
Particle and 
Nuclear Physics

Handout #3 

 Nuclear Physics

Lent/Easter Terms 2024
Prof. Tina Potter



13. Basic Nuclear Properties
Particle and Nuclear Physics

Prof. Tina Potter

Prof. Tina Potter 13. Basic Nuclear Properties 1

In this section...

Motivation for study

The strong nuclear force

Stable nuclei

Binding energy & nuclear mass (SEMF)

Spin & parity

Nuclear size (scattering, muonic atoms, mirror nuclei)

Nuclear moments (electric, magnetic)
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Introduction
Nuclear processes play a fundamental role in the physical world:

Origin of the universe

Creation of chemical elements

Energy of stars

Constituents of matter; influence properties of atoms

Nuclear processes also have many practical applications:

Uses of radioactivity in research, health and industry, e.g. NMR, radioactive dating.

Various tools for the study of materials, e.g. Mössbauer, NMR.

Nuclear power and weapons.
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The Nuclear Force

Consider the pp interaction, Range ∼ ℏ/mπc ∼ 1fm

π0

p

p

p

p

Hadron level

≡

Quark-gluon level

Pion vs. gluon exchange is similar to the Coulomb potential vs. van der Waals’ force in QED.

The treatment of the strong nuclear force between nucleons is a many-body
problem in which

quarks do not behave as if they were completely independent.

nor do they behave as if they were completely bound.

The nuclear force is not yet calculable in detail at the quark level and can only
be deduced empirically from nuclear data.
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Stable Nuclei

Stable nuclei do not decay by the strong interaction.
They may transform by β and α emission (weak or electromagnetic) with long
lifetimes.

Characteristics

Light nuclei tend to have N=Z .
Heavy nuclei have more neutrons, N > Z .

Most have even N and/or Z .
Protons and neutrons tend to form pairs
(only 8/284 have odd N and Z ).

Certain values of Z and N exhibit larger
numbers of isotopes and isotones.
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Binding Energy

Binding Energy is the energy required to split a nucleus into its constituents.

Mass of nucleus m(N ,Z ) = Zmp + Nmn - B

Binding energy is very important: gives information on

forces between nucleons

stability of nucleus

energy released or required in nuclear decays or reactions

Relies on precise measurement of nuclear masses (mass spectrometry).

Used less in this course, but important nonetheless.

Separation Energy of a nucleon is the energy required to remove a single nucleon from a

nucleus.
e.g. n: B(AZX )− B(A−1

Z X ) = m(A−1
Z X ) +m(n)−m(AZX )

p: B(AZX )− B(A−1
Z−1X

′) = m(A−1
Z−1X

′) +m(1H)−m(AZX )
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Binding Energy Binding Energy per nucleon

Key Observations

Prof. Tina Potter 13. Basic Nuclear Properties 7

Nuclear mass The liquid drop model

Atomic mass: M(A,Z ) = Z (mp +me) + (A− Z )mn −B
Nuclear mass: m(A,Z ) = Zmp + (A− Z )mn −B

Liquid drop model
Approximate the nucleus as a sphere with a uniform interior
density, which drops to zero at the surface.

Liquid Drop

Short-range intermolecular
forces.

Density independent of drop
size.

Heat required to evaporate
fixed mass independent of drop
size.

Nucleus

Nuclear force short range.

Density independent of nuclear
size.

B/A ∼ constant.
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Nuclear mass The liquid drop model

Predicts the binding energy as: B = aVA− aSA
2/3 − acZ

2

A1/3

aVA

Volume term
Strong force between nucleons increases B and reduces mass
by a constant amount per nucleon.
Nuclear volume ∼ A

−aSA
2/3

Surface term
Nucleons on surface are not as strongly bound ⇒ decreases B .
Surface area ∼ R2 ∼ A2/3

−acZ
2

A1/3

Coulomb term
Protons repel each other ⇒ decreases B .
Electrostatic P.E. ∼ Q2/R ∼ Z 2/A1/3

But there are problems. Does not account for

N ∼ Z

Nucleons tend to pair up; even N , Z favoured
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Nuclear mass The Fermi gas model

Fermi gas model: assume the nucleus is a Fermi gas, in which confined
nucleons can only assume certain discrete energies in accordance with the Pauli
Exclusion Principle.
Addresses problems with the liquid drop model with additional terms:

−aA
(N − Z )2

A

Asymmetry term Nuclei tend to have N ∼ Z .
Kinetic energy of Z protons and N neutrons is minimised if N=Z . The

greater the departure from N=Z , the smaller the binding energy.

Correction scaled down by 1/A, as levels are more closely spaced as A

increases.

+δ(A)

Pairing term Nuclei tend to have even Z , even N .
Pairing interaction energetically favours the formation of pairs of like

nucleons (pp, nn) with spins ↑↓ and symmetric spatial wavefunction.

The form is simply empirical.

δ(A) = +aPA
−3/4 N ,Z even-even

= −aPA
−3/4 N ,Z odd-odd

= 0 N ,Z even-odd
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Nuclear mass The semi-empirical mass formula

Putting all these terms
together, we have
various contributions to
B/A:

Nuclear mass is well described by the semi-empirical mass formula

m(A,Z ) = Zmp + (A− Z )mn − B

B = aVA− aSA
2/3 − acZ

2

A1/3
− aA

(N − Z )2

A
+ δ(A)

with the following coefficients (in MeV) obtained by fitting to data

aV = 15.8, aS = 18.0, aC = 0.72, aA = 23.5, aP = 33.5
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Nuclear Spin

The nucleus is an isolated system and so has a well defined nuclear spin

Nuclear spin quantum number J |J | =
√
J(J + 1) ℏ = 1

mJ = −J , − (J − 1), ..., J − 1, J .

Nuclear spin is the sum of the individual nucleons total angular momentum, ji ,

J⃗ =
∑

i

j⃗i , j⃗i = L⃗i + S⃗i

j − j coupling always applies because of strong spin-orbit interaction (see later)

where the total angular momentum of a nucleon is the sum of its intrinsic spin
and orbital angular momentum

intrinsic spin of p or n is s = 1/2
orbital angular momentum of nucleon is integer

A even → J must be integer
A odd → J must be 1/2 integer

All nuclei with even N and even Z have J = 0.
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Nuclear Parity

All particles are eigenstates of parity P̂ |Ψ⟩ = P |Ψ⟩, P = ±1

Label nuclear states with the nuclear spin and parity quantum numbers.
Example: 0+ (J = 0, parity even), 2− (J = 2, parity odd)

The parity of a nucleus is given by the product of the parities of all the
neutrons and protons

P =

(∏

i

Pi

)
(−1)L for ground state nucleus, L = 0

The parity of a single proton or neutron is P = (+1)(−1)L

intrinsic P = +1 (3 quarks) nucleon L is important

For an odd A, the parity is given by the unpaired p or n. (Nuclear Shell Model)

Parity is conserved in nuclear processes (strong interaction).

Parity of nuclear states can be extracted from experimental measurements,
e.g. γ transitions.
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Nuclear Size
The size of a nucleus may be determined using two sorts of interaction:

Electromagnetic Interaction gives the charge distribution of protons
inside the nucleus, e.g.

electron scattering

muonic atoms

mirror nuclei

Strong Interaction gives matter distribution of protons and neutrons inside
the nucleus. Sample nuclear and charge interactions at the same time ⇒ more
complex, e.g.

α particle scattering (Rutherford)

proton and neutron scattering

Lifetime of α particle emitters (see later)

π-mesic X-rays.

⇒ Find charge and matter radii EQUAL for all nuclei.
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Nuclear Size Electron scattering

Use electron as a probe to study deviations from a
point-like nucleus.

Electromagnetic Interaction

γ

e− e−

Ze

e

Nucleus, Z protons
Coulomb potential V (r⃗) = −Zα

r

Born Approximation
dσ

dΩ
=

E 2

(2π)2

∣∣∣∣
∫

e−i q⃗.r⃗V (r⃗) d3r⃗

∣∣∣∣
2

q⃗ = p⃗i − p⃗f is the momentum transfer

Rutherford Scattering dσ

dΩ
=

Z 2α2

4E 2 sin4 θ/2

To measure a distance of ∼1 fm, need large energy (ultra-relativistic)

E = 1
λ = 1 fm−1 ∼ 200 MeV ℏc = 197 MeV.fm
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Nuclear Size Scattering from an extended nucleus

But the nucleus is not point-like!
V (r⃗) depends on the distribution of charge in nucleus.

Potential energy of electron
due to charge dQ

dV = − e dQ

4π
∣∣∣r⃗ − r⃗ ′

∣∣∣
where dQ = Zeρ(r⃗ ′) d3r⃗ ′

ρ(r⃗ ′) is the charge distribution (normalised to 1)

V (r⃗) =

∫
− e2Zρ(r⃗ ′)

4π
∣∣∣r⃗ − r⃗ ′

∣∣∣
= −Zα

∫
ρ(r⃗ ′)∣∣∣r⃗ − r⃗ ′

∣∣∣
d3r⃗ ′ α =

e2

4π

This is just a convolution of the pure Coulomb potential Zα/r with the
normalised charge distribution ρ(r).
Hence we can use the convolution theorem to help evaluate the matrix element
which enters into the Born Approximation.
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Nuclear Size Scattering from an extended nucleus

Matrix Element Mif =

∫
eiq⃗r⃗V (r⃗) d3r⃗ = −Zα

∫
eiq⃗r⃗

r
d3r⃗

∫
ρ(r⃗)eiq⃗r⃗ d3r⃗

Rutherford scattering F (q2)

Hence,
dσ

dΩ
=

(
dσ

dΩ

)

point

∣∣F (q2)
∣∣2

where F (q2) =
∫
ρ(r⃗)eiq⃗r⃗ d3r⃗ is called the Form Factor and is the fourier

transform of the normalised charge distribution.

Spherical symmetry, ρ = ρ(r), a simple calculation (similar to our treatment of
the Yukawa potential) shows that

F (q2) =

∫ ∞

0

ρ(r)
sin qr

qr
4πr 2 dr ; ρ(r) =

1

2π2

∫ ∞

0

F (q2)
sin qr

qr
q2 dq

So if we measure cross-section, we can infer F (q2) and get the charge
distribution by Fourier transformation.
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Nuclear Size Modelling charge distribution

Use nuclear diffraction to measure
scattering, and find the charge
distribution inside a nucleus is well
described by the Fermi parametrisation.

ρ(r) =
ρ(0)

1 + e(r−R)/s

Fit this to data to determine parameters R and s.

R is the radius at which ρ(r) = ρ(0)/2

Find R increases with A: R = r0A
1/3 r0 ∼ 1.2 fm.

s is the surface width or skin thickness over which ρ(r) falls from
90%→10%.

Find s is is approximately the same for all nuclei (s ∼ 2.5 fm); governed by
the range of the strong nuclear interaction
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Nuclear Size Modelling charge distribution

Fits to e− scattering data
show the Fermi
parametrisation models
nuclear charge distributions
well.

Shows that all nuclei have
roughly the same density in
their interior.

Radius ∼ R0A
1/3 with

R0 ∼ 1.2 fm ⇒ consistent
with short-range saturated
forces.
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Nuclear Size Muonic Atoms

Muons can be brought to rest in matter and trapped
in orbit → probe EM interactions with nucleus.
The large muon mass affects its orbit, mµ ∼ 207 me

Bohr radius, r ∝ 1/Zm
Hydrogen atom with electrons: r = a0 ∼ 53, 000 fm

with muons: r ∼ 285 fm
Lead (Z = 82) with muons: r ∼ 3 fm Inside nucleus!

Energy levels, E ∝ Z 2m
Rapid transitions to lower energy levels ∼ 10−9s
Factor of 2 effect seen from nuclear size in muonic lead
Transition energy (2P3/2→1S1/2) : 16.41 MeV (Bohr theory) vs 6.02 MeV (measured)

Muon lifetime, τµ ∼ 2µs
Decays via µ− → e− + ν̄e + νµ – Plenty of time spent in 1s state.

Zeffective and E are changed relative to electrons.
Measure X-ray energies → nuclear radius.
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Nuclear Size Mirror Nuclei

11
5 B

11
6 C

Different nuclear masses from p-n difference and the
different Coulomb terms.

m(A,Z ) = Zmp + (A− Z )mn −
[
aVA− aSA

2/3−acZ
2

A1/3
− aA

(N − Z )2

A
+ δ(A)

]

For the atomic mass difference, don’t forget the electrons!

M(A,Z + 1)−M(A,Z ) = ∆Ec +mp +me −mn

where ∆Ec =
3
5
Aα
R (see Question 33)

Probe the atomic mass difference between two mirror
nuclei by observing β+ decay spectra (3-body decay).

11
6 C → 11

5 B + e+ + νe (p → n + e+ + νe)

M(A,Z + 1)−M(A,Z ) = 2me + Emax mν ∼ 0

where Emax is the maximum kinetic energy of the positron.

Relate mass difference to ∆Ec
and extract the nuclear radius R =

3Aα

5

[
1

Emax −mp +mn +me

]

Prof. Tina Potter 13. Basic Nuclear Properties 21

Nuclear Shape

The shape of nuclei can be inferred from measuring their electromagnetic
moments.

Nuclear moments give information about the way magnetic moment and
charge is distributed throughout the nucleus.

The two most important moments are:

Electric Quadrupole Moment Q

Magnetic Dipole Moment µ
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Nuclear Shape Electric Moments

Electric moments depend on the charge distribution inside the nucleus.

Parameterise the nuclear shape using a multipole expansion of the external
electric field or potential

V (r) =
1

4π

∫
ρ(r⃗ ′)∣∣∣r⃗ − r⃗ ′

∣∣∣
d3r⃗ ′

where ρ(r⃗ ′) d3r⃗ ′ = Ze and r(r ′) = distance to observer (charge element) from origin.

∣∣∣r⃗ − r⃗ ′
∣∣∣ =

[
r 2 + r ′2 − 2rr ′ cos θ

]1/2 ⇒
∣∣∣r⃗ − r⃗ ′

∣∣∣
−1

= r−1

[
1 +

r ′2

r 2
− 2

r ′

r
cos θ

]−1/2

∣∣∣r⃗ − r⃗ ′
∣∣∣
−1

= r−1

[
1− 1

2

(
r ′2

r 2
− 2

r ′

r
cos θ

)
+

3

8

(
r ′2

r 2
− 2

r ′

r
cos θ

)2

+ ...

]

∼ r−1

[
1 +

r ′

r
cos θ +

1

2

r ′2

r 2
(
3 cos2 θ − 1

)
+ ...

]

r ′ ≪ r ⇒ expansion in powers of r ′r ; or equivalently Legendre polynomials

V (r) =
1

4πr

[
Ze +

1

r

∫
r ′ cos θρ(r ′) d3r⃗ ′ +

1

2r 2

∫
r ′2(3 cos θ − 1)ρ(r ′) d3r⃗ ′ + ...

]
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Nuclear Shape Electric Moments

Let r define z-axis, z = r ′ cos θ

V (r) =
1

4πr

[
Ze +

1

r

∫
zρ(r ′) d3r⃗ ′ +

1

2r 2

∫
(3z2 − r ′2)ρ(r ′) d3r⃗ ′ + ...

]

Quantum limit: ρ(r ′) = Ze.
∣∣∣ψ(r⃗ ′)

∣∣∣
2

The electric moments are the coefficients of each successive power of 1/r

E0 moment
∫
Ze.ψ∗ψ d3r⃗ ′ = Ze charge

No shape information

E1 moment
∫
ψ∗zψ d3r⃗ ′ electric dipole

Always zero since ψ have definite parity

|ψ(r⃗)|2 = |ψ(−r⃗)|2

E2 moment
∫

1
eψ

∗(3z2 − r ′2)ψ d3r⃗ ′ electric quadrupole
First interesting moment!

Prof. Tina Potter 13. Basic Nuclear Properties 24



Nuclear Shape Electric Moments

Electric Quadrupole Moment Q =
1

e

∫
(3z2 − r 2)ρ(r⃗) d3r⃗

Units: m2 or barns (though sometimes the factor of e is left in)

If spherical symmetry, z̄2 = 1
3r̄

2 ⇒ Q = 0

Q = 0 Spherical nucleus. All J = 0 nuclei have Q = 0.

Large Q Highly deformed nucleus. e.g. Na
Two cases:
Prolate spheroid

Q > 0
Oblate spheroid

Q < 0 Aside: Radium-224 is pear-shaped!

Non-zero quadrupole and octupole

moments.

(ISOLDE, CERN, 2013)
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Nuclear Shape Magnetic Moments

Nuclear magnetic dipole moments arise from

intrinsic spin magnetic dipole moments of
the protons and neutrons

circulating currents (motion of the protons)

The nuclear magnetic dipole moment can be written as

µ⃗ =
µN
ℏ
∑

i

[
gLL⃗ + gs s⃗

]
summed over all p, n

where µN = eℏ/2mp is the Nuclear Magneton.

or µ = gJµNJ where J total nuclear spin quantum number

gJ nuclear g -factor (analogous to Landé g -factor in atoms)

gJ may be predicted using the Nuclear Shell Model (see later), and
measured using magnetic resonance (see Advanced Quantum course).

All even-even nuclei have µ = 0 since J = 0
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Summary

Nuclear binding energy – short range saturated forces

Semi-empirical Mass Formula – based on liquid drop model + simple
inclusion of quantum effects

m(A,Z ) = Zmp + (A− Z )mn − B

B = aVA− aSA
2/3 − acZ

2

A1/3
− aA

(N − Z )2

A
+ δ(A)

Nuclear size from electron scattering, muonic atoms, and mirror nuclei.
Constant density; radius ∝ A1/3

Nuclear spin, parity, electric and magnetic moments.

Problem Sheet: q.31-33

Up next...
Section 14: The Structure of Nuclei
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14. Structure of Nuclei
Particle and Nuclear Physics

Prof. Tina Potter

Prof. Tina Potter 14. Structure of Nuclei 1

In this section...

Magic Numbers

The Nuclear Shell Model

Excited States
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Magic Numbers
Magic Numbers = 2, 8, 20, 28, 50, 82, 126...

Nuclei with a magic number of Z and/or N are particularly stable,
e.g. Binding energy per nucleon is large for magic numbers

Doubly magic nuclei are especially stable.
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Magic Numbers

Other notable behaviour includes

Greater abundance of isotopes and isotones for magic numbers
e.g. Z = 20 has 6 stable isotopes (average = 2)

Z = 50 has 10 stable isotopes (average = 4)

Odd A nuclei have small quadrupole moments when magic

First excited states for magic nuclei higher than neighbours

Large energy release in α, β decay when the daughter nucleus is magic

Spontaneous neutron emitters have N = magic + 1

Nuclear radius shows only small change with Z , N at magic numbers.

etc... etc...
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Magic Numbers

Analogy with atomic behaviour as electron shells fill.

Atomic case - reminder

Electrons move independently in central potential V (r) ∼ 1/r (Coulomb
field of nucleus).

Shells filled progressively according to Pauli exclusion principle.

Chemical properties of an atom defined by valence (unpaired) electrons.

Energy levels can be obtained (to first order) by solving Schrödinger
equation for central potential.

En =
1

n2
n = principle quantum number

Shell closure gives noble gas atoms.

Are magic nuclei analogous to the noble gas atoms?
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Magic Numbers

Nuclear case (Fermi gas model)

Nucleons move in a net nuclear potential that represents the average effect of
interactions with the other nucleons in the nucleus.

Nuclear Potential

V (r) ∼ −V0(
1 + e(r−R)/s

)

“Saxon-Woods potential”,

i.e. a Fermi function, like the

nuclear charge distribution

Nuclear force short range + saturated ⇒ near centre V (r) ∼constant.

Near surface: density and no. of neighbours decreases ⇒ V (r) decreases

For protons, V (r) is modified by the Coulomb interaction
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Magic Numbers
In the ground state, nucleons occupy energy levels of the nuclear potential so
as to minimise the total energy without violating the Pauli principle.

The exclusion principle operates
independently for protons and neutrons.

Tendency for Z=N
to give the minimum E

Postulate: nucleons move in well-defined orbits with discrete energies.

Objection: nucleons are of similar size to nucleus ∴ expect many collisions.
How can there be well-defined orbits?

Pauli principle: if energy is transferred in a collision then nucleons must
move up/down to new states. However, all nearby states are occupied ∴ no
collision. i.e. almost all nucleons in a nucleus move freely within nucleus if it is
in its ground state.
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The Nuclear Shell Model
Treat each nucleon independently and solve Schrödingers equation for
nuclear potential to obtain nucleon energy levels.

Consider spherically symmetric central potential e.g. Saxon-Woods
potential

V (r) ∼ −V0(
1 + e(r−R)/s

)

Solution of the form ψ(r⃗) = RnL(r)Y
m
L (θ, ϕ)

Obtain 2 equations separately for radial and angular coordinates.

Radial Equation:

[
1

r 2
∂

∂r

(
r 2
∂

∂r

)
− L(L + 1)

r 2
+ 2M(E − V (r))

]
RnL(r) = 0

Allowed states specified by n, L,m:
n radial quantum number (n.b. different to atomic notation)
L orbital a.m. quantum no. n.b. any L for given n (c.f. Atomic L < n)
m magnetic quantum number m = −L... + L
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The Nuclear Shell Model
Energy levels increase with n and L (similar to atomic case)

Fix L, increase n

As n increases:
rRnL has more nodes, greater
curvature and E increases.

Fix n, increase L

As L increases:
rRnL has greater curvature and
E increases.

Fill shells for both p and n:
Degeneracy = (2s + 1)(2L + 1) = 2(2L + 1) (s = 1/2)

But, this central potential alone cannot reproduce the observed magic
numbers. Need to include spin-orbit interaction.

Prof. Tina Potter 14. Structure of Nuclei 9

Spin-orbit interaction
Mayer and Jensen (1949) included (strong) spin-orbit potential to explain
magic numbers.

V (r) = Vcentral(r) + Vso(r)
⃗̂
L.
⃗̂
S n.b. Vso is negative

Spin-orbit interaction splits L levels into their different j values
⃗̂
J =

⃗̂
L +

⃗̂
S ;

⃗̂
J2 =

⃗̂
L2 +

⃗̂
S2 + 2

⃗̂
L.
⃗̂
S ;

⃗̂
L.
⃗̂
S =

1

2

[
⃗̂
J2 − ⃗̂

L2 − ⃗̂
S2
]

⃗̂
L.
⃗̂
S |ψ⟩ = 1

2
[j(j + 1)− L(L + 1)− s(s + 1)] |ψ⟩

For a single
nucleon
with s = 1

2,

j = L− 1

2
:

⃗̂
L.
⃗̂
S |ψ⟩ = −1

2
(L + 1)|ψ⟩ V = Vcentral −

1

2
(L + 1)Vso

j = L +
1

2
:

⃗̂
L.
⃗̂
S |ψ⟩ = 1

2
L|ψ⟩ V = Vcentral +

1

2
LVso

Vcentral with
⃗̂
L.
⃗̂
S

∆E =
1

2
(2L + 1)Vso

n.b. larger j lies lower
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Nuclear Shell Model Energy Levels

  

0

1

2

3

4

5

6

Harmonic 
oscillator

Infinite 
square 
well

Finite 
square 
well

Square 
well with 
rounded 
edges

Plus 
spin-orbit 
coupling

1s 1s
1s

1/2

1p

1p 1p
1/2

1p
3/2

1d

2s

1f

2p

1g

2d
1h
3s

2f

1i

3p

2g

3d

4s

1d

2s

1f

2p

1g

2d

3s

1h

2f

3p

1i

2g
3d
4s

1d
5/2

1d
3/2

2s
1/2

1f
7/2

1f
5/2

2p
3/2

2p
1/2

1g
9/2

1g
7/2

2d
5/2

2d
3/2

1h
11/2

3s
1/2

1h
9/2

2f
7/2

3p
3/2

1i
13/2

3p
1/2

2f
5/2

2g
9/2

1i
11/2

3d
5/2

2g
7/2

3d
3/2

4s
1/2

Multiplicity 
of states

2

4

2

2

2

2

4

4

4

4

4

6

6

6

6

6

2

8

8

8

8

2

10

10

10

12

12

14

2

8

20

28

50 Closed shells 
indicated by 
magic numbers 
of nucleons

82

126

Notation 
nℓ

j

Splitting increases 
with increasing ℓ
(same for all nuclei)

∑ (2 j+1)

Degeneracy in 
each level (2j+1)

Nuclear Shell Model
Predictions
1 Magic Numbers.

The Shell Model successfully

predicts the origin of the

magic numbers. It was

constructed to achieve this.

2 Spin & Parity.
3 Magnetic Dipole

Moments.
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Nuclear Shell Model Spin and Parity

The Nuclear Shell Model predicts the spin & parity of ground state nuclei.

Case 1: Near closed shells

Even-Even Nuclei : JP = 0+

Even-Odd Nuclei : JP given by unpaired nucleon or hole; P = (−1)L

Odd-Odd Nuclei : Find J values of unpaired p and n, then apply jj coupling

i.e. |jp − jn| ≤ J ≤ jp + jn, Parity = (−1)Lp(−1)Ln

e.g.

  

1s1/2

1p3/2

1p1/2

1d5/2 Degeneracy, 
(2j+1)

2

4

2

p n p n p n

18
8O

15
7N

10
5B

JP=0+ (obs) JP=1/2− (obs) jp=3/2
−, jn=3/2−

JP=0+,1+,2+,3+ (JP = 3+ observed)
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Nuclear Shell Model Spin and Parity

The Nuclear Shell Model predicts the spin & parity of ground state nuclei.

Case 1: Near closed shells

Even-Even Nuclei : JP = 0+

Even-Odd Nuclei : JP given by unpaired nucleon or hole; P = (−1)L

Odd-Odd Nuclei : Find J values of unpaired p and n, then apply jj coupling

i.e. |jp − jn| ≤ J ≤ jp + jn, Parity = (−1)Lp(−1)Ln

There are however cases where this simple prescription fails.

The pairing interaction between identical nucleons is not described by a spherically symmetric

potential nor by the spin-orbit interaction.

Lowest energy spin state of pair: ↑↓ with (j ,m) and (j ,−m). Total J = 0.

Need antisymmetric ψtotal = ψspinψspatial: ψspin antisymmetric, thus ψspatial is symmetric.

This maximises the overlap of their wavefunctions, increasing the binding energy (attractive

force). The pairing energy increases with increasing L of nucleons.

Example: 207
82Pb naively expect odd neutron in 2f5/2 subshell.

But, pairing interaction means it is energetically favourable for the 2f5/2 neutron and a neutron

from nearby 3p1/2 to pair and leave hole in 3p1/2. ⇒ JP = 1/2− (observed)

Prof. Tina Potter 14. Structure of Nuclei 13

Nuclear Shell Model Spin and Parity

The Nuclear Shell Model predicts the spin & parity of ground state nuclei.

Case 2: Away from closed shells

More than one nucleon can contribute and electric quadrupole moment Q is often large

⇒ V (r) no longer spherically symmetric.

Example: 23
11Na Q is observed to be large, i.e. non-spherical.

Three protons in 1d5/2; if two were paired up, we expect JP = 5/2+.

  

1s1/2

1p3/2

1p1/2

1d5/2

p n

In fact, all three protons

must contribute

⇒ can get JP = 3/2+

(observed)
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Nuclear Shell Model Magnetic Dipole Moments

The Nuclear Shell Model predicts the magnetic dipole moments of ground state nuclei.

Even-even nuclei : J = 0 ⇒ µ = 0

Odd A nuclei: µ corresponds to the unpaired nucleon or hole

For a single nucleon µ⃗ = µN
ℏ (gLL⃗ + gs s⃗) with p : gL = 1, gs = +5.586,

n : gL = 0, gs = −3.826,

where µN = eℏ
2mp

is the Nuclear Magneton.
µ⃗ is not parallel to j⃗ (since j⃗ = L⃗ + s⃗).

However, the angle between µ⃗ and j⃗ is constant, because

cos θ ∼ µ⃗.⃗j ∼ gLL⃗.⃗j + gs s⃗ .⃗j =
1

2

[
gL(L

2 + j2 − s2) + gs(s
2 + j2 − L2)

]

and j2, L2 and s2 are all constants of motion.

Hence, we can calculate the nuclear magnetic moment (projection of µ⃗ along the z-axis)

µz =
µ⃗.J⃗

|J⃗ |
× Jz

|J⃗ | c.f. derivation of Landé g-factor

in Quantum course

project µ⃗ onto J⃗ then J⃗ onto z⃗

∴ µz = µN
mJ

2j(j + 1)
( gL [L(L + 1) + j(j + 1)− s(s + 1)] + gs [s(s + 1) + j(j + 1)− L(L + 1)] )
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Nuclear Shell Model Magnetic Dipole Moments

The Nuclear Shell Model predicts the magnetic dipole moments of ground state nuclei.

Even-even nuclei : J = 0 ⇒ µ = 0

Odd A nuclei: µ corresponds to the unpaired nucleon or hole

Thus µ = gJµNJ for mJ = J and

gJ =
1

2j(j + 1)
(gL [L(L + 1) + j(j + 1)− s(s + 1)] + gs [s(s + 1) + j(j + 1)− L(L + 1)])

For a single nucleon (s = 1/2), there are two possibilities (j = L + 1/2 or L− 1/2)

gJ = gL ±
gs − gL
2L + 1

j = L± 1/2

Odd p: gL = 1 gs = +5.586

Odd n: gL = 0 gs = −3.826

called the “Schmidt Limits”.
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Nuclear Shell Model Magnetic Dipole Moments

The Nuclear Shell Model predicts the magnetic dipole moments of ground state nuclei.

Even-even nuclei : J = 0 ⇒ µ = 0

Odd A nuclei: µ corresponds to the unpaired nucleon or hole

Schmidt Limits compared to data: The Nuclear Shell Model predicts the broad trend of

the magnetic moments. But not good in detail, except for closed shell ±1 nucleon or so.

⇒ wavefunctions must be more complicated than our simple model.

Prof. Tina Potter 14. Structure of Nuclei 17

Excited States of Nuclei
In nuclear spectra, we can identify three kinds of excitations:

Single nucleon excited states

Vibrational excited states

Rotational excited states

Single nucleon excited states may, to some extent, be predicted from the
simple Shell Model. Most likely to be successful for lowest-lying excitations of
odd A nuclei near closed shells.

e.g.

  

MeV

0 0 0

0.87

3.06

3.84
4.55
5.08

2.61

0.90
1.61

2.83
3.12

5/2+

1/2+

1/2– 

5/2– 

3/2– 

3/2+ 

0+

3–  

9/2–  

13/2+

5/2– 

3/2– 

7/2–  

J P

17
8 O

208
82 Pb

209
83 Bi

Prof. Tina Potter 14. Structure of Nuclei 18



Excited States of Nuclei
Vibrational and rotational motion of nuclei involve the collective motion of
the nucleons in the nucleus.

Collective motion can be incorporated into the shell model by replacing the
static symmetrical potential with a potential that undergoes deformations in
shape. ⇒ Collective vibrational and rotational models.

Here we will only consider even Z , even N nuclei
Ground state : JP = 0+

Lowest excited state (nearly always): JP = 2+

Tend to divide into two categories:

A E(2+) Type

30–150 ∼ 1 MeV Vibrational

150–190 (rare earth) ∼ 0.1 MeV Rotational
>220 (actinides)

Prof. Tina Potter 14. Structure of Nuclei 19

Nuclear Vibrations
Vibrational excited states occur when a nucleus oscillates about a spherical
equilibrium shape (low energy surface vibrations, near closed shells). Form of
the excitations can be represented by a multipole expansion (just like
underlying nuclear shapes).

Monopole Dipole Quadrupole Octupole
Incorporated into the

average radius
Involves a net displacement of

centre of mass ⇒ cannot result

from action of nuclear forces

(can be induced by applied e/m

field i.e. a photon)

Quadrupole oscillations are the

lowest order nuclear vibrational

mode.

Similar to SHM – the quanta of vibrational energy are called phonons.
Prof. Tina Potter 14. Structure of Nuclei 20



Nuclear Vibrations
A quadrupole phonon
carries 2 units of angular
momentum and has even
parity ⇒ JP = 2+

An octupole phonon
carries 3 units of angular
momentum and has odd
parity ⇒ JP = 3−

Phonons are bosons and must satisfy Bose-Einstein statistics (overall
symmetric wavefunction under the interchange of two phonons).
e.g. for quadrupole phonons:

Even-even ground state 0+ 1 phonon−−−−−→ 2+

2 phonons−−−−−−→ 0+, 2+, 4+

(in practice not degenerate)

Energies of vibrational excitations are not predicted, but we can predict the
ratios Second excited (2 phonons; 0+, 2+, 4+)

First excited (1 phonon; 2+)
∼ 2
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Nuclear Vibrations
Example of vibrational excitations:

  

MeV

0

0.488

1.165
1.270
1.286

0+

2+

0+

2+

4+

J P

118Cd

Two phonons

One phonon

Predict
2nd excited

1st excited
∼ 2

Observe
2nd excited

1st excited
∼ 2.4

Octupole states (JP = 3−) are often seen near the triplet of two-phonon
quadrupole states.
Vibrational states decay rapidly by γ emission (see later).
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Nuclear Rotations

Collective rotational motion can only be observed in
nuclei with non-spherical equilibrium shapes (i.e. far
from closed shells, large Q).

Rotating deformed nucleus: nucleons in rapid internal motion in the nuclear
potential + entire nucleus rotating slowly. Slow to maintain a stable
equilibrium shape and not to affect the nuclear structure.

Nuclear mirror symmetry restricts the sequence of rotational states to even
values of angular momentum.

Even-even ground state 0+ → 2+, 4+, 6+

... (total angular momentum = nuclear a.m. + rotational a.m.)

Energy of a rotating nucleus
E =

ℏ2

2Ieff
J(J + 1)

where Ieff is the effective moment of inertia.
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Nuclear Rotations
Energies of rotational excitations are not predicted, but we can predict the
ratios
e.g.

  

keV

0

91.4

299.5

614.4

0+

2+

4+

6+

J P

164Er

Predict
E (4+)

E (2+)
=

4(4 + 1)

2(2 + 1)
= 3.33

Observe
E (4+)

E (2+)
=

299.5

91.4
= 3.28

Deduce Ieff from the absolute energies; it is found that Irigid > Ieff > Ifluid
→ the nucleus does not rotate like a rigid body. Only some of its nucleons

are in collective motion (presumably the outer ones).

Rotational behaviour is intermediate between the nucleus being tightly bonded
and weakly bonded i.e. the strong force is not long range.
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Nuclear Vibrations and Rotations
For even-even ground state nuclei, the ratio of excitation energies E (4+)

E (2+) is a
diagnostic of the type of excitation.

  

E(4+)
E(2+)

A

Vibration  A < 150 Rotation   150 < A < 190, A > 230

2

3.33

Rare 
Earth

Actinides

Closed 
shells
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Summary

The Nuclear Shell Model is successful in predicting

Origin of magic numbers

Spins and parities of ground states

Trend in magnetic moments

Some excited states near closed shells, small excitations in odd A nuclei

In general, it is not good far from closed shells and for non-spherically symmetric potentials.

The collective properties of nuclei can be incorporated into the Nuclear Shell Model by

replacing the spherically symmetric potential by a deformed potential.

Improved description for

Even A excited states

Electric quadrupole and magnetic dipole moments.

Many more sophisticated models exist (see Cont. Physics 1994 vol. 35 No. 5 329

http://www.tandfonline.com/doi/pdf/10.1080/00107519408222099)

Problem Sheet: q.34-36

Up next... Section 15: Nuclear Decays
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15. Nuclear Decay
Particle and Nuclear Physics

Prof. Tina Potter

Prof. Tina Potter 15. Nuclear Decay 1

In this section...

Radioactive decays

Radioactive dating

α decay

β decay

γ decay
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Radioactivity

Natural radioactivity: three main types α, β, γ, and in a few cases,
spontaneous fission.

α decay 4
2He nucleus emitted.

A
ZX → A−4

Z−2Y + 4
2He Occurs for A ≥ 210

For decay to occur, energy must be released Q > 0

Q = mX −mY −mHe = BY + BHe − BX

β decay emission of electron e− or positron e+

n → p + e− + ν̄e
A
ZX → A

Z+1Y + e− + ν̄e β− decay

p → n + e+ + νe
A
ZX → A

Z−1Y + e+ + νe β+ decay

p + e− → n + νe
A
ZX + e− → A

Z−1Y + νe Electron capture

n.b. of these processes, only n → peν can occur outside a nucleus.

Prof. Tina Potter 15. Nuclear Decay 3

Radioactivity

γ decay Nuclei in excited states can decay by emission of a photon γ.
Often follows α or β decay.

  

ΔE

Excited 
states

Ground state

Photons 
emitted

∆E λ

Atom ∼ 10 eV ∼ 10−7 m optical

∼ 10 keV ∼ 10−10 m X-ray

Nucleus ∼ MeV ∼ 10−12 m γ-ray

A variant of γ decay is Internal Conversion:

an excited nucleus loses energy by emitting a virtual photon,

the photon is absorbed by an atomic e−, which is then ejected

n.b. not β decay, as nucleus composition is unchanged (e− not from
nucleus)
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Natural Radioactivity

The half-life, τ1/2, is the time over which 50% of the nuclei decay

τ1/2 =
ln 2

λ
= 0.693τ

λ Transition rate

τ Average lifetime

Some τ1/2 values may be long compared to the age of the Earth.

Series
Name

Type Final
Nucleus
(stable)

Longest-
lived
Nucleus

τ1/2 (years)

Thorium 4n 208Pb 232Th 1.41× 1010

Neptunium 4n+1 209Bi 237Np 2.14× 106

Uranium 4n+2 206Pb 238U 4.47× 109

Actinium 4n+3 207Pb 235U 7.04× 108

n is an integer

4n series

Prof. Tina Potter 15. Nuclear Decay 5

Radioactive Dating Geological Dating

Can use β− decay to age the Earth, 87Rb → 87Sr (τ1/2 = 4.8× 1010 years)
N1 N2

87Sr is stable → λ2 = 0

So in this case, we have (using expressions from Chapter 2)

N2(t) = N1(0)
[
1− e−λ1t

]
+ N2(0) = N1(t)

[
eλ1t − 1

]
+ N2(0)

Assume we know λ1, and can measure N1(t) and N2(t) e.g. chemically.
But we don’t know N2(0).

Solution is to normalise to another (stable) isotope – 86Sr – for which number
is N0(t) = N0(0). N2(t)

N0
=

N1(t)

N0

[
eλ1t − 1

]
+
N2(0)

N0

Method: plot N2(t)/N0 vs N1(t)/N0 for lots of minerals.

Gradient gives
[
eλ1t − 1

]
and hence t.

Intercept = N2(0)/N0, which should be the same for all minerals

(determined by chemistry of formation).
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Radioactive Dating Dating the Earth

N2(t)

N0
=

N1(t)

N0

[
eλ1t − 1

]
+

N2(0)

N0

Method: plot N2(t)/N0 vs N1(t)/N0 for lots of
minerals.
Gradient gives

[
eλ1t − 1

]
and hence t.

Intercept = N2(0)/N0, which should be the same for
all minerals (determined by chemistry of formation).

Using minerals from the Earth, Moon
and meteorites.

Intercept gives N2(0)/N0 = 0.70

Slope gives the age of the Earth = 4.5× 109 yrs

Prof. Tina Potter 15. Nuclear Decay 7

Radioactive Dating Radio-Carbon Dating

For recent organic matter, use 14C dating

  

Continuously formed in 
the upper atmosphere at 

approx. constant rate.
14N + n → 14C + p

Atmospheric carbon 
continuously exchanged 

with living organisms.
Equilibrium: 1 atom of 14C 

to every 1012 atoms of other 
carbon isotopes

(98.9% 12C, 1.1% 13C)

Undergoes β- decay
14C → 14N + e- + νe τ1/2 = 5730 yrs

No more 14C intake for dead 
organisms.

Fresh organic material 
~11 decays/minute/gram of carbon.

Measure the specific activity of 
material to obtain age, i.e. number of 

decays per second per unit mass

Complications for the future!
Burning of fossil fuels increases 12C in atmosphere,

Nuclear bomb testing (adds 14C to atmosphere)
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α Decay

α decay is due to the emission of a 4
2He nucleus.

4
2He is doubly magic and very tightly bound.

α decay is energetically favourable for almost
all with A≥190 and for many A≥150.

Why α rather than any other nucleus?
Consider energy release (Q) in various possible decays of 232U

n p 2H 3H 3He 4He 5He 6Li 7Li

Q/MeV -7.26 -6.12 -10.70 -10.24 -9.92 +5.41 -2.59 -3.79 -1.94

α is easy to form inside a nucleus 2p ↑↓ + 2n ↑↓
(though the extent to which α particles really exist inside a nucleus is still
debatable)

Prof. Tina Potter 15. Nuclear Decay 9

α Decay Dependence of τ1/2 on E0

(Geiger and Nuttall 1911)

A very striking feature of α decay is the strong dependence of lifetime on E0

Example 232Th E0 = 4.08 MeV τ1/2 = 1.4× 1010 yrs
218Th E0 = 9.85 MeV τ1/2 = 1.0× 10−7 s
A factor of ∼2.5 in E0 ⇒ factor 1024 in τ1/2 !

e.g. even N , even Z nuclei for a given Z see smooth trend (τ1/2 increases as Z does)
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α Decay Quantum Mechanical Tunnelling

The nuclear potential for the α particle due to the daughter nucleus includes a
Coulomb barrier which inhibits the decay.

  

V (r )

r0
R R '

E0

−V 0

Coulomb ~ 1/r

Total energy of α = E0 + V0−V0

K.E. P.E.

Classically, α particle cannot enter or escape from nucleus.
Quantum mechanically, α particle can penetrate the Coulomb barrier

⇒ Quantum Mechanical Tunnelling
Prof. Tina Potter 15. Nuclear Decay 11

α Decay Simple Theory (Gamow, Gurney, Condon 1928)

Assume α exists inside the nucleus and hits the barrier.

α decay rate, λ = f P

f = escape trial frequency, P = probability of tunnelling through barrier

semi− classically, f ∼ v/2R

v= velocity of a particle inside nucleus, given by: v 2 = (2Eα/mα)
and R = radius of nucleus

Typical values: V0 ∼ 35 MeV, E0 ∼ 5 MeV ⇒ Eα = 40 MeV inside nucleus

f ∼ v

2R
=

1

2R

√
2Eα
mα

∼ 1022 s−1 mα = 3.7 GeV

R ∼ 2.1 fm

Obtain tunnelling probability, P , by solving Schrödinger equation in three
regions and using boundary conditions.
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α Decay Simple Theory (Gamow, Gurney, Condon 1928)

Transmission probability (1D square barrier):

P =

[
1 +

V 2
0

4(V0 − E )E
sinh2 ka

]−1

ℏ2k2

2m
= V0 − E m = reduced mass

  

E V 0

0 r

1-D

For ka ≫ 1, P is dominated by the exp. decay within barrier ⇒ P ∼ e−2ka.

Coulomb potential, V ∝ 1/r , and thus k varies with r .
Divide into rectangular pieces and multiply together
exponentials, i.e. sum exponents.

Probability to tunnel through Coulomb barrier
  

V (r )

r
Δ r

P =
∏

i

e−2ki∆R = e−2G k =
[2mα(V (r)− E0)]

1/2

ℏ

The Gamow Factor G =

∫ R ′

R

[2mα(V (r)− E0)]
1/2

ℏ
dr =

∫ R ′

R

k(r) dr
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α Decay Simple Theory (Gamow, Gurney, Condon 1928)

For r > R, V (r) =
ZαZ

′e2

4πϵ0r
=

B

r
Z ′ = Z − Zα (Zα = 2)

α-particle escapes at r = R ′, V (R ′) = E0 ⇒ R ′ = B/E0

∴ G =

∫ R ′

R

(
2mα

ℏ2

)1/2 [B
r
− E0

]1/2
dr =

(
2mαB

ℏ2

)1/2 ∫ R ′

R

[
1

r
− 1

R ′

]1/2
dr

See Appendix H

G =

(
2mα

E0

)1/2 B

ℏ

[
cos−1

(
R

R ′

)1/2

−
{(

1− R

R ′

)(
R

R ′

)}1/2
]

To perform integration, substitute r = R ′ cos2 θ

In most practical cases R ≪ R ′, so term in [...] ∼ π/2

G ∼
(
2mα

E0

)1/2 B

ℏ
π

2
B =

ZαZ
′e2

4πϵ0

e.g. typical values: Z = 90, E0 ∼ 6 MeV ⇒ R ′ ∼ 40 fm ≫ R
G ∼ Z ′

(
3.9 MeV

E0

)1/2
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α Decay Simple Theory (Gamow, Gurney, Condon 1928)

Lifetime τ =
1

λ
=

1

fP
∼ 2R

v
e2G

⇒ ln τ ∼ 2G + ln
2R

v

lnλ ∼ − Z ′

E
1/2
0

+ constant

Geiger-Nuttall Law
Not perfect, but provides an explanation of the

dominant trend of the data

Simple tunnelling model accounts for
strong dependence of τ1/2 on E0
τ1/2 increases with Z
disfavoured decay to heavier fragments e.g. 12C

G ∝ m1/2 and G ∝ charge of fragment
Prof. Tina Potter 15. Nuclear Decay 15

α Decay Simple Theory (Gamow, Gurney, Condon 1928)

Deficiencies/complications with simple tunnelling model:

Assumed existence of a single α particle in nucleus and have taken no
account of probability of formation.

Assumed “semi-classical” approach to estimate escape trial frequency,
f ∼ v/2R , and make absolute prediction of decay rate.

If α is emitted with some angular momentum, L, the radial wave equation
must include a centrifugal barrier term in Schrödinger equation

V ′ =
L(L + 1)ℏ2

2µr 2
L = relative a.m. of α and daughter nucleus

µ = reduced mass

which raises the barrier and suppresses emission of α in in high L states.
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α Decay Selection rules

Nuclear Shell Model: α has JP = 0+

Angular momentum
e.g. X → Y + α Conserve J : JX = JY ⊕ Jα = JY ⊕ Lα

Lα can take values from JX + JY to |JX − JY |
Parity
Parity is conserved in α decay (strong force).
Orbital wavefunction has P = (−1)L

X , Y same parity ⇒ Lα must be even
X , Y opposite parity ⇒ Lα must be odd

e.g. if X , Y are both even-even nuclei in their ground states,
shell model predicts both have JP = 0+ ⇒ Lα = 0.

More generally, if X has JP = 0+, the states of Y which can be formed in α
decay are JP = 0+, 1−, 2+, 3−, 4+, ...

Prof. Tina Potter 15. Nuclear Decay 17

β Decay
β− n → p + e− + ν̄e

A
ZX → A

Z+1Y +e− + ν̄e

β+ p → n + e+ + νe
A
ZX → A

Z−1Y +e+ + νe

electron capture p + e− → n + νe
A
ZX +e− → A

Z−1Y +νe

β decay is a weak interaction mediated by the W boson.

Parity is violated in β decay.

Responsible for Fermi postulating the existence of the neutrino.

Kinematics: Decay is possible if energy release E0 > 0
Nuclear Masses Atomic Masses

β− E0 = mX −mY −me −mν E0 = MX −MY −mν

β+ E0 = mX −mY −me −mν E0 = MX −MY − 2me −mν

e.c. E0 = mX −mY +me −mν E0 = MX −MY −mν

(and note that mν ∼ 0) using M(A,Z ) = m(A,Z ) + Zme

n.b. electron capture may be possible even if β+ not allowed
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β Decay Nuclear stability against β decay

Consider nuclear mass as a function of N and Z

m(A,Z ) = Zmp + (A− Z )mn − aVA + aSA
2/3 +

aCZ
2

A1/3
+ aA

(N − Z )2

A
− δ(A)

using SEMF
For β decay, A is constant,

but Z changes by ±1 and m(A,Z ) is quadratic in Z

Most stable nuclide when

[
∂m(A,Z )

∂Z

]

A

= 0
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β Decay Typical situation at constant A

Usually only one isotope table against

β-decay; occasionally two.

Typically two even-even nuclides are

stable against β-decay; almost no

odd-odd ones (pairing term).
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Fermi Theory of β-decay

In nuclear decay, weak interaction taken to be a 4-fermion contact interaction:

X → Y e− ν̄e

GF

X

ν̄e

e−

Y No “propagator” – absorb the effect of the
exchanged W boson into an effective coupling
strength given by the Fermi constant
GF = 1.166× 10−5 GeV−2.

Use Fermi’s Golden Rule to get the transition rate Γ = 2π|Mfi|2ρ(Ef)

where Mfi is the matrix element and ρ(Ef) =
dN
dEf

is the density of final states.

Γ =
G 2
F |Mnuclear|2

2π3

∫ E0

0

(E0 − Ee)
2E 2

e dEe
Total decay rate given by
Sargent’s Rule, Γ ∝ E 5

0
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Fermi Theory of β-decay

β decay spectrum described by Kurie Plot

√
dΓ

dpe

1

p2e
∝ (E0 − Ee)

  

√d Γ

d pe

1

pe
2

Ee(keV)

Endpoint
E

0

3 H→
3 He+e−

+ν̄e
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Fermi Theory of β-decay

BUT, the momentum of the electron is modified by the Coulomb interaction as
it moves away from the nucleus (different for e− and e+).
⇒ Multiply spectrum by Fermi function F (ZY ,Ee)

Γ =
G 2
F |Mnuclear|2

2π3

∫ E0

0

(E0 − Ee)
2E 2

e F (ZY ,Ee) dEe

All the information about the nuclear wavefunctions is contained in the matrix
element. Values for the complicated Fermi Integral are tabulated.

f (ZY ,E0) =
1

m5
e

∫ E0

0

(E0 − Ee)
2E 2

e F (ZY ,Ee) dEe

Mean lifetime τ = 1/Γ, half-life τ1/2 =
ln 2
Γ

f τ1/2 = ln 2
2π3

m5
eG

2
F |Mnuclear|2

Comparative half-life
this is rather useful because it depends

only on the nuclear matrix element
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Fermi Theory of β-decay Comparative half-lives

  

N
um

be
r 

of
 c

as
es

log fτ
In rough terms, decays with

log f τ1/2 ∼ 3− 4 known as super-allowed
∼ 4− 7 known as allowed
≥ 6 known as forbidden (i.e. suppressed, small Mif)
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Fermi Theory of β-decay Selection Rules

Fermi theory Mfi = GF

∫
ψ∗
p e

−i(p⃗e+p⃗ν).r⃗ ψn d
3r⃗

e, ν wavefunctions

Allowed Transitions log10 f τ1/2 ∼ 4− 7
Angular momentum of eν pair relative to nucleus, L = 0.

Equivalent to: e−i(p⃗e+p⃗ν).r⃗ ∼ 1

Superallowed Transitions log10 f τ1/2 ∼ 3− 4
subset of Allowed transitions: often mirror nuclei in which p and n have
approximately the same wavefunction

Mnuclear ∼
∫
ψ∗
pψn d

3r⃗ ∼ 1

e, ν both have spin 1/2 ⇒ Total spin of eν system can be Seν = 0 or 1.
There are two types of allowed/superallowed transitions depending on the
relative spin states of the emitted e and ν...
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Fermi Theory of β-decay Selection Rules

For allowed/superallowed transitions, Leν = 0

GF

X

ν̄e

e−

Y

X → Y + e + ν

JX = JY⊕Seν⊕Leν

e.g. n → pe−ν̄e
4 spin states of eν

(3 G-T, 1 Fermi)

Seν = 0 Fermi transitions

n ↑ → p ↑ +
1√
2

[(
e− ↑ ν̄e ↓

)
−
(
e− ↓ ν̄e ↑

)]
∆J = 0

Seν = 0,ms = 0 JX = JY

Seν = 1 Gamow-Teller transitions

n ↑ → p ↑ +
1√
2

[(
e− ↑ ν̄e ↓

)
+
(
e− ↓ ν̄e ↑

)]
∆J = 0

0 → 0 forbidden
Seν = 1,ms = 0 JX = JY

n ↑ → p ↓ + e− ↑ + ν̄e ↑ ∆J = ±1

Seν = 1,ms = ±1 JX = JY±1

No change in angular momentum of the eν pair relative to the nucleus, Leν = 0

⇒ Parity of nucleus unchanged
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Fermi Theory of β-decay Selection Rules

Forbidden Transitions log10 f τ1/2 ≥ 6
Angular momentum of eν pair relative to nucleus, Leν > 0.

e−i(p⃗e+p⃗ν).r⃗ = 1 − i(p⃗e + p⃗ν).r⃗ +
1

2
[(p⃗e + p⃗ν).r⃗ ]

2 − ...

L = 0 1 2

P = (−1)L = even odd even

Allowed 1st forbidden 2nd forbidden

Transition probabilities for L > 0 are small ⇒ forbidden transitions (really
means “suppressed”).
Forbidden transitions are only competitive if an allowed transition cannot occur
(selection rules). Then the lowest permitted order of “forbiddeness” will
dominate.
In general, nth forbidden ⇒ eν system carries orbital angular momentum
L = n, and Seν = 0 (Fermi) or 1 (G-T). Parity change if L is odd.
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Fermi Theory of β-decay Selection Rules

Examples

34Cl(0+) →34S(0+)

14C(0+) →14N(1+)

n(1/2+) → p(1/2+)

39Ar(7/2−) →39K(3/2+)

87Rb(3/2−) →87Sr(9/2+)
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γ Decay

Emission of γ-rays (EM radiation) occurs when a
nucleus is created in an excited state
(e.g. following α, β decay or collision).

  

final

initial J i

J f

γ ℓγ The photon carries away net angular momentum Lγ
when a proton in the nucleus makes a transition from
its initial a.m. state Ji to its final a.m. state Jf.

J⃗i = L⃗γ ⊕ J⃗f and |J⃗i − J⃗f| ≤ Lγ ≤ |J⃗i + J⃗f|

The photon carries JP = 1− ⇒ Lγ ≥ 1.

⇒ Single γ emission is forbidden for a transition between two J = 0 states.
(0 → 0 transitions can only occur via internal conversion (emitting an electron) or via the

emission of more than one γ.)
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γ Decay
Radiative transitions in nuclei are generally the same as for atoms, except

Atom Eγ ∼ eV ; λ ∼ 108 fm ∼ 103 × ratom ; Γ ∼ 109 s−1

Only dipole transitions are important.

Nuclei Eγ ∼ MeV ; λ ∼ 102 fm ∼ 25× rnucl ; Γ ∼ 1016 s−1

Collective motion of many protons lead to higher transition rates.
⇒ Higher order transitions are also important.

Two types of transitions:

Electric (E) transitions arise from an oscillating charge which causes an
oscillation in the external electric field.

Magnetic (M) transitions arise from a varying current or magnetic moment
which sets up a varying magnetic field.

Obtain transition probabilities using Fermi’s Golden Rule

Γ = 2π|Mif|2ρ(Ef)
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γ Decay Electric Dipole Transitions (E1) L = 1

Insert dipole matrix element into FGR Γi→f =
ω3

3πϵ0c3ℏ
| ⟨ψf|er⃗ |ψi⟩ |2

see Adv. Quantum Physics; after averaging over initial and summing over final states

Order of magnitude estimate of this rate,

| ⟨ψf|er⃗ |ψi⟩ |2 ∼ |eR |2 ⇒ Γ ∼ 4

3
αE 3

γR
2 R = radius of nucleus,

α = e2

4πϵ0cℏ, Eγ = ℏω, ℏ = c = 1.

e.g. Eγ = 1 MeV, R = 5 fm (ℏc = 197 MeVfm, ℏ = 6.6× 10−22 MeVs)

Γ(E1) = 0.24 MeV3fm2 =
0.24

(197)2 × 6.6× 10−22
s−1 = 1016 s−1

(c.f. atoms Γ ∼ 109s−1)

As nuclear wavefunctions have definite parity, the matrix element can only be
non-zero if the initial and final states have opposite parity.

er⃗
P̂−→ − er⃗ ODD

E1 transition ⇒ parity change of nucleus
Prof. Tina Potter 15. Nuclear Decay 31

γ Decay Magnetic Dipole Transitions (M1) L = 1

Magnetic dipole matrix element | ⟨ψf|µσ⃗|ψi⟩ |2
µ = magnetic moment, σ⃗ = Pauli spin matrices

Typically Nuclear magneton⟨µσ⟩ ∼ eℏ
2mp

= µN

For a proton
ℏ
mp

∼ 0.2fm ∼ R

25
for R = 5 fm

Compare to E1 transition rate Γ(M1)

Γ(E1)
=

(
eℏ
2mp

)2 1

(eR)2
= 10−3

Magnetic moment transforms the same way as angular momentum

er⃗ × p⃗
P̂−→ e(−r⃗)× (−p⃗) = er⃗ × p⃗ EVEN

M1 transition ⇒ no parity change of nucleus
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γ Decay Higher Order Transitions (EL, ML, where L > 1)

If the initial and final nuclear states differ by more than 1 unit of angular momentum

⇒ higher multipole radiation

The perturbing Hamiltonian is a function of electric and magnetic fields and hence of the

vector potential ⟨ψf|H ′(A⃗)|ψi⟩
A⃗ for a photon is taken to have the form of a plane wave

A⃗eip⃗.r⃗ = 1 −ip⃗.r⃗ +
1

2
(p⃗.r⃗)2 + ...

(−ip⃗.r⃗)n

n!

Dipole Quadrupole Octupole

L = 1 2 3

E1,M1 E2,M2 E3,M3

Each successive term in the expansion of A⃗ is reduced from the previous one by a factor of

roughly p⃗.r⃗ .

e.g. Compare E1 to E2 for p ∼ 1 MeV, R ∼ 5fm

⇒ pR ∼ 5 MeVfm ∼ 0.025, |pR |2 ∼ 10−3

Γ(E2)

Γ(E1)
∼ 10−3 ∼ Γ(M1)

Γ(E1)

The matrix element for E2 transitions ∼ r 2 i.e. even under a parity transformation.
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γ Decay Transitions

In general, EL transitions Parity = (−1)L

ML transitions Parity = (−1)L+1

Rate 1 10−3 10−6 10−9 ...
E1 E2 E3 E4 ...

M1 M2 M3 ...
Parity change ✓ ✗ ✓ ✗

JP of γ E: 1− 2+ 3− 4+

M: 1+ 2− 3+

In general, a decay will proceed dominantly by the lowest order (i.e. fastest)
process permitted by angular momentum and parity.

e.g. if a process has ∆J = 2, no parity change, it will go by the E2, even
though M3, E4 are also allowed.
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γ Decay Transitions

e.g. 117
50 Sn

  
1/2+

3/2+ → 1/2+    M1 (E2 also allowed)

11/2– 

7/2+ 

J P

M1

M4

E2

11/2- → 3/2+   M4 
More likely than 11/2- → 1/2+  (E5)

7/2+ → 3/2+    E2 
 M2 7/2+ → 11/2-

 M3 7/2+ → 1/2+
less likely  

3/2+

Information about the nature of transitions (based on rates and angular
distributions) is very useful in inferring the JP values of states.

Please note: this discussion of rates is fairly näıve. More complete formulae
can be found in textbooks.
Also collective effects may be important if

many nucleons participate in transitions,

nucleus has a large electric quadrupole moment, Q, → rotational excited
states enhance E2 transitions.
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Summary

Radioactive decays and dating.

α-decay Strong dependence on E , Z

Tunnelling model (Gamow) – Geiger-Nuttall law ln τ1/2 ∼ Z ′

E
1/2
0

+ const.

β-decay β+, β−, electron capture; energetics, stability

Fermi theory – 4-fermion interaction plus 3-body phase space.

Γ =
G 2
F |Mnuclear|2

2π3

∫ E0

0

(E0 − Ee)
2p2e dpe

Electron energy spectrum; Kurie plot.

Comparative half-lives.

Selection rules; Fermi, Gamow-Teller; allowed, forbidden.

γ-decay Dipole, quadrupole; electric, magnetic transitions.

Selection rules.

Problem Sheet: q.37-41

Up next... Section 16: Fission and Fusion
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16. Fission and Fusion
Particle and Nuclear Physics

Prof. Tina Potter

Prof. Tina Potter 16. Fission and Fusion 1

In this section...

Fission

Reactors

Fusion

Nucleosynthesis

Solar neutrinos
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Fission and Fusion

  

Fission

Fusion

Most stable form of matter at A~60

Fission occurs because the total 
Coulomb repulsion energy of p's in a 
nucleus is reduced if the nucleus 
splits into two smaller nuclei. 
The nuclear surface 
energy increases 
in the process, 
but its effect is 
smaller.

Fusion occurs because the two 
low A nuclei have too large a 
surface area for their volume. 
The surface area decreases 
when they amalgamate. 
The Coulomb energy increases, 
but its influence 
is smaller.

Expect a large amount of energy released in the fission of a heavy nucleus into two

medium-sized nuclei or in the fusion of two light nuclei into a single medium nucleus.

SEMF B(A,Z ) = aVA − aSA
2/3 − acZ

2

A1/3
− aA

(N − Z )2

A
+ δ(A)
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Spontaneous Fission
Expect spontaneous fission to occur if energy released

E0 = B(A1,Z1) + B(A2,Z2)− B(A,Z ) > 0

Assume nucleus divides as

  

A, Z
A

1
, Z

1

A
2
, Z

2

where A1

A = Z1

Z = y and A2

A = Z2

Z = 1− y

from SEMF E0 = aSA
2/3(1− y 2/3 − (1− y)2/3) + aC

Z 2

A1/3
(1− y 5/3 − (1− y)5/3)

maximum energy released when ∂E0
∂y = 0

∂E0
∂y

= aSA
2/3(−2

3
y−1/3 +

2

3
(1− y)−1/3) + aC

Z 2

A1/3
(−5

3
y 2/3 +

5

3
(1− y)2/3) = 0

solution y = 1/2 ⇒ Symmetric fission

max. E0 = 0.37aC
Z 2

A1/3 − 0.26aSA
2/3

e.g. 238
92 U: maximum E0 ∼ 200 MeV (aS = 18.0 MeV, aC = 0.72 MeV)

∼ 106× energy released in chemical reaction!
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Fission Barrier
In the fission process, nuclei have to pass through an intermediate state where
the surface energy is increased, but where the Coulomb energy is not yet much
reduced.

This is a tunnelling problem, similar

to α decay.

Ef = fission activation energy

Ef ∼ 6 MeV 236
92 U

E0 = energy released

→ K.E. of fragments.

Although E0 is maximal for symmetric fission, so is the Coulomb barrier.
In fact, asymmetric fission is the norm.
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Fission Barrier
Estimate mass at which nuclei become unstable to fission (i.e. point at which energy change

due to ellipsoidal deformation gives a change in binding energy, ∆B > 0)

a = R(1 + ϵ) ϵ≪ 1

b = R(1 + ϵ)−1/2

SEMF Volume term unchanged: Volume = const =
4

3
πab2 =

4

3
πR3

Change in Surface term: aSA
2/3 −→ aSA

2/3(1 +
2

5
ϵ2)

Not proved,

just geometry
Change in Coulomb term: aC

Z 2

A1/3
−→ aC

Z 2

A1/3
(1− ϵ2

5
)

Change in Binding Energy: ∆B = B(ϵ)− B(0) = aCA
2/3

(
Z 2

A
− 2aS

aC

)
ϵ2

5

i.e. if Z 2

A > 2aS
aC
, then ∆B > 0 and the nucleus unstable under deformation

⇒ Z 2

A > 47 predicted point (roughly) at which the fission barrier vanishes.
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Fission Barrier
And indeed we observe that spontaneous fission lifetimes fall rapidly as Z 2/A
increases.

  

Z2 / A

τ 
(y

ea
rs

)
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Fission Barrier
Spontaneous fission is possible if tunnelling through fission barrier occurs
(c.f. α decay).

Tunnelling probability depends on

height of barrier

Ef ∝
(
Z 2

A

)−1

and on the mass of fragment

P ∝ e−2G ; G ∝ m1/2

Large mass fragment → low probability for tunnelling
e.g. fission is ∼ 106 less probable than α decay for 238

92 U
So there are naturally occurring spontaneously fissile nuclides, but it tends to
be a rare decay.
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Neutron Induced Fission Low energy neutron capture

Use neutrons to excite nuclei and overcome fission barrier.

Important for the design of thermonuclear reactors.

Low energy neutrons are easily absorbed by nuclei (no Coulomb barrier) → excited state.

Excited state may undergo n + AU → A+1U∗ → A+1U+ γ or X∗+Y∗

γ decay (most likely):

(n,γ) reaction

Fission (less likely):

excitation energy may

help to overcome Ef(n,γ) reaction:

Breit-Wigner

cross-section
σ(n, γ) =

gπλ̄2ΓnΓγ
(E − E0)2 + Γ2/4

, Γn ≪ Γγ ∼ Γ

At resonance σ(n, γ) = 4πλ̄2g
ΓnΓγ
Γ2
∼ 4πλ̄2g

Γn
Γ

Typically, Γn ∼ 10−1 eV, Γ ∼ 1 eV;

for 1 eV neutron, σ ∼ 103 b

(largest: 135Xe σ ∼ 106 b)Far below

resonance,

(E ≪ E0)

σ(n, γ) = λ̄2Γn

[
gπΓγ

E 2
0 + Γ2/4

]
= λ̄2Γn× constant

Γn dominated

by phase space
Γn ∼

p2

v
∼ v ; λ̄ =

ℏ
p
→ λ̄2 ∼ 1

v 2
∴ σ(n, γ) ∼ 1/v

“1/v law” (for low energy
neutron reactions)
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Neutron Induced Fission Low energy neutron capture

σ ∼ 1/v dependence far below resonances
E ∝ v 2 ⇒ lnσ ∝ −1/2 lnE + constant.

Low energy neutrons can have very large absorption cross-sections.
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Neutron Induced Fission Induced Fission

Induced fission occurs when a nucleus captures a low energy neutron receiving
enough energy to climb the fission barrier.

e.g. 235
92 U n + 235

92 U → 236
92 U∗ → X∗ + Y∗ → X + Y + κn

κ ∼ 2.4 prompt neutrons
Excitation energy of 236U∗ > Ef fission activation energy, hence fission occurs
rapidly, even for zero energy neutrons

→ thermal neutrons will induce fission.

Otherwise need to supply energy using K.E. of neutron.

e.g. 238
92 U n + 238U → 239U∗ Ef ∼ 6 MeV

En = 0 E ∗ ∼ 5 MeV no thermal fission

En = 1.4 MeV E ∗ ∼ 6.4 MeV rapid fission
but neutron absorption cross-section decreases rapidly with energy.

235U is the more interesting isotope for fission reactor (or bombs).
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Neutron Induced Fission Induced Fission

n + AU → A+1U∗ → X∗+Y∗

Masses of fragments are unequal (in general).
Tend to have Z , N near magic numbers.

Fragments X∗, Y∗ tend to have same Z/N
ratio as parent → neutron rich nuclei which
emit prompt neutrons (10−16s).

X and Y undergo β decay more slowly; may
also undergo neutron emission
→ delayed neutron emission
(∼1 delayed neutron per 100 fissions).

Note wide variety of (usually radioactive) nuclei are produced in fission; can be
very useful, but potentially very nasty.
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Neutron Induced Fission Chain Reaction

Neutrons from fission process can be used to induce further fission
→ chain reaction, can be sustained if at least one neutron per fission

induces another fission process.

k = number of neutrons from one fission which induce another fission
k < 1 sub-critical,
k = 1 critical, ← For reactors want a steady energy release, exactly critical

k > 1 super-critical.

Prompt neutrons are fast,
⟨E ⟩ ∼ 2 MeV and their
absorption σ is small.
Need to slow down fast neutrons
before they escape or get
absorbed by (n,γ) process
→ achieve a chain reaction.
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Fission Reactors
Power reactor
e.g. Sizewell in Suffolk
KE of fission products → heat → electric power

Research reactor
e.g. ISIS at RAL in Oxfordshire
Beams of neutrons for (e.g.) condensed matter
research

Breeder reactor
e.g. Springfields in Lanarkshire
Converts non-fissile to fissile isotopes, e.g.

Plutonium: n + 238U → 239U → 239Np → 239Pu

Uranium: n + 232Th → 233Th → 233Pa → 233U

Can separate fissile isotopes chemically
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Fission Reactors
A simple reactor needs fuel, moderators, control rods, and a cooling system.

  

Fuel: 
Natural U (0.72% 235U), 
enriched U (2-3% 235U), 
239Pu, 233U

Moderator: slows neutrons via elastic collisions. 
Large energy transfer requires use of a light nucleus.

H
2
O – cheap but absorbs neutrons through n+p → d+γ

D
2
O – extractable from seawater, but forms nasty radioactive tritium 3H

13C – graphite, larger mass → less energy transfer per collison → need more of it.

Cooling System: 
gases (air, CO

2
, He), 

water, liquid metals (Na)

Control Rods: control 
number of neutrons by 
absorption (113Cd)

UK reactors are mainly graphite moderated, gas cooled.
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Fission Reactors

The problem
Natural U is (99.3% 238U, 0.7% 235U) and n capture cross-section large for 238U

Need to
1. thermalise fast neutrons away from 238U to avoid capture (moderators)
2. control number of neutrons by absorption (control rods).

But
typical time between fission and daughter inducing another fission ∼ 10−3s

→ mechanical control of rods in times ≪ seconds not possible!
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Fission Reactors

The consequence – what happens if we fail to control the neutrons?

N(t + dt) = N(t) + (k − 1)N(t)
dt

τ

N(t) number of neutrons at time t
(k − 1) fractional change in number of neutrons in 1 cycle
τ mean time for one cycle ∼ 10−3s (fission → fission)

dN = (k − 1)N
dt

τ
⇒

∫ N(t)

N(0)

dN

N
=

∫ t

0

(k − 1)
dt

τ
⇒ N(t) = N(0)e(k−1)t/τ

for k > 1 → exponential growth – bad!

e.g. k = 1.01, τ = 0.001s, t = 1s

N(t)

N(0)
= e0.01/0.001 = e10 (×22, 000 in 1s)

Note: Uranium reactor will not explode if it goes super-critical. As it heats
up, K.E. of neutrons increases and fission cross-section drops. Reactor
stabilises at a very high temperature ⇒ MELTDOWN
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Fission Reactors
The solution
Make use of delayed neutron emission (delay ∼13s).
Design reactor to be subcritical to prompt neutrons and use the delayed
neutrons to take it to critical.

Thermal reactors require the following steps:
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Nuclear Fusion

Energetically favourable for light nuclei to
fuse and release energy.

  

A
1
, Z

1

A
2
, Z

2

A, Z

However, nuclei need energy to overcome Coulomb barrier

e.g. most basic process: p+p → d+ e+ + νe, E0 = 0.42 MeV

but Coulomb barrier V =
e2

4πϵ0R
=

αℏc
R

=
197

137× 1.2
= 1.2 MeV

Overcoming the Coulomb barrier
Accelerators: Energies above barrier easy to achieve. However, high particle densities for long

periods of time very difficult. These would be required to get a useful rate of fusion reactions

for power generation.

Stars: Large proton density 1032 m−3. Particle K.E. due to thermal motion.

To achieve kT ∼ 1 MeV, require T ∼ 1010K

Interior of Sun: T ∼ 107K, i.e. kT ∼ 1 keV

⇒ Quantum Mechanical tunnelling required.
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Fusion in the Sun Fusion rate in the Sun

Particles in the Sun have Maxwell-Boltzmann

velocity distribution with long tails – very

important because tunnelling probability is a

strong function of energy.
  

Mean particle energy

Low probability 
for fusion via 
tunnelling

Higher probability 
for fusion via 
tunnelling

Reaction rate in unit volume for particles of velocity v : Γ = σ(v)ΦN , where flux Φ = Nv

σ is dominated by the tunnelling probability P = e−2G (v)

and a factor 1/v 2 arising from the λ̄2 in the Breit-Wigner formula.

reminder, Gamow Factor G (v) ∼
(
2m

E0

)1/2 e2

4πϵ0

Z1Z2

ℏ
π

2
=

e2

4πϵ0

πZ1Z2

ℏv

Averaged over the Maxwell-Boltzmann velocity distribution Γ ∼ N2⟨σv⟩
Probability velocity between v and v + dv = f (v) dv ∝ v 2e−mv 2/2kT dv

⇒ Γ ∝
∫

N .Nv .
1

v 2
e−2G f (v) dv ∝

∫
ve−2Ge−mv 2/2kT dv ∝

∫
e−2Ge−E/kT dE
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Fusion in the Sun Fusion rate in the Sun

Typical fusion reactions peak at kT ∼ 100 keV ⇒ T ∼ 109K

  

e.g. for p+p → d + e+ + νe

σ ∼ 10−32b – tiny! weak!
but there are an awful
lot of protons...

per proton, Γ ∼ 5× 10−18s−1

⇒ Mean life, τ = 1010 yrs.

This defines the burning rate in
the Sun.
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Fusion in the Sun Fusion processes in the Sun

  

p+ p→d+e+
+ν(1)

(2) p+d→
3 He+γ

3 He+
3 He→

4 He+2 p+γ(3)

p+ p→d+e+
+ν

p+d→
3 He+γ

E0=0.42 MeV E0=0.42 MeV

E0=5.49MeV E0=5.49MeV

E0=12.86 MeV

pp I chain

Net reaction (2e+ annihilate with 2e−): 4p →4 He + 2e+ + 2ν E0 = 4me = 2.04 MeV

Total energy release in fusion cycle = 26.7 MeV (per proton = 26.7/4 = 6.7 MeV)

ν’s emerge without further interaction with ∼ 2% of the energy. The rest of the energy

(γ-rays; KE of fission products) heats the core of the star.

Observed luminosity ∼ 4×1026 J/s (1 MeV = 1.6× 10−13 J)

⇒ Number of protons consumed = 4×1026
1.6×10−13

1
6.7 =4×1038 s−1
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Fusion in the Sun Fusion processes in the Sun

  

p+ p→d+e+
+ν(1)

(2) p+d→
3 He+γ

3 He+
3 He→

4 He+2 p+γ(3)

p+ p→d+e+
+ν

p+d→
3 He+γ

E0=0.42 MeV E0=0.42 MeV

E0=5.49MeV E0=5.49MeV

E0=12.86 MeV

pp I chain

  

3 He+
4 He→

7 Be+γ(1)

(2)

8 B→8 Be+e++ν

7 Be+ p→ 8 B+γ

7 Li+ p→2 4 He

7 Be+e−
→

7 Li+ν

8 Be→2 4 He

pp II chain

pp III chain

Eν=0.861/0.383 MeV
Li vs Li*

Eν=14.06 MeV

(3)

3 He+
4 He→

7 Be+γ(1)

(2)

(3)

(4)

Other fusion cycles also possible e.g. C-N-O cycle.

Observation of solar neutrinos from the various

sources directly addresses the theory of stellar

structure and evolution (Standard Solar Model).

Probes the core of the Sun where the nuclear

reactions are taking place.

The Sun also provides an opportunity to investigate ν

properties e.g. mass, oscillations...

Also, the rare pp IV (Hep) chain: 3
2He +

1
1H → 4

2He + e+ + νe (Eν = 18.8 MeV)
Prof. Tina Potter 16. Fission and Fusion 23

Solar Neutrinos
Many experiments have studied the solar neutrino flux

Expected flux depends on
Standard Solar Model (temperature, density, composition vs r)
Nuclear reaction cross-sections

Observed ν flux ∼ 1/3 expected ν flux “Solar ν problem”
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Solar Neutrinos
The Solar ν problem has recently been resolved by the Sudbury Neutrino
Observatory (SNO) collaboration. They have reported evidence for a non-νe
neutrino component in the solar ν flux

→ Neutrino Oscillations

SNO (1000 tons D2O in spherical vessel) measures
the 8B solar ν flux using three reactions:
Measure νe flux

νe + d → e− + p + p

Measure total flux for all ν species

νX + d → νX + p + n
νX + e−→ νX + e−

Observe a depletion in the νe flux, while the flux
summed over all neutrino flavours agrees with
expected solar flux.

Evidence for νe ⇔ νX at 5σ
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Further nuclear processes in astrophysics

Creating the heavy elements
Once the hydrogen is exhausted in a star, further gravitational collapse occurs
and the temperature rises.

  

Eventually, it is hot enough
to “burn” 4He via fusion:

4He + 4He → 8Be + γ
4He + 8Be → 12C + γ
4He + 12C → 16O + γ

When the 4He is exhausted, star undergoes further collapse
→ further fusion reactions (and repeat)

Until we have the most tightly bound nuclei 56Fe, 56Co, 56Ni.

Heavier elements are formed
in supernova explosions:

n + 56Fe → 56Fe + γ

n + 57Fe → 58Fe + γ

n + 58Fe → 59Fe + γ
59Fe → 59Co + e− + ν̄e
etc etc
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Further nuclear processes in astrophysics
Big bang nucleosynthesis

Fusion processes are also important in the Big Bang.
Both p and n present, at T ≫ 109K.
Typical reactions:

n + p → d + γ

d + n→3H+γ
3H+p →4He+γ

d + p →3He+γ

d + d →3H+p

d + d →3He+n
3He+n→4He+γ

Observed abundances of these light elements provide
a sensitive test of the Big Bang model.

In particular, they depend on aspects of particle physics which determine the
n/p ratio, which depends on the temperature at which the reactions

p + ν̄e → n + e+ n + νe → p + e−

“freeze out”, which in turn depends on the number of neutrino species.
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Fusion in the lab
Fusion in the laboratory was first demonstrated in 1932, here at
the Cavendish (Oliphant).

For fusion we need sufficiently high temperatures and controlled
conditions.
The challenge now is to generate more power than expended.

Possible fusion reactions: d + d → 3He+n Q = 3.3 MeV

d + d → 3H+p Q = 4.0 MeV

d+3H → 4He+n Q = 17.6 MeV

The d+3H (aka DT) reaction is especially attractive
✓ largest energy release (α particle very stable)
✓ lowest Coulomb barrier
✗ 80% of the energy is released in the neutron – less easy to use, and doesn’t help

to heat the plasma.

✗ 3H (tritium) unstable (τ1/2 ∼ 12 yr); need to produce it via n+6Li→ 4He+3H or

n+7Li→ 4He+3H+n using some of the neutrons formed in the fusion reaction.
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A recipe for controlled fusion
Need T ∼ 108K i.e. E ∼ 10 keV ≫ ionisation energy ⇒ plasma
reminder: plasmas are electrically conductive and can be controlled with magnetic fields.

Heat plasma by applying r.f. energy.
Declare Ignition when the process is self-sustaining: the heating from
3.5 MeV α-particles produced in fusion exceeds the losses (due to
bremsstrahlung, for example).

Break even achieved when there is more power out (incl. losses) than in.
Fusion rate = nDnT ⟨σv⟩ = 1

4n
2⟨σv⟩ (assumes nD = nT = 1

2n, where n is the electron density).

Rate of generation of energy = 1
4n

2⟨σv⟩Q
Rate of energy loss =W /τ where W = 3nkT is the energy density in the plasma (3kT/2 for

electrons and the same for the ions) and τ is the lifetime of the plasma due to losses.

Break even if 1
4n

2⟨σv⟩Q > 3nkT/τ , i.e.

Lawson criterion nτ >
12kT

Q⟨σv⟩
For DT, this is nτ > 1020m−3s at kT ≫ 10 keV.

People commonly look at the “triple product” nτT for fusion processes.
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Controlled fusion – confinement
Need T ∼ 108K i.e. E ∼ 10 keV ≫ ionisation energy ⇒

need to control a plasma

Inertial confinement
Use a pellet containing d+3H zapped from

all sides with lasers or particle beams to heat

it. Need very high power lasers + repeated

feeding of fuel.

e.g. National Ignition Facility, LBNL, US

Magnetic confinement
Use a configuration of magnetic fields to

control the plasma (Tokamak) and keep it

away from walls.

e.g. International Thermonuclear Experimental

Reactor, France
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Controlled fusion – the status today

JET (Joint European Torus),

TFTR (Tokamak Fusion Test Reactor), both achieved

appropriate values of plasma density (n) and lifetime

(τ ), but not simultaneously ⇒ yet to break even.

NIF (National Ignition Facility) closing in on ignition.

ITER (International Thermonuclear Experimental

Reactor) should break even. Build time ∼10 years;

then ∼20 years of experimentation starting 2025.

Commercial fusion power can’t realistically be expected

before 2050.
Recent progress
Aug 2021: NIF produced 1.3MJ – 70% of delivered laser energy.
Dec 2022: NIF produced 3.15MJ – 150% of delivered laser

energy. Breakeven!
Feb 2022: JET broke 23 year old energy record – 59MJ over 5 s
Feb 2024: JET – 69MJ over 5 s

This could be your work!
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Summary

Spontaneous fission – energetically possible for many nuclei, but tunnelling
needed – rate only competitive for a few heavy elements.

Neutron induced fission – neutron absorption into a fissile excited state.
Practical importance in power generation and bombs.

Asymmetric fission; neutrons liberated

Chain reaction. Use of delayed neutron component for control.

Fusion – again a tunnelling problem. Needs very high temperatures for
useful rates.

Fusion processes in the sun (solar neutrinos).

Nucleosynthesis in the big bang.

Controlled fusion.

Problem Sheet: q.42-44

Thank you for being a great class! Farewell!
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