A free electron absorbs a photon

\[A \xrightarrow{\gamma} e^- \]

Assume \(e^- \) at rest initially.

Initial state \(M_i^2 = (E_i + E_\gamma)^2 - (p_i + p_\gamma)^2 \)

\[= E_i^2 + E_\gamma^2 + 2E_iE_\gamma - p_i^2 - p_\gamma^2 - 2p_ip_\gamma \]

\[= m_e^2 + m_\gamma^2 + 2E_iE_\gamma - 2E_iE_\gamma \]

\[= m_e^2 + 2E_iE_\gamma \]

Final state \(M_f^2 = E_f^2 - p_f^2 = m_c^2 \)

Lorentz invariance \(M_i^2 = M_f^2 \)

\[m_c^2 + 2E_iE_\gamma = m_c^2 \]

\[> 0 \]

\(m_i > m_f \), \(E, p \) not conserved.

But if we allow \(m_c \neq m_e \), it is off-shell electron

\(m_c^2 > m_e^2 \) \(\Rightarrow \) \(e^- \) is a virtual electron

\[\text{Not a physical process} \]

\[\text{Need a second vertex in the Feynman diagram} \]

\[\text{\(e^- \) in atoms are bound & can absorb single \(\gamma \) as they have internal degrees of freedom} \]