - z)^2}{z^3}H_1(z)\right]
                         +\frac{(1-z)^2(1+z)}{z^3}\left(\frac{3}{4}H_1(z)\pi^2-\frac{9}{2}H_{1,0,0}(z)-\frac{9}{2}H_{1,0,1}(z)\right)-\frac{1}{4}\frac{(5z+3)(1-z)(1+z)}{z^3}H_{-1,0}(z)
                         +\frac{(1-z)(1+z)^2}{z^3}\left(-\frac{3}{2}H_{-1,-1,0}(z)+\frac{3}{2}H_{-1,0,0}(z)+3H_{-1,0,1}(z)+2H_{-1,-1,-1,0}(z)-2H_{-1,-1,0,0}(z)\right)
                         -6H_{-1,-1,0,1}(z) - 2H_{-1,0,-1,0}(z) + H_{-1,0,0,1}(z) + H_{0,-1,0,0}(z) + 4H_{0,-1,0,1}(z) + \left(-\frac{1}{4}H_{-1}(z) + \frac{1}{6}H_{-1,-1}(z) + \frac{1}{6}H_{-1
                         -\frac{1}{6}H_{0,-1}(z)\Big)\pi^2 - 3H_{-1}(z)\zeta_3\Big) + \frac{1}{32}\frac{7z^2 - 72z + 64}{z^2} + \frac{1}{24}\frac{50z^2 - 5z - 16}{z^2}\pi^2 - \frac{3}{2}\frac{8z^2 - z - 2}{z^2}\zeta_3 - \frac{11}{180}\pi^4
                      +\frac{(1-z)}{z^2}\left(\frac{1}{2}(9z+11)H_{0,1}(z)-\frac{1}{2}(3z+4)H_{0,0,1}(z)+\frac{1}{4}(23z+16)H_{0,0}(z)+(3z+2)\left(\frac{1}{2}H_{0,-1,0}(z)\right)\right)
                         -\frac{17}{8}H_0(z)\Big)\Big) + \frac{\left(z^2 + 3z + 1\right)(1-z)}{z^3} \left(\frac{1}{3}H_{0,1}(z)\pi^2 - 2H_{0,1,0,0}(z) - 2H_{0,1,0,1}(z)\right) \Big] + C_F\left[\frac{z+2}{1-z}\left(-\frac{1}{6}H_{0,0}(z)\pi^2 - 2H_{0,1,0,0}(z)\right)\right] + C_F\left[\frac{z+2}{1-z}\left(-\frac{1}{6}H_{0,0}(z)\pi^2 - 2H_{0,0}(z)\right)\right] + C_F\left[\frac{z+2}{1-z}\left(-\frac{1}{6}H_{0,0}(z)\pi^2 - 2H_{0,0}(z)\right] + C_F\left[\frac{z+2}{1-z}\left(-\frac{1}{6}H_{0,0}(z)\pi^2 - 2H_{0,0}(z)\right)\right] + C_F\left[\frac{z+2}{1-z}\left(-\frac{1}{6}H_{0,0}(z)\pi^2 - 2H_{0,0}(z)\right)\right]
                           +4H_0(z)\zeta_3\Big) + \frac{1}{8}\frac{(5z-2)(2z^2+12z+11)}{(1-z)z^2}H_{0,1}(z) + \frac{1}{8}\frac{43z^2+7z-16}{(1-z)z^2}H_{0,0}(z) - \frac{1}{48}\frac{10z^3+5z^2+20z-16}{(1-z)z^2}\pi^2
                         -\frac{1}{16}\frac{8z^3+142z^2+23z-34}{(1-z)z^2}H_0(z)+\frac{1}{120}\frac{5z-36}{1-z}z^4-\frac{1}{8}\frac{4z^2-17z+8}{(1-z)z^2}+\frac{2z^2-2z+1}{(1-z)z^2}\left(\frac{1}{4}(3z+4)H_{0.0,1}(z)-\frac{1}{2}(3z+4)H_{0.0,1}(z)\right)
                           +\left(3z+2\right)\left(-\frac{3}{4}\zeta_3-\frac{1}{4}H_{0,-1,0}(z)\right)+\frac{\left(2z^2-6z+3\right)(1+z)}{-3}\left(\frac{3}{4}H_{1,0,0}(z)+\frac{3}{4}H_{1,0,1}(z)-\frac{1}{8}H_1(z)\pi^2\right)
                         -\frac{1}{(1-z)z}\left(\frac{1}{8}H_{0,0,0}(z)+\frac{1}{2}\left(9z^2-8z-2\right)\zeta_3+\frac{5}{48}H_0(z)\pi^2\right)+\frac{\left(2z^2-2z+1\right)(1+z)^2}{(1-z)z^3}\left(\frac{3}{4}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,0}(z)+\frac{1}{2}H_{-1,-1,
                         -\frac{3}{7}H_{-1,0,0}(z) - \frac{3}{9}H_{-1,0,1}(z) - H_{-1,-1,-1,0}(z) + H_{-1,-1,0,0}(z) + 3H_{-1,-1,0,1}(z) + H_{-1,0,-1,0}(z)
                         -\frac{1}{2}H_{-1,0,0,1}(z)-\frac{1}{2}H_{0,-1,0,0}(z)-2H_{0,-1,0,1}(z)+\Big(\frac{1}{8}H_{-1}(z)-\frac{1}{12}H_{-1,-1}(z)+\frac{1}{12}H_{0,-1}(z)\Big)\pi^2+\frac{3}{2}H_{-1}(z)\zeta_3\Big)
                         +\frac{1}{8}\frac{4z^{3}+64z^{2}-z-13}{z^{3}}H_{1}(z)+\frac{1}{8}\frac{\left(5z+3\right)\left(2z^{2}-2z+1\right)\left(1+z\right)}{\left(1-z\right)^{-3}}H_{-1,0}(z)+\frac{z^{4}-4z^{2}+z+1}{\left(1-z\right)^{-3}}\left(H_{0,1,0,0}(z)-\frac{1}{2}\right)H_{-1,0}(z)
                         +H_{0,1,0,1}(z) - \frac{1}{6}H_{0,1}(z)\pi^2 + \left[\frac{\sqrt{4z-1}}{8\pi}\left(-\frac{10z+3}{1-z}(H_r(z^{-1})-\pi)-(\pi H_0(z)+H_{0,r}(z^{-1}))+\frac{17z+4}{1-z}H_{r,0}(z^{-1})\right)\right]
                         -\frac{6z+1}{1-z}(i\pi^2-3i\pi H_r(z^{-1})-3H_{r,1}(z^{-1}))\right)-\frac{1}{8}\frac{3z+2}{(1-z)z}(H_{r,r}(z^{-1})-\pi H_r(z^{-1}))-\frac{1}{8}\frac{30z^2-20z-1}{(1-z)z}H_{r,r,0}(z^{-1})
                         +\frac{1}{8}\frac{1}{(1-z)^{2}}(H_{0,r,r}(z^{-1})-\pi H_{0,r}(z^{-1}))-\frac{1}{8}\frac{6z^{2}-4z+1}{(1-z)^{2}}(H_{r,0,r}(z^{-1})-\pi H_{r,0}(z^{-1}))+\frac{1}{2}\frac{3z-2}{1-z}\left(-3H_{r,r,1}(z^{-1})-\pi H_{r,0}(z^{-1})\right)
                         -3 i \pi H_{r,r}(z^{-1})+i \pi^2 H_r(z^{-1})-i \frac{\pi^3}{6} \Big)+\frac{z+2}{1-z} \Big(i \frac{\pi^3}{6} H_0(z)+i \pi^2 H_{0,r}(z^{-1})-3 i \pi H_{0,r,r}(z^{-1})-3 H_{0,r,r,0}(z^{-1}) \Big)
                         -3H_{0,r,r,1}(z^{-1}) - 4i\pi\zeta_3
```

The analytic result is now available and even reasonably compact.

Non-factorising part of finite remainder becomes this simple when expressed in terms of iterated integrals over $z = \frac{m_W^2}{m_7^2}$

$$H_{a,\vec{b}}(z) = \int_0^z f_a(t) H_{\vec{b}}(t) dt$$

with HPL- and square root letters

$$f_1(t) = \frac{1}{1-t}, \quad f_0(t) = \frac{1}{t},$$

 $f_{-1}(t) = \frac{1}{1+t}, \quad f_r(t) = \frac{1}{\sqrt{t(4-t)}}$

Subtraction

Infrared singularities

Cross-sections develop IR singularities in soft and collinear limits of massless particles → cancel between real and virtual corrections

· Use a subtraction scheme to make poles from real radiation explicit

- Build on progress with NNLO QCD subtraction schemes to tackle mixed QCD-EW corrections (here: nested soft-collinear subtraction scheme)
 - · Z: Abelianisation of NNLO QCD subtraction is sufficient
 - W: New contributions from radiating W bosons

Subtraction for mixed QCD-EW corrections: triple-collinear limits

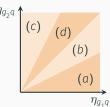
We can make use of simplifications compared to NNLO QCD.

Triple-collinear limits

• NNLO QCD: Overlapping singularities in triple-collinear limits



ightarrow Needs 4 sectors to disentangle collinear singularities



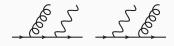
Subtraction for mixed QCD-EW corrections: triple-collinear limits

We can make use of simplifications compared to NNLO QCD.

Triple-collinear limits

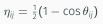
· NNLO QCD: Overlapping singularities in triple-collinear limits

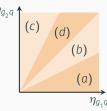
- ightarrow Needs 4 sectors to disentangle collinear singularities
- Mixed QCD-EW: Collinear limit of photon and gluon is not singular

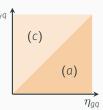


 \rightarrow 2 sectors can be dropped in $q\bar{q}$ channel

Overall: No new collinear limits arise compared to NNLO QCD







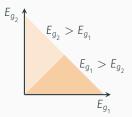
Subtraction for mixed QCD-EW corrections: double-soft limits

We can make use of simplifications compared to NNLO QCD.

Double-soft limits

- · NNLO QCD: Overlapping singularities in the double-soft limit
 - · Non-trivial double-soft eikonal function
 - Distinguish rates at which energies of soft particles vanish

$$1 = \theta(E_{g_1} - E_{g_2}) + \theta(E_{g_2} - E_{g_1})$$



Subtraction for mixed QCD-EW corrections: double-soft limits

We can make use of simplifications compared to NNLO QCD.

Double-soft limits

- NNLO QCD: Overlapping singularities in the double-soft limit
 - Non-trivial double-soft eikonal function
 - Distinguish rates at which energies of soft particles vanish

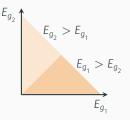
$$1 = \theta(E_{g_1} - E_{g_2}) + \theta(E_{g_2} - E_{g_1})$$

- Mixed QCD-EW: Soft gluons and photons are not entangled
 - \cdot Double-soft limit factorises into NLO QCD imes NLO QED

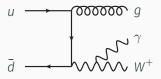
$$\lim_{E_g, E_{\gamma} \to 0} |\mathcal{M}_{Wg\gamma}|^2 = g_s^2 \operatorname{Eik}_g(p_u, p_{\bar{d}}; p_g) e^2 \operatorname{Eik}_{\gamma}(p_u, p_{\bar{d}}, p_W; p_{\gamma}) |\mathcal{M}_W|^2$$

$$\operatorname{Eik}_g(p_u, p_{\bar{d}}; p_g) = 2C_F \frac{(p_u \cdot p_{\bar{d}})}{(p_u \cdot p_g)(p_g \cdot p_{\bar{d}})}$$

• No need to distinguish $E_g > E_\gamma$ vs. $E_\gamma > E_g$



Subtraction for mixed QCD-EW corrections: radiating W bosons



New contribution compared to NNLO QCD: W bosons can radiate photons

- Mass of W boson prevents collinear singularities
- · Soft limit of photon is still singular
 - · Requires soft eikonal function for massive emitter
 - QCD and QED factorise in soft limit ightarrow only NLO eikonal functions necessary

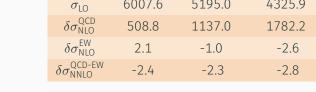
$$\begin{aligned} \mathsf{Eik}_{\gamma}(p_{u}, p_{\bar{d}}, p_{W}; p_{\gamma}) &= \left\{ Q_{u} Q_{d} \frac{2(p_{u} \cdot p_{\bar{d}})}{(p_{u} \cdot p_{\gamma})(p_{\bar{d}} \cdot p_{\gamma})} - Q_{W}^{2} \frac{p_{W}^{2}}{(p_{W} \cdot p_{\gamma})^{2}} \right. \\ &\left. + Q_{W} \left(Q_{u} \frac{2(p_{W} \cdot p_{u})}{(p_{W} \cdot p_{\gamma})(p_{u} \cdot p_{\gamma})} - Q_{d} \frac{2(p_{W} \cdot p_{\bar{d}})}{(p_{W} \cdot p_{\gamma})(p_{\bar{d}} \cdot p_{\gamma})} \right) \right\} \end{aligned}$$

Estimates for impact on W mass

Results for W production: Cross sections for $pp \to W^+ \to e^+\nu_{\rho}$

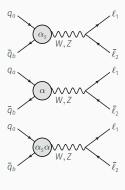
- Write cross section as $\sigma = \sigma_{IO} + \delta \sigma_{NIO}^{QCD} + \delta \sigma_{NIO}^{EW} + \delta \sigma_{NNIO}^{QCD-EW} + \dots$
- We include only initial-initial contributions

σ [pb]	$\mu = m_{\rm W}$	$\mu = m_W/2$	$\mu=m_W/4$
σ_{LO}	6007.6	5195.0	4325.9
$\delta\sigma_{NLO}^{QCD}$	508.8	1137.0	1782.2
$\delta\sigma_{\sf NLO}^{\sf EW}$	2.1	-1.0	-2.6
$\delta\sigma_{ m NNLO}^{ m QCD-EW}$	-2.4	-2.3	-2.8



Results for: 13 TeV LHC, G_{μ} scheme, $\mu_R = \mu_F = \mu \in \{m_W, m_W/2, m_W/4\},$ NNPDF3.1luxQED

Selection criteria: $p_{T,e} > 15 \text{ GeV}$, $p_{T,\text{miss}} > 15 \text{ GeV}$, $-2.4 < y_e < 2.4$.

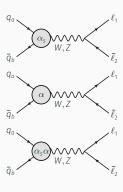


Results for W production: Cross sections for $pp o W^+ o e^+ u_e$

- Write cross section as $\sigma = \sigma_{\rm LO} + \delta\sigma_{\rm NLO}^{\rm QCD} + \delta\sigma_{\rm NLO}^{\rm EW} + \delta\sigma_{\rm NNLO}^{\rm QCD-EW} + \dots$
- We include only initial-initial contributions

σ [pb]	$\mu = m_W$	$\mu = m_W/2$	$\mu=m_W/4$
σ_{LO}	6007.6	5195.0	4325.9
$\delta\sigma_{\sf NLO}^{\sf QCD}$	508.8	1137.0	1782.2
$\delta\sigma_{\sf NLO}^{\sf EW}$	2.1	-1.0	-2.6
$\delta\sigma_{ m NNLO}^{ m QCD-EW}$	-2.4	-2.3	-2.8

• NLO EW corrections are tiny O(0.02%) (mostly due to G_{μ} scheme)

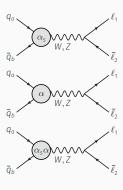


Results for W production: Cross sections for $pp o W^+ o e^+ u_e$

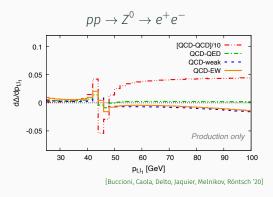
- Write cross section as $\sigma = \sigma_{\text{LO}} + \delta \sigma_{\text{NLO}}^{\text{QCD}} + \delta \sigma_{\text{NLO}}^{\text{EW}} + \delta \sigma_{\text{NNLO}}^{\text{QCD-EW}} + \dots$
- We include only initial-initial contributions

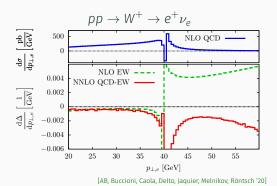
σ [pb]	$\mu = m_W$	$\mu = m_W/2$	$\mu=m_W/4$
σ_{LO}	6007.6	5195.0	4325.9
$\delta\sigma_{NLO}^{QCD}$	508.8	1137.0	1782.2
$\delta\sigma_{NLO}^{EW}$	2.1	-1.0	-2.6
$\delta\sigma_{ m NNLO}^{ m QCD-EW}$	-2.4	-2.3	-2.8

• Mixed QCD-EW corrections are very small, about $\mathcal{O}(0.05\%)$, but not obviously irrelevant for m_W measurements at the LHC



Differential distributions





- Our implementation allows to calculate differential distributions including mixed QCD-EW corrections
- Impact on W-mass measurement is not immediately obvious

Estimate W mass shifts from mixed QCD-EW corrections

Objective: Estimate impact of new corrections on W boson mass

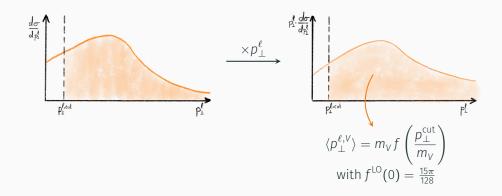
Considerations:

- Should combine W and Z measurements
 - → model what is done in experiments
 - \rightarrow make use of available precision for Z mass
- · Should be physically and conceptually simple and transparent
- · Should be accessible with our calculations

Construction of our observable

We use the average transverse momentum of the charged lepton (V = W, Z):

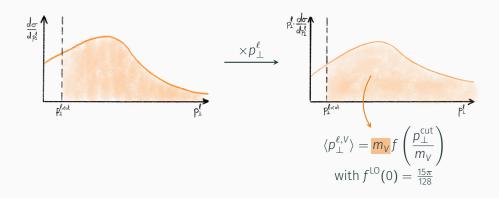
$$\langle p_{\perp}^{\ell,V} \rangle = \frac{\int d\sigma_{V} \times p_{\perp}^{\ell}}{\int d\sigma_{V}}$$



Construction of our observable

We use the average transverse momentum of the charged lepton (V = W, Z):

$$\langle p_{\perp}^{\ell,V} \rangle = \frac{\int d\sigma_{V} \times p_{\perp}^{\ell}}{\int d\sigma_{V}}$$



Use the average lepton p_{\perp} in W and Z production as well as the Z mass to construct an observable for the W mass:

$$m_W^{\rm meas} = rac{\langle p_\perp^{\ell,W} \rangle^{\rm meas}}{\langle p_\perp^{\ell,Z} \rangle^{\rm meas}} \, m_Z \, C_{
m th}$$

Use the average lepton p_{\perp} in W and Z production as well as the Z mass to construct an observable for the W mass:

Measurement from LHC

$$m_W^{\text{meas}} = \frac{\langle p_{\perp}^{\ell,W} \rangle^{\text{meas}}}{\langle p_{\perp}^{\ell,Z} \rangle^{\text{meas}}} m_Z C_{\text{th}}$$

$$\int_{-\infty}^{\infty} m_Z dz$$

Measurement from LHC

Use the average lepton p_{\perp} in W and Z production as well as the Z mass to construct an observable for the W mass:

Measurement from LEP
$$m_W^{\rm meas} = \frac{\langle p_\perp^{\ell,W} \rangle^{\rm meas}}{\langle p_\perp^{\ell,Z} \rangle^{\rm meas}} \frac{1}{m_Z} C_{\rm th}$$

Use the average lepton p_{\perp} in W and Z production as well as the Z mass to construct an observable for the W mass:

$$m_W^{\rm meas} = \frac{\langle p_\perp^{\ell,W} \rangle^{\rm meas}}{\langle p_\perp^{\ell,Z} \rangle^{\rm meas}} \, m_Z \, \frac{C_{\rm th}}{}$$

Theoretical correction factor

Use the average lepton p_{\perp} in W and Z production as well as the Z mass to construct an observable for the W mass:

$$m_W^{\rm meas} = \frac{\langle p_\perp^{\ell,W} \rangle^{\rm meas}}{\langle p_\perp^{\ell,Z} \rangle^{\rm meas}} \, m_Z \, C_{\rm th}$$

Theoretical correction factor

$$ightarrow$$
 Calculate via $C_{
m th} = rac{m_W}{m_Z} rac{\langle p_\perp^{\ell,Z}
angle^{
m th}}{\langle p_\perp^{\ell,W}
angle^{
m th}}$

Use the average lepton p_{\perp} in W and Z production as well as the Z mass to construct an observable for the W mass:

$$m_W^{\text{meas}} = \frac{\langle p_{\perp}^{\ell,W} \rangle^{\text{meas}}}{\langle p_{\perp}^{\ell,Z} \rangle^{\text{meas}}} m_Z \frac{C_{\text{th}}}{\rangle$$

Theoretical correction factor

$$ightarrow$$
 Calculate via $C_{
m th} = rac{m_W}{m_Z} rac{\langle p_\perp^{\ell,Z} \rangle^{
m th}}{\langle p_\perp^{\ell,W} \rangle^{
m th}}$

Adding a new correction to the theory

- \rightarrow changes C_{th}
- \rightarrow changes extracted mass m_W^{meas}

$$\frac{\delta m_W^{\text{meas}}}{m_W^{\text{meas}}} = \frac{\delta C_{\text{th}}}{C_{\text{th}}} = \frac{\delta \langle \rho_{\perp}^{\ell,Z} \rangle}{\langle \rho_{\perp}^{\ell,Z} \rangle} - \frac{\delta \langle \rho_{\perp}^{\ell,W} \rangle}{\langle \rho_{\perp}^{\ell,W} \rangle}$$

Estimated impact of ...

... mixed QCD-EW corrections:

$$\delta m_W \approx -7 \, \text{MeV}$$

... NLO electroweak corrections:

$$\delta m_W pprox 1\,\mathrm{MeV}$$

$$\delta m_{W} = \left(\frac{\delta \langle p_{\perp}^{\ell,Z} \rangle}{\langle p_{\perp}^{\ell,Z} \rangle} - \frac{\delta \langle p_{\perp}^{\ell,W} \rangle}{\langle p_{\perp}^{\ell,W} \rangle}\right) m_{W}$$

Estimated impact of ...

... mixed QCD-EW corrections:

$$\delta m_W \approx -7 \, \text{MeV}$$

... NLO electroweak corrections:

$$\delta m_W \approx 1 \, \text{MeV}$$

$$\delta m_{W} = \left(\frac{\delta \langle p_{\perp}^{\ell,Z} \rangle}{\langle p_{\perp}^{\ell,Z} \rangle} - \frac{\delta \langle p_{\perp}^{\ell,W} \rangle}{\langle p_{\perp}^{\ell,W} \rangle}\right) m_{W}$$

Mixed QCD-EW corrections appear to have larger impact than NLO EW corrections

- \cdot G_{μ} input parameter scheme reduces size of NLO EW corrections
- Strong cancellation between changes in $\it Z$ and $\it W$

Estimated impact of ...

... mixed QCD-EW corrections:

$$\delta m_W \approx -7 \, \mathrm{MeV}$$

... NLO electroweak corrections:

$$\delta m_W \approx 1 \, \text{MeV}$$

$$\delta m_{W} = \left(\frac{\delta \langle p_{\perp}^{\ell, \vee} \rangle}{\langle p_{\perp}^{\ell, \vee} \rangle} - \frac{\delta \langle p_{\perp}^{\ell, W} \rangle}{\langle p_{\perp}^{\ell, W} \rangle}\right) m_{W}$$

- $ightarrow \delta m_{W} pprox$ 54 MeV (mixed QCD-EW)
- $ightarrow \delta m_{W} pprox -$ 31 MeV (NLO EW)

Mixed QCD-EW corrections appear to have larger impact than NLO EW corrections

- \cdot G_{μ} input parameter scheme reduces size of NLO EW corrections
- Strong cancellation between changes in Z and W

Estimated impact of ...

... mixed QCD-EW corrections:

$$\delta m_W \approx -7 \, \text{MeV}$$

... NLO electroweak corrections:

$$\delta m_W \approx 1 \, \text{MeV}$$

$$\delta m_{W} = \left(\frac{\delta \langle p_{\perp}^{\ell, V} \rangle}{\langle p_{\perp}^{V, V} \rangle} - \frac{\delta \langle p_{\perp}^{\ell, W} \rangle}{\langle p_{\perp}^{\ell, W} \rangle}\right) m_{W}$$

- $\rightarrow \delta m_W \approx 54 \, \text{MeV} \, (\text{mixed QCD-EW})$
- $\rightarrow \delta m_{\rm W} \approx -31\,{
 m MeV}$ (NLO EW)
- \rightarrow Changes are more correlated between Z and W for NLO EW

Mixed QCD-EW corrections appear to have larger impact than NLO EW corrections

- + G_{μ} input parameter scheme reduces size of NLO EW corrections
- Strong cancellation between changes in Z and W

Estimated impact of ...

... mixed QCD-EW corrections:

$$\delta m_W \approx -7 \, \text{MeV}$$

... NLO electroweak corrections:

$$\delta m_W \approx 1 \, \text{MeV}$$

$$\delta m_{W} = \left(\frac{\delta \langle p_{\perp}^{\ell,Z} \rangle}{\langle p_{\perp}^{\ell,Z} \rangle} - \frac{\delta \langle p_{\perp}^{\ell,W} \rangle}{\langle p_{\perp}^{\ell,W} \rangle}\right) m_{W}$$

Minor influence of PDFs:

- Tested with specialised minimal PDF sets provided by NNPDF collaboration (based on NNPDF3.1luxQED)
- · Mixed QCD-EW corrections: About $\mathcal{O}(1)$ MeV changes

Scale variation: $\mathcal{O}(\pm 2)$ MeV

The influence of fiducial cuts

Repeat calculation with fiducial cuts (inspired by [ATLAS '17] analysis)

Estimated impact of ...

... mixed QCD-EW corrections:

$$\delta m_{\rm W} pprox -$$
17 MeV

... NLO electroweak corrections:

→ Shifts are larger than for inclusive setup

$$\delta m_W \approx 3 \, \text{MeV}$$

W production:

•
$$p_{\perp}^{e^{+}} > 30 \,\text{GeV}$$

•
$$p_{\perp}^{\text{miss}} > 30 \,\text{GeV}$$

$$\cdot \ |\eta_{e^+}| <$$
 2.4

•
$$m_T^W > 60 \,\mathrm{GeV}$$

Z production:

$$\cdot p_{\perp}^{e^{\pm}} > 25 \,\mathrm{GeV}$$

·
$$|\eta_{e^\pm}| <$$
 2.4

The influence of fiducial cuts

Repeat calculation with fiducial cuts (inspired by [ATLAS '17] analysis)

Estimated impact of ...

... mixed QCD-EW corrections:

$$\delta m_{\rm W} pprox -$$
17 MeV

... NLO electroweak corrections:

$$\delta m_W \approx 3 \, \mathrm{MeV}$$

W production:

- $p_{\perp}^{e^{+}} > 30 \,\text{GeV}$
- $p_{\perp}^{\text{miss}} > 30 \,\text{GeV}$
- $\cdot \ |\eta_{e^+}| <$ 2.4
- $m_T^W > 60 \,\mathrm{GeV}$

Z production:

- $p_{\perp}^{e^{\pm}} > 25 \,\mathrm{GeV}$
- · $|\eta_{e^\pm}| <$ 2.4

 \rightarrow Shifts are larger than for inclusive setup

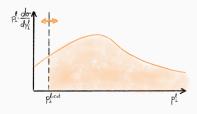
Key reason:

- Relevant transverse momenta: $p_{\perp}^{e^+}/{\rm M_V}$
- ATLAS applies larger $p_1^{e^+}$ cuts to (lighter) W bosons than to (heavier) Z bosons
- Leads to small decorrelation of corrections to W and Z bosons

Tuning the cuts

Can we "tune" the cuts to reduce the impact of mixed QCD-EW corrections?

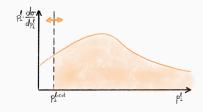
- · Start from ATLAS-inspired cuts as baseline
- Decrease cuts on $p_{\perp}^{e^+}$ for W^+ case until $C_{\rm th}=1$ at LO
- Leads to $p_{\perp}^{e^+} > 25.44\,\mathrm{GeV}$



Tuning the cuts

Can we "tune" the cuts to reduce the impact of mixed QCD-EW corrections?

- Start from ATLAS-inspired cuts as baseline
- Decrease cuts on $p_{\perp}^{e^+}$ for W^+ case until $C_{\rm th}=1$ at LO
- Leads to $p_{\perp}^{e^+} > 25.44 \, \mathrm{GeV}$



Estimated impact of ...

... mixed QCD-EW corrections:

$$\delta m_W \approx -1\,\mathrm{MeV}$$

... NLO electroweak corrections:

$$\delta m_{\rm W} \approx -3\,{\rm MeV}$$

ightarrow Strong cut dependence of δm_W allows to "tune away" QCD-EW corrections in our setup

Conclusions

Conclusions

- We calculate mixed QCD-EW corrections to fully-differential on-shell W and Z production at the LHC.
 - ightarrow Possible thanks to progress on amplitude calculations and subtraction schemes.
- Size of mixed QCD-EW corrections to the production part is $\mathcal{O}(0.5)\%$.
 - \rightarrow Corrections are small but in line with expectations.
- Experimental measurements of m_W rely on similarity between W and Z distributions. Based on this, we build a transparent and simple model to estimate shifts on m_W via

$$\delta m_{W} = \left(\frac{\delta \langle p_{\perp}^{\ell,Z} \rangle}{\langle p_{\perp}^{\ell,Z} \rangle} - \frac{\delta \langle p_{\perp}^{\ell,W} \rangle}{\langle p_{\perp}^{\ell,W} \rangle}\right) m_{W}.$$

- We find that mixed QCD-EW corrections induce shifts on m_W that are comparable or larger than the target precision of $\mathcal{O}(10)$ MeV.
- Further investigations on the impact of mixed QCD-EW corrections on m_W are clearly warranted. They should reflect all relevant details of experimental analyses.

Input parameters

Input parameters used:

 $m_t = 173.2 \,\text{GeV}$

$$G_F = 1.16639 \times 10^{-5} \text{ GeV}^{-2}$$

 $m_Z = 91.1876 \text{ GeV}$
 $m_W = 80.398 \text{ GeV}$
 $m_H = 125 \text{ GeV}$

- \cdot We use the G_{μ} input parameter scheme.
- PDFs: NNLO set NNPDF3.1luxQED with $\alpha_{\rm S}(m_{\rm Z})=$ 0.118
- Simulations for 13 TeV LHC
- Central scale: $\mu_R = \mu_F = m_V/2$

Detailed results for cross-sections and moments

Results for the cross-sections and average transverse momentum of the charged lepton for the inclusive setup of $pp \to Z \to e^+e^-$ and $pp \to W^+ \to e^+\nu_e$ (corrections only to the production part)

$$d\sigma_{Z,W} = \sum_{i,j=0} \alpha_s^i \alpha_W^i d\sigma_{Z,W}^{i,j} \qquad \qquad F_{Z,W}(i,j,\mathcal{O}) = \alpha_s^i \alpha_W^i \int d\sigma_{Z,W}^{i,j} \times \mathcal{O}$$

	V = Z			$V = W^+$		
	$\mu = m_Z/4$	$\mu = m_Z/2$	$\mu = m_Z$	$\mu = m_W/4$	$\mu=m_W/2$	$\mu=m_{\rm W}$
$F_V(0, 0; 1), [pb]$ $F_V(1, 0; 1), [pb]$ $F_V(0, 1; 1), [pb]$ $F_V(1, 1; 1), [pb]$	$ 1273 $ $ 570.2 $ $ -5810 \cdot 10^{-3} $ $ -2985 \cdot 10^{-3} $	$ \begin{array}{r} 1495 \\ 405.4 \\ -6146 \cdot 10^{-3} \\ -2033 \cdot 10^{-3} \end{array} $	$ \begin{array}{r} 1700 \\ 246.9 \\ -6073 \cdot 10^{-3} \\ -1236 \cdot 10^{-3} \end{array} $	7434 3502 $-1908 \cdot 10^{-3}$ $-8873 \cdot 10^{-3}$	8810 2533 3297 · 10 ⁻³ -7607 · 10 ⁻³	10083 1580 10971 · 10 ⁻³ -7556 · 10 ⁻³
$F_V(0,0; p_{\perp}^e)$ [GeV pb] $F_V(1,0; p_{\perp}^e)$ [GeV pb] $F_V(0,1; p_{\perp}^e)$ [GeV pb] $F_V(1,1; p_{\perp}^e)$ [GeV pb]	42741 23418 182.85 163.87	50191 17733 —192.77 —125.22	57073 12221 —189.11 —92.05	220031 124487 74.53 -553.87	260772 95132 243.54 482.0	298437 66090 484.82 —448.0

Detailed results for W mass shifts

Detailed results for the shifts δm_W for different setups, orders and scales

δm_W [MeV]		$\mu = m_V/4$	$\mu = m_V/2$	$\mu = m_V$
Inclusive	NLO EW	−0.1	0.3	0.2
	QCD-EW	−5.1	-7.5	-9.3
Fiducial	NLO EW	0.2	2.3	4.2
	QCD-EW	-16	—17	—19
Tuned fiducial	NLO EW	-4.4	-2.5	-0.8
	QCD-EW	3.9	-1.0	-5.7