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Precision tests of the Standard Model
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Precision W mass measurements
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- Measurements of my have come a long way
- ATLAS has measured my, = (80370 4 19) MeV [ATLAS "17]

- ATLAS and CMS collaborations aim to reduce uncertainty to O(10 MeV)
— would rival precision from global electroweak fits
— would mean O(0.01%) uncertainty
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How to measure my, at hadron colliders

Need observables that are sensitive to my,:

Transverse mass of W Transverse momentum of £
do ° do =
dmiw * dpie 2
4 20
s ‘5/7:
2 10 1
1
E 05 i
ObD 60 70 80, 90 100 o 20 30 40 50 60
mw ma,w my /2 Pie

m, w= \/2pL,ZpL,V(1 — COS ¢y, )

At LO and with idealized detectors both observables have sharp kinematic edges.
— Very sensitive observables
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Theory predictions for m,, measurements at hadron colliders

- Need very precise predictions for differential distributions for W and Z production

- Standard tools: Collinear factorisation and perturbation theory

do=Y" / dx,d, fi (1 )f; (X2 ) dar (3, %) doj = > ala"do{"™
ij n,m

- Typically reaches O(1%) or worst uncertainties for inclusive observables
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[Duhr, Dulat, Mistlberger '20]
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Theory predictions for m,, measurements at hadron colliders (cont.)

To measure my, to a precision of O(10 MeV) we have to control theory uncertainties
to a level of about 0(0.01%).

— Straightforward application of standard tools falls short of required precision.

Consequences:

1. We cannot hope to predict distributions to this precision from first principles.
Instead:
- Measure Z distributions
- Parametrise them in QCD-motivated way
- Transfer them to W distributions (bulk of QCD does not distinguish between W and Z)

2. Small effects that distinguish between Z and W bosons may matter.
— Electroweak corrections are obvious examples of such effects.



Electroweak and QCD corrections to on-shell W and Z production

NLO QCD
qG E‘\
@ — Only corrections
w,z to the initial state

db éz



Electroweak and QCD corrections to on-shell W and Z production
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— initial state corrections

— final state corrections

— non-fact. corrections
[Dittmaier, Huss, Schwinn "4]:
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Electroweak and QCD corrections to on-shell W and Z production

NLO QCD NLO EW
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@ — initial state corrections
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— final state corrections
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Mixed QCD-EW corrections to on

Mixed QCD-EW: Initial-Final Mixed QCD-EW: Initial-Initial
da 4 da €1
e 4 e i @ W,z i
db Zz db gz
- Correction of NLO ® NLO type - Correction of NNLO type
- Previously investigated - Generated lots of recent activity
[Dittmaier, Huss, Schwinn "15] [Carloni Calame et al. '16] [De Florian, Der, Fabre 18] [Cieri, de Florian, Der, Mazzitelli '20]
[Bonciani, Buccioni, Rana, Triscari, Vicini '19]
. Est| m ated | m pa Ct on [Bonciani, Buccioni, Rana, Vicini '20] [Dittmaier, Schmidt, Schwarz '20]
[

Buonocore, Grazzini, Kallweit, Savioni, Tramontano '21]

my, measurement: 5 .
W - Subject of this talk
[Delto, Jaquier, Melnikov, Rontsch "19]
[Buccioni, Caola, Delto, Jaquier, Melnikov, Rontsch 20]
[AB, Buccioni, Caola, Delto, Jaquier, Melnikov, Réntsch '20]
[AB, Buccioni, Caola, Delto, Jaquier, Melnikov, Rontsch '21]

dmy ~ O(15MeV)
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Mixed QCD-EW corrections to on-shell W and Z production

Mixed QCD-EW corrections to pp — W/Z have been discussed for many years
Calculation became possible due to progress on several bottlenecks

- Double Virtual: Complicated integrals with internal and external masses

000000

::}M — Progress on differential equations, iterated integrals etc.

- Real Virtual: Sufficiently stable numerics close to singular limits

% — OpenLoops can provide this in an automated way

- Double Real: IR singularities require NNLO subtraction scheme
% — Profit from progress on NNLO QCD subtraction schemes

— We derive estimates for shifts of W mass due to mixed QCD-EW corrections
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Form factors for on-shell W and Z bosons

What needs to be calculated? — Only on-shell form factors
(Narrow-width approximation simplifies the problem)
- Z: Mixed QCD-EW corrections are known [Kotikov, Kihn, Veretin '07]

- W: Mixed QCD-EW corrections were not yet publicly available
— We calculated the missing integrals and completed the form factor
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Calculation of the W form factor

44 Feynman diagrams
This is a non-trivial,
% @W but tractable calculation.

lFeynman rules, v algebra, IBP reductions, ...

35 master integrals 10 MI with internal W and Z
/ [d°k ][d ka] —— Calculated using differential equations
[kz mvv] sz)z - mé] )
. m
l B,1(z,€) = Az, e)l(z,¢) with z= "2
mz
25 MI known in the literature with the equal mass case (z = 1) as
(ncan b Vi, ety Schubar 1ol boundary conditions
| v

Results can be expressed in terms of well-understood iterated integrals (GPLs)

Y G- y
6,50 = [ fhadt, G)= [ adt G =), 2=
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Mixed QCD-EW corrections to the W form factor

The result for the form factor can be brought into a compact form.

Infrared poles are predicted by a “Catani-like” formula:
w
<FQCD®EW> _ (as(p) oew | Ny i e  Hacogew (Fi)
L\/V+LV2 - 27_[_ 27_[_ 12,QCD 12,EW r(»] . 6) c LM

s () fin,EW Qg fin,QCD
+ <527T > /12,QCD<FL\? > + (ﬁ) I12,EW<FL\? >

fin,QCDREW
+ <I:va+Lv2 > ’
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The result for the form factor can be brought into a compact form.

Infrared poles are predicted by a “Catani-like” formula:
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Mixed QCD-EW corrections to the W form factor

The result for the form factor can be brought into a compact form.

Infrared poles are predicted by a “Catani-like” formula:
w
<FQCD®EW> _ (as(p) oew | Ny i e  Hacogew (Fi)
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- Pole structure almost factorises into NLO QCD x NLO EW

- Finite remainder <Fﬁ”'QCD§®EW> also consists of
LWLV

a factorising (NLO QCD x NLO EW) and a non-factorising part



Mixed QCD-EW corrections to the W form fa

, The analytic result is now available
and even reasonably compact.

Non-factorising part of finite remainder

becomes this simple when expressedzin

terms of iterated integrals over z = %
z

(52— 2)(2: +122 +11)

Hy5(2) = /O fa(t)H5(t) dt

with HPL- and square root letters

A N )= AB=3
1 1
f_1(t):m7 fr(t) = )




Subtraction




Infrared singularities

Cross-sections develop IR singularities in soft and collinear limits of massless particles
— cancel between real and virtual corrections

- Use a subtraction scheme to make poles from real radiation explicit

“/id%:/[i___@@]mﬁ/__@@d%

—finite x1/e

n

- Build on progress with NNLO QCD subtraction schemes to tackle mixed QCD-EW
corrections (here: nested soft-collinear subtraction scheme)

- Z: Abelianisation of NNLO QCD subtraction is sufficient
- W: New contributions from radiating W bosons

14



Subtraction for mixed QCD-EW corrections: triple-collinear limits

We can make use of simplifications compared to NNLO QCD.

Triple-collinear limits nj = 3(1 — cos 6;)
- NNLO QCD: Overlapping singularities in triple-collinear limits "g,q
91 9 9, G (c) (d)
£8 L8 & C
(a)

— Needs 4 sectors to disentangle collinear singularities To.q
1



Subtraction for mixed QCD-EW corrections: triple-collinear limits

We can make use of simplifications compared to NNLO QCD.
Triple-collinear limits
- NNLO QCD: Overlapping singularities in triple-collinear limits

(e 4F _F

— Needs 4 sectors to disentangle collinear singularities

- Mixed QCD-EW: Collinear limit of photon and gluon is not singula

£ss &

— 2 sectors can be dropped in gg channel

Overall: No new collinear limits arise compared to NNLO QCD

my = 3(1 - cosey)

Ng,q

LR




Subtraction for mixed QCD-EW corrections: double-soft limits

We can make use of simplifications compared to NNLO QCD.

Double-soft limits
- NNLO QCD: Overlapping singularities in the double-soft limit

- Non-trivial double-soft eikonal function
- Distinguish rates at which energies of soft particles vanish

1= 0(Eg, — Eg,) + 0(Eg, — Eg.)



Subtraction for mixed QCD-EW corrections: double-soft limits

We can make use of simplifications compared to NNLO QCD.

Double-soft limits
- NNLO QCD: Overlapping singularities in the double-soft limit

- Non-trivial double-soft eikonal function Egz = ng
- Distinguish rates at which energies of soft particles vanish
Eq, > Eg,
1=0(E;, — Eg) +0(E;, — Eg.)
E

- Mixed QCD-EW: Soft gluons and photons are not entangled
- Double-soft limit factorises into NLO QCD x NLO QED

 im (Mg, = G3Eiky(Pu, Pai Pg) €Eiky (Pu, P Pwi P) M
g9’y

(pu - Pg)

Eikg(Pu: Pai Pg) = 2Cr 5= Sp, -3)

- No need to distinguish £, > E. vs. £, > Eg



Subtraction for mixed QCD-EW corrections: radiating W bosons

v
d —«—«/\/D‘\‘\/z wt

New contribution compared to NNLO QCD: W bosons can radiate photons

- Mass of W boson prevents collinear singularities
- Soft limit of photon is still singular

- Requires soft eikonal function for massive emitter
- QCD and QED factorise in soft limit — only NLO eikonal functions necessary

Z(Du‘Da) _ 2 'Div
(Pu-P)PaP) " (pw - p. )

2(pw-pu) 2(pw - Pa)
= (Q“ Bu )0 22) 20w p,)03 - p7>>}

Eik’y(puvpfhpw;p'y) = {Qqu




Estimates for impact on W mass




Results for W production: Cross sections for pp — W' — e,

- Write cross section as o = oo + dog + 00110 + domie + - ..

- We include only initial-initial contributions da 4
olpb] wu=my p=my/2 p=my/h ﬁWZ
b 2
Olo 6007.6 5195.0 4325.9 a 0

So 508.8 1137.0 1782.2 >@)NM<
EW _ W _
60’[\“_0 21 ‘10 ‘26 dp 4,

oo 24 -2.3 2.8 QGW«
Results for:  13TeV LHC, G, scheme, _ W,z _

MR = g = o € {My, My /2, My /4},
NNPDF3.1luxQED
Selection criteria: = pre >15GeV,  prmiss > 15GeV,  —2.4 <y, < 2.4



Results for W production: Cross sections for pp — W' — e,

- Write cross section as o = a0 + dong + o0 + 00 + - ..

- We include only initial-initial contributions do

olpb] wu=my p=my/2 p=my/h _Wj

Ol0 6007.6 5195.0 43259

So 508.8 1137.0 1782.2 >@)NM<
W,z
SoRty 2.1 -1.0 2.6 G Z

‘P A
50’&[5&)&/\/ 2.4 -2.3 -28 Qa 4
- NLO EW corrections are tiny 0(0.02%) a» z

(mostly due to G, scheme)



Results for W production: Cross sections for pp — W' — e,

- Write cross section as o = a0 + dong + o0 + 00 + - ..

- We include only initial-initial contributions do

olpb] wu=my p=my/2 p=my/h _Wj

Ol0 6007.6 5195.0 43259

So 508.8 1137.0 1782.2 >@)NM<
W,z
SoRty 2.1 -1.0 2.6 G Z

‘P A
50’&[5&)&/\/ 2.4 -2.3 28 Qa 4
- Mixed QCD-EW corrections are very small, about 0(0.05%), b L

but not obviously irrelevant for m,, measurements at the LHC



Differential distributions

0 +,- + +
pp—Z —e'e pp = W™ = e'y,
- - - - - - - 2l 500 [ w QCD ——
0.1 [QCD-QCDY10 = — 9 q __’_’—/‘H
QCD-QED —-—- . |
QCD-weak - - - Sla ! L L ! J
0.05 | QCD-EW < © NLOEW ===+ th,_  ____ow==""
: = 0.004 | . | the—e-
= NNLO QCD-EW =—— |
& 5 0.002 1
| - i
S 0 O 0 :
a1 —oo02 |
=)
-0.05 J
Production only —0.004 |
- - - - - - - —0.006
20

30 40 50 60 70 80 90 100
P, [GeV]

[Buccioni, Caola, Delto, Jaquier, Melnikov, Rontsch 20]

PLe [GeV]

[AB, Buccioni, Caola, Delto, Jaquier, Melnikov, Réntsch '20]

- Our implementation allows to calculate differential distributions
including mixed QCD-EW corrections

- Impact on W-mass measurement is not immediately obvious

19
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Estimate W mass shifts from mixed QCD-EW corrections

Objective: Estimate impact of new corrections on W boson mass

Considerations:

- Should combine W and Z measurements

— model what is done in experiments
— make use of available precision for Z mass

- Should be physically and conceptually simple and transparent

- Should be accessible with our calculations

20



Construction of our observable

We use the average transverse momentum of the charged lepton (V = W, 2):

e,v> _ fdffv X Pi

<pJ_ fd(TV
| [ ! ol
j—:g : A
: xp.
5
|

4

Pi.cu{ Pﬁ’ plet \ F{

21
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Construction of our observable (cont.)

Use the average lepton p, in W and Z production as well as the Z mass to construct an
observable for the W mass:

<DZ,W meas

meas _ \PL

my = 0,7\ meas mgz Ci
(P17

22



Construction of our observable (cont.)

Use the average lepton p, in W and Z production as well as the Z mass to construct an
observable for the W mass:

Measurement from LHC
QO( mW
mW = ePZumeasl mZ Cth

<p1j:Z> meas

(O( mz
Measurement from LHC

22



Construction of our observable (cont.)

Use the average lepton p, in W and Z production as well as the Z mass to construct an
observable for the W mass:

Measurement from LEP

meas <pziw>meas )
My — = <pﬁiz>meas mgz Ci

22



Construction of our observable (cont.)

Use the average lepton p, in W and Z production as well as the Z mass to construct an
observable for the W mass:

<DZ,W meas

meas _ \PL

my = 0,7\ meas mgz Ci
(P17

Theoretical correction factor
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Construction of our observable (cont.)

Use the average lepton p, in W and Z production as well as the Z mass to construct an
observable for the W mass:

<DZ,W meas

meas _ \PL

my = 0,7\ meas mgz Ci
(P17

Theoretical correction factor

0.7
. m ;
— Calculate via G, = —X Py

mz (p§")"

>th

22



Construction of our observable (cont.)

Use the average lepton p, in W and Z production as well as the Z mass to construct an
observable for the W mass:

<DZ,W meas
mp™ = S m, Gy Adding a new correction to the theory
(P17

— changes Gy,
meas

. : — changes extracted mass my,
Theoretical correction factor

0,7\t
— Calculate via G, = Mw (PL) =

Mz ()" my G 1) (L)

“ omiy _ G _ 0(pY")  o(pi")

22



Shifts on W mass (inclusive setup)

Estimated impact of ... —_— (MP;;) B 5<P;Vtv>> -
.. mixed QCD-EW corrections: (i) Py
omy ~ —7MeV
... NLO electroweak corrections:

omy =~ 1MeV

23
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.. mixed QCD-EW corrections: (i) Py
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Mixed QCD-EW corrections appear to have larger impact than NLO EW corrections
- G, input parameter scheme reduces size of NLO EW corrections

- Strong cancellation between changes in Z and W
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Shifts on W mass (inclusive setup)

. . ) oW
Estimated impact of ... _ £) pr)
omy = > W My
.. mixed QCD-EW corrections: L1 (P
smy ~ —7 MeV — 6my, =~ 54 MeV (mixed QCD-EW)

.. NLO electroweak corrections: — My ~ —31MeV (NLO EW)

omy =~ 1MeV

Mixed QCD-EW corrections appear to have larger impact than NLO EW corrections
- G, input parameter scheme reduces size of NLO EW corrections

- Strong cancellation between changes in Z and W
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Shifts on W mass (inclusive setup)

. . ) oW
Estimated impact of ... _ £) pr)
omy = > W My
.. mixed QCD-EW corrections: L1 (P
smy ~ —7 MeV — 6my, =~ 54 MeV (mixed QCD-EW)

— 6my, = —31MeV (NLO EW)
— Changes are more correlated
omy, ~1MeV between Z and W for NLO EW

... NLO electroweak corrections:

Mixed QCD-EW corrections appear to have larger impact than NLO EW corrections
- G, input parameter scheme reduces size of NLO EW corrections

- Strong cancellation between changes in Z and W
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Shifts on W mass (inclusive setup)

Estimated impact of ... —_— (MP}’;) B 5<P;Vtv>> -
.. mixed QCD-EW corrections: (i) Py
omy ~ —7MeV
... NLO electroweak corrections:

omy =~ 1MeV

Minor influence of PDFs:

- Tested with specialised minimal PDF sets provided by NNPDF collaboration
(based on NNPDF3.11uxQED)

- Mixed QCD-EW corrections: About O(1) MeV changes
Scale variation: O(£2) MeV

23



The influence of fiducial cuts

Repeat calculation with fiducial cuts (inspired by [ATLAS "17] analysis)

: : W production: Z production:
Estimated impact of ... ot ot
© p1 >30GeV - pS > 25GeV
.. mixed QCD-EW corrections: ;
IX Q | . sts = 30 GeV . |7lei‘ <24
omy, ~ —17 MeV g < 2.4
.. NLO electroweak corrections: . mgv > 60 GeV

omy, ~ 3 MeV

— Shifts are larger than for inclusive setup

24


https://arxiv.org/abs/1701.07240

The influence of fiducial cuts

Repeat calculation with fiducial cuts (inspired by [ATLAS "17] analysis)

: : W production: Z production:
Estimated impact of ... .
+ p. >30GeV - p, >25GeV
.. mixed QCD-EW corrections: ; B
IX Q | . sts = 30 GeV . |7lei‘ <24
omy, ~ —17 MeV g < 2.4
.. NLO electroweak corrections: . mg > 60 GeV

omy, ~ 3 MeV
— Shifts are larger than for inclusive setup
Key reason:

n
- Relevant transverse momenta: p /My

- ATLAS applies larger p© cuts to (lighter) W bosons than to (heavier) Z bosons
- Leads to small decorrelation of corrections to W and Z bosons
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Tuning the cuts

Can we “tune” the cuts to reduce the impact of mixed QCD-EW corrections?

- Start from ATLAS-inspired cuts as baseline Lok
Ld—z
- Decrease cuts on pf for W' case "

until G, =1at LO
- Leads to pef > 25.44 GeV
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Tuning the cuts

Can we “tune” the cuts to reduce the impact of mixed QCD-EW corrections?

- Start from ATLAS-inspired cuts as baseline Lok
LJ‘Q
- Decrease cuts on pf for W' case "

until G, =1at LO

|
i
|
l
|
|

.

- Leads to p§ > 25.44GeV :

Pll.m PL

Estimated impact of ...
. mixed QCD-EW corrections: — Strong cut dependence of dmy
allows to “tune away”
QCD-EW corrections
.. NLO electroweak corrections: in our setup

dmy, ~ —3 MeV

dmy, ~ —1MeV
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Conclusions

- We calculate mixed QCD-EW corrections to fully-differential on-shell W and Z
production at the LHC.

— Possible thanks to progress on amplitude calculations and subtraction schemes.

- Size of mixed QCD-EW corrections to the production part is O(0.5)%.
— Corrections are small but in line with expectations.

- Experimental measurements of my, rely on similarity between W and Z distributions.
Based on this, we build a transparent and simple model to estimate shifts on my, via

sty s(ptY
5mw_<<ﬁz> <z7lw> My .
(P1%) (p7™)
- We find that mixed QCD-EW corrections induce shifts on my, that are comparable or
larger than the target precision of O(10) MeV.

- Further investigations on the impact of mixed QCD-EW corrections on my, are clearly
warranted. They should reflect all relevant details of experimental analyses.
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Input parameters

Input parameters used:

Gy = 1.166 39 x 105 GeV~2 - We use the G, input parameter scheme.

m, = 91.1876 GeV - PDFs: NNLO set NNPDF3.11uxQED with
Oés(mz) =0.118

my, = 80.398 GeV _ ,
- Simulations for 13 TeV LHC

my = 125 GeV

- Central scale: =L — m)y)/2
m, = 173.2 GeV He = pr = MMy /



Detailed results fi 0ss-sections an

Results for the cross-sections and average transverse momentum of the charged lepton
for the inclusive setup of pp —Z — e"e™ and pp — W™ — e*w, (corrections only to the
production part)

o Z Py - N ij
dJZ,W = asadeZ_VW FZ,W(’?/’ O) = Qs / dJZ,W X O
i,j=0
V=2 v=wt
p=mz/4 p=mz/2 p=mz w=my/4 = my/2 p=my
Fy(0,0;1), [pb] 1273 1495 1700 7434 8810 10083
Fy(1,0;1), [pb] 570.2 405.4 246.9 3502 2533 1580
Fy(0,7;1), [pb] —5810-107°  —6146-107° —6073-10"°  —1908-107°  3297.10° 109711073
Fy(1,1;1), [pb] —2985-107°  —2033-107°  —1236-10"° —8873-107°  —7607-10"°  —7556-10 "
Fy(0, 0; p%. ) [GeV pb] 42741 50191 57073 220031 260772 298437
Fy(1,0; p%) [GeV pb] 23418 17733 12221 124487 95132 66090
Fu(0,1; ) [GeV pb] —182.85 —192.77 —189.11 74.53 243.54 484.82
Fy(1,1; %) [GeV pb] —163.87 —125.22 —92.05 —553.87 —482.0 —448.0




Detailed results for W mass shifts

Detailed results for the shifts 6my, for different setups, orders and scales

smy [MeV] p=my/4 p=my/2 p=my

inclusive NLO EW —0.1 0.3 0.2
QCD-EW —5.1 —7.5 -9.3

Fiducial NLO EW 0.2 2.3 4.2
QCD-EW —16 =17 —19
NLO EW —4.4 -2.5 —-0.8

Tuned fiducial
uneanauciat o cp-gw 3.9 1.0 57




	Two-loop amplitudes
	Subtraction
	Estimates for impact on W mass
	Conclusions
	Appendix
	Backup


