
Particle and 
Nuclear Physics

Handout #1 

Problem Sheet
Introduction
Appendices

Lent/Easter Terms 2024
Prof. Tina Potter



Prof. Tina Potter
Lent/Easter Terms 2024

Part II Particle and Nuclear Physics

Examples Sheet

=================== Part 1, Chapters 1-4 ===================

1. Chapter 1: Classification of Particles
Explain the meaning of the terms fermion, quark, lepton, hadron, nucleus, and boson as used
in the classification of particles.

2. Chapter 2: Natural Units

(a) Explain what is meant by natural units and the Heaviside-Lorentz system.

(b) Calculate a value for the proton mass in natural units, assuming mp = 1.67× 10−27 kg.

(c) The muon decay rate is given by Sargent’s Rule

Γµ =
G2

Fm
5
µ

192π3
,

wheremµ is the muon mass (106 MeV) and GF is the Fermi constant (1.166×10−5 GeV−2).
Given τ = 1/Γ, calculate the muon lifetime in seconds.

(d) The cross section for e+e− → µ+µ− is measured as 0.5 pb. What is this cross-section in
natural units?

[Note that c = 3.0× 108ms−1; ℏ = 6.6× 10−25 GeVs; ℏc = 197 MeVfm; 1 barn = 10−28m2]

3. Chapter 2: Relativistic Kinematics
Consider the electromagnetic decay of the rho meson, ρ → π0γ. Calculate the energies of
the photon and pion in the ρ0 rest frame. The π0 goes on to rapidly decay to two photons.
What range of energies will these two photons take in the ρ rest frame, assuming the ρ decays
as above? Draw a rough sketch of the energy distribution of all the photons that might be
detected from a ρ decay.

Discuss how the observation of a range of energies for the electron from neutron decay (n →
pe−ν̄e) led to the prediction of the existance of the neutrino.

[The masses of the ρ and π0 are 770 MeV and 135 MeV, respectively. ]

4. Chapter 2: Radioactive Decay
The decay chain 211Bi→207Tl→207Pb is observed for an initially pure sample of 5× 1011 Bq of
211Bi. The half life of 211Bi is 2.14 minutes and that of 207Tl is 4.88 minutes; 207Pb is stable.
Write down the rate equations for this system, and show that the number of Tl atoms present
at time t is given by

NTl(t) = X
(
e−λBit − e−λTlt

)
,

where the λ values represent the corresponding decay rates and X is a constant. What is the
maximum 207Tl activity and at what time does it occur?
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5. Chapter 2: Cross sections
Define the terms total cross-section and differential cross-section for scattering processes.

A beam of neutrons with an intensity 105 particles per second traverses a thin foil of 235U with
a density of 200 kgm−3 and thickness of 0.5mm. There are three possible outcomes for the
neutron-uranium interaction:

i. elastic scattering of the neutron, with a cross-section 0.1 b;

ii. neutron capture followed by the emission of a γ-ray, with a cross-section 70 b;

iii. neutron capture followed by fission, with a cross-section 200 b;

Determine

(a) the intensity of the neutron beam transmitted by the foil;

(b) the rate of fission reactions occurring in the foil induced by the incident beam;

(c) the rate of γ-rays induced by the incident beam;

(d) the flux of neutrons elastically scattered out of the beam at a point 10m from the foil,
assuming that the neutrons are scattered isotropically.

6. Chapter 2: Breit-Wigner Formula
The Breit-Wigner formula for a reaction cross-section is given by

σ(E) =
πg

p2i

ΓiΓf

(E − E0)2 + Γ2/4
.

Explain the meaning of the symbols in this equation, and outline its derivation.

The maximum value of the cross section for radiative capture of neutrons in 113Cd (i.e. the
process n+113Cd → 114Cd+γ) is 20.6 kb and is reached at a neutron energy of 178meV, where
the elastic width Γn is 0.6meV and the radiative width Γγ is 112.4meV. The spin of 113Cd in
its ground state is J = 1

2
. Calculate the elastic cross-section at resonance and find the spin of

the compound nucleus formed.
[The mass of the neutron is 939.6 MeV. ]

2



7. Chapter 3: Detector Signatures
For each e+e− process below, sketch the signature in a typical cylindrical detector e.g.

  

Muon 
Spectrometer

HCAL

ECAL

Tracker

magnet

(a) e+e− → µ+µ−

(b) e+e− → e+e−µ+µ−

(c) e+e− → e+e−γ

(d) e+e− → qq̄g

(e) e+e− → τ+τ−, where the taus decay as τ+ → µ+νµν̄τ and τ− → π−π0ντ

(f) e+e− → π+np̄π0K+K−

Calculate the average distance travelled by a tau produced in a e+e− → τ+τ− collision with
ECM = 10 GeV. Explain why we don’t observe taus directly in typical cylindrical detectors.
[The tau lifetime is 2.9× 10−13 s and the tau mass is 1.777 GeV]

8. Chapter 3: Detector Resolution
In an experiment, the momentum resolution in the tracker for a 10 GeV particle is 10%, while
the energy resolution in the electromagnetic calorimeter is 0.16%.

(a) Calculate the momentum and energy resolutions for a 0.5 GeV electron and a 100 GeV
electron. Which sub-detector would give the more reliable estimate in each case?

(b) Would a 10 GeV muon or a 100 GeV muon be measured more accurately in a typical
cylindrical detector? Explain your reasoning.
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9. Chapter 3: Collider Kinematics
Calculate the centre-of-mass energy for

i. a fixed target experiment using a 50 GeV electron beam on a proton target,

ii. a collider experiment using a 50 GeV electron beam and a 50 GeV positron beam.

Comment on whether a Z boson or a Higgs boson may be produced from the collisions in each
case.

What would be the length of a linear collider used to produce the electron-positron beams in
ii), assuming RF cavities capable of providing 16 GeV per km?

If proton beams are collided instead, why might the centre-of-mass energy be lower than the
value calculated in ii)?

10. Chapter 4: Virtual Particles
Show that the process γ → e+e− is kinematically forbidden in a vacuum, but is possible in
matter.

One such possible interaction of a photon in matter is e−γ → e−e+e−. What is the minimum
photon energy for this process to occur? How does this change for the photon striking a far
more massive object M , Mγ →Me+e−? You may assume mM ≫ me.
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=================== Part 2, Chapters 5-8 ===================

11. Chapter 5: Feynman Diagrams
Define the terms scattering amplitude, decay rate, and scattering rate.
Draw all lowest order Feynman diagrams and write down the form of the scattering amplitudes
M for the following processes:

(a) µ− → e−νµν̄e

(b) p→ ne+νe

(c) π0 → γγ

(d) ρ→ π+π−

(e) π0 → π−e+νe

(f) e−γ → e−e+e−

(g) e−γ → ν ν̄ e−

(h) e+e− → e+e−

(i) e−e− → e−e−

(j) νe e
− → νe e

−

(k) νe e
+ → νe e

+

(l) νe µ
− → νe µ

−

(m) ντ p→ τ+n

(n) e+e− → µ+µ− at ECM = 10 GeV vs ECM = 90 GeV.

Are any of these processes forbidden? Where multiple diagrams are possible, note which would
dominate (if any).

12. Chapter 6: Electromagnetic Decays
The neutral pion, π0, is a JP = 0−, (uū − dd̄)/

√
2 state and decays via the four possibilities

listed below.

Process Branching fraction
π0 → γγ 0.9882
π0 → γe+e− 0.0117
π0 → e+e−e+e− 3× 10−5

π0 → e+e− 6× 10−8

Draw a Feynman diagram for each of the pion decays and use Fermi’s Golden Rule Γ = 2π|M|2ρ
to roughly explain the relative branching fractions. For this question, you may assume the
coupling of the photon to a charged particle is Q

√
α = Q/

√
137 for simplicity.

13. Chapter 6: Drell Yan Production
Draw a typical Feynman diagram for Drell Yan production at a hadron collider. Find the ratio
of the Drell Yan production rate for π−p : π+π− : pp̄ : pp.

14. Chapter 6: Quark Charge and Colour

Estimate R =
σ(e+e−→hadrons)
σ(e+e−→µ+µ−) at ECM = 6 GeV.

How would R change if

i. the bottom quark mass was 1 GeV?

ii. the electric charge for up-type quarks was +3
4
and the down-type quarks was −1

2
?

In each case, what number of colours would give the best agreement if the measured value of
R was 31

3
at this ECM?

5



15. Chapter 7: Quark/Gluon Production

(a) Draw the lowest order Feynman diagrams for uū → gg. What would you expect for

R =
σ(uū→gg)

σ(dd̄→gg)
in a pp̄ collider?

(b) Draw the lowest order Feynman diagrams for gq → qg and gq → qγ and sketch their
signatures in a typical detector. How would the energies of the final state particles be
determined? What would the ratio of u to d events be for each case in a pp̄ collider? What
happens to the quarks in the proton and antiproton that do not directly participate in
the scattering?

16. Chapter 7: The Strong Coupling Constant
Sketch the strong coupling constant αs as a function of the energy scale. Why does this suggest
that quarks cannot exist as free particles? Outline two methods for measuring αs.

17. Chapter 8: Hadron States
In the lectures we showed the three light quarks (u, d, s) form eight JP = 1

2

+
states and ten

JP = 3
2

+
states. If quarks were spin-0 particles, what baryon states could be formed? Assume

all other quark properties remain the same.

18. Chapter 8: Hadron Masses

(a) What are the quark model mass predictions for the following mesons: K+, η, ω, η′? Do
they agree with the measured masses? If not, can you suggest why this may be?
[Assume mu = md = 310 MeV, ms = 483 MeV and the spin-spin interaction coefficient
A = 0.0615 GeV3.]

(b) What are the quark model mass predictions for the following baryons: ∆, Ξ? Do they
agree with the measured masses?
[Assume in this case mu = md = 360 MeV, ms = 540 MeV and the spin-spin interaction
coefficient A = 0.026 GeV3.]

(c) The baryons Λ0 and Σ0 have the same quark composition (uds) and both are members of

the same JP = 1
2

+
baryon octet. Explain why their masses are different (1.116 GeV and

1.193 GeV respectively), and suggest why their lifetimes are very different (2.6 × 10−10 s
and 7× 10−20 s respectively).

19. Chapter 8: Spin and Parity
When π− mesons are stopped in deuterium they form “pionic atoms” (π−d) which usually
undergo transitions to an atomic s-state (ℓ = 0), whereupon the capture reaction π−d → nn
occurs and destroys them. (The fact that capture normally occurs in an s-state is established
from studies of the X-rays emitted in the transitions before capture). Given that the deuteron
has spin-parity JP = 1+ and the pion has J = 0, show that these observations imply that the
pion has negative intrinsic parity.

20. Chapter 8: Magnetic moments
The proton has quark content uud and magnetic moment 2.8µN , while the Σ+ baryon has
quark content uus and magnetic moment 2.4µN . Use this information to estimate the magnetic
moment of the Σ+

b baryon (uub).
[Assume in this case mu = md = 0.3 GeV, ms = 0.5 GeV and mb = 5 GeV.]
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21. Chapter 8: The Upsilon Resonance
The BABAR experiment made measurements of σ(e+e− → hadrons) for

√
s in the region of

the Υ(4S) (bb̄) resonance and some of the results are shown in the figure. The Υ resonance is
described by the Breit-Wigner cross section

σ(i→ f) =
gπ

p2
ΓiΓf

(E − E0)2 + Γ2/4

and is known to decay to hadrons close to 100% of the time.

10520 10540 10560 10580 10600
s  [MeV]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(e
+

e
ha

dr
on

s)
 [n

b]

Data taken from PRD 72 032005 (2005)

(a) What spin-parity states may be produced in e+e− collisions?

(b) Estimate the mass and total width of the Υ(4S) meson.

(c) The detector used to make these cross-section measurements was not fully efficient. Esti-
mate the efficiency by comparing the measured cross section to the theoretical prediction.
You may assume the efficiency of the detector was independent of

√
s and the branching

ratio for Υ(4S)→ e+e− is 2.5× 10−5.

(d) Draw Feynman diagrams for the decays Υ → e+e− and Υ → hadrons for the Υ(3S) and
Υ(4S) resonances. Explain why the Υ(3S) resonance has values of Γee similar to that of
Υ(4S), but has a total width which is smaller by at least two orders of magnitude.
[ B+ (b̄u) and B0(b̄d) have masses of about 5280 MeV. The Υ(3S) resonance has a mass
of 10355 MeV. ]

22. Chapter 8: Mixed Flavour States
The partial width for the leptonic decay of the ρ0 meson, ρ0 → e+e−, is 7 keV. Estimate the
partial width for the leptonic decay of the ω0 meson, ω0 → e+e−.
The partial width for the pionic decay of the ρ0 meson, ρ0 → π0γ, is 77 keV. Estimate the
partial width for the pionic decay of the ω0 meson, ω0 → π0γ.
[ The π0 and ρ0 are both (uū − dd̄)/

√
(2) states, while ω0 is a (uū + dd̄)/

√
(2) state. The ρ0

and ω0 are both JP = 1− states, while the π0 is 0−.]
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=================== Part 3, Chapters 9-12 ===================

23. Chapter 9: W boson and the Number of Neutrino Species
The number of neutrino species can be estimated using the total width of the W boson. Using
the Standard Model prediction of the partial width for W− → e−ν̄e decays,

Γ(W− → e−ν̄e) =
GF√
2

M3
W

6π
,

the mass of the W boson, MW = 80.385 ± 0.015 GeV and the total width, ΓW = 2.085 ±
0.042 GeV, estimate the number of light neutrino species. Make clear your assumptions.
[GF = 1.2× 10−5 GeV−2. ]

24. Chapter 9: Helicity in the Weak Interaction

(a) Draw the lowest order Feynman diagrams for π− → µ−ν̄µ and π− → e−ν̄e. Using argu-
ments of lepton universality and density of states only, how would you expect the rates of
these two decays to compare?

(b) Calculate the velocity with which the electron and muon are emitted in the pion rest
frame. Note if the velocities you calculate are relativistic or non-relativistic.
[Assume me = 0.511 MeV, mµ = 106 MeV, and mπ = 140 MeV.]

(c) The probability for a W -boson to couple to the ± helicity state of a lepton is equal to
1
2
(1∓ v

c
). What is the consequence for the π− → µ−ν̄µ and π− → e−ν̄e decay rates?

25. Chapter 9: Weak Force and Conservation
Consider each of the groups of processes given below. In each group, with the aid of Feynman
diagrams using the Standard Model vertices, determine which processes are allowed and which
are forbidden. By considering the strength of the forces involved, rank the processes in each
group in order of expected rate.

(a) D+
s → K+π0, D+

s → K+K0, D+
s → π+ϕ

(b) B0 → D−π+, B0 → π+π−, B0 → J/ψK0

(c) π− → µ−ν̄µ, K− → µ−ν̄µ, B− → µ−ν̄µ

(d) ρ0 → νν̄, π0 → νν̄, π0 → µ+µ−

26. Chapter 10: Z coupling

(a) In the GWS theory, the couplings of the Z boson to fermions is described by gL,R ∝
(I3)L,R − Q sin2 θW , where L/R denotes a left/right-handed fermion, I3 denotes weak
isospin, Q is the electric charge, and the weak mixing angle is θW = 29o. Assuming
Γ(Z → ff̄) ∝ g2L + g2R, predict the branching ratios for the Z boson to decay to hadrons,
neutrinos, and τ+τ−.

(b) In the OPAL experiment at LEP, the cross section for e+e− → τ+τ− was measured at
various centre-of-mass energies. Some of the results are shown below.
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Ecm/GeV σ(e+e− → τ+τ−)/nb

88.481 0.2769± 0.0235

89.442 0.4892± 0.0091

90.223 0.8331± 0.0368

91.283 1.4988± 0.0213

91.969 1.1892± 0.0235

92.971 0.7089± 0.0105

93.717 0.4989± 0.0276

Plot these data and make estimates of the Z boson mass, mZ , the total width of the Z
boson, ΓZ , and the partial decay width to τ+τ−, Γττ . Compare the branching fraction for
Z → τ+τ− with your theoretical prediction and comment.

Why is the measured resonance curve asymmetric? Indicate what other effects need to be
taken into account when accurately determining mZ , ΓZ and Γττ .

27. Chapter 10: Number of Generations from LEP
Consider a fourth lepton generation exists with mL− = 40 GeV and mν ∼ 0. Draw Feynman
diagrams for possible production mechanisms of this fourth degeneration at a electron-positron
collider such as LEP. What might you expect for the possible decays of the charged lepton?
Draw Feynman diagrams for the L− decays and predict the branching ratios for each final state.

Use Sargent’s rule for the partial decay rate for X → νXe
−ν̄e

ΓX→e =
G2

Fm
5
X

192π3
,

to calculate the L− partial decay rate to electrons and the expected lifetime of L− in seconds.

Outline how the precision electroweak measurements at LEP ruled out such a fourth generation.

28. Chapter 11: A Higgs Boson Factory
A Higgs factory is being considered to study the properties of the spin-0 Higgs boson with mass
125 GeV. The Higgs boson could be produced through the resonant reaction µ+µ− → H, with
a cross-section described by the Breit-Wigner formula. The partial decay width of the Higgs
boson (H) to fermions is proportional to m2

f .

(a) Explain why a µ+µ− collider is being considered for a Higgs factory rather than e+e− or
pp collisions.

(b) Find the ratio of Γ(H → τ+τ−) : Γ(H → cc̄) : Γ(H → bb̄). You may assume
mτ = 1.77 GeV, mc = 1.5 GeV, and mb = 4.5 GeV.

(c) The sum of the branching ratios for Higgs to τ+τ−, cc̄, and bb̄ is 67%. Calculate the cross
section for µ+µ− → H → bb̄ at the peak of the resonance. Express your answer in natural
units and in barns.

(d) Explain why the branching ratio for H → W+W− is non-zero, despite the fact that
mH < 2mW .
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29. Chapter 12: Neutrino Oscillations
A beam of neutrinos can interact with nucleons in a stationary target, either undergoing elastic
scattering or producing a charged lepton.

(a) Draw the lowest order Feynman diagrams for the elastic and inelastic scattering of neu-
trinos with nucleons.

(b) Calculate the minimum energy of the ν which would permit e− production. How would
this threshold energy change for µ− or τ− production?

(c) Show that if there are two neutrino mass eigenstates ν2 and ν3 with masses m2 and m3

and energies E2 and E3, mixed so that

νµ = ν2 cos θ + ν3 sin θ

ντ = −ν2 sin θ + ν3 cos θ

then the number of muon neutrinos observed at a distance L from the muon source is

|νµ(L)|2 ≈ |νµ(L = 0)|2 ×
[
1− sin2 (2θ) sin2

{
A

(
(m2

2 −m2
3)L

p

)}]

where A is a constant.

(d) In 2005, the MINOS experiment studied neutrino oscillations by pointing a beam of 1 −
5 GeV muon neutrinos from Fermilab to the MINOS far detector 730 km away. The
experiment aimed to make a precise measurement of m2

3−m2
2. Sketch the expected energy

spectrum of muon neutrinos at the MINOS detector if sin2(2θ) = 0.90 and m2
3 − m2

2 =
2.5 × 10−3 eV2. Assume that the energy spectrum of neutrinos produced by the beam
at Fermilab was of uniform intensity in the range 1 − 5 GeV and zero elsewhere (i.e. a
top-hat function).

(e) If muon neutrinos oscillate into tau neutrinos, will any τ leptons (produced by charged
current interactions) be observed in the MINOS far detector? How would your answer
change for the future DUNE experiment, which will use a similar νµ beam produced at
Fermilab aimed at a detector 1300 km away at the Sanford Underground Research Facility?

30. Chapter 12: Grand Unified Theories
Grand Unified Theories predict that protons can decay through the annihilation of two valence
quarks to create an antilepton and antiquark via the exchange of a very heavy intermediate
boson: p→ l+π0 or p→ νπ+. The non-observation of proton decay can be used to set stringent
limits on GUTs.

(a) Assume two new massive bosons exist in nature, X−4/3 and Y −1/3. Sketch the possible
Feynman diagrams for the decay of a proton, indicating the final-state particles. Explain
why these Feynman diagrams are non-Standard-Model diagrams.

(b) The Super Kamiokande experiment was designed to search for proton decay as well as
neutrino interactions. How might Super K detect the p → e+π0 decays and distinguish
them from neutrino interactions? Hint: you may want to recall q.12 if you find you are
stuck.

(c) Show the energy of the pion is Eπ = (m2
p +m2

π −m2
e)/2mp in the laboratory frame and

the invariant mass of the photons is m2
γγ = 2E1E2(1− cos θ) in any frame of reference.

(d) Finally, show the maximum opening angle between the two photons is θmax = 2 sin−1(mπ/Eπ)
in the laboratory frame.
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================== Part 4, Chapters 13-15 ==================

31. Chapter 13: The Semi-Empirical Mass Formula
The Semi-Empirical mass formula (SEMF) for nuclear masses may be written in the form

M(A,Z) = Zmp + (A− Z)mn − aVA+ aSA
2
3 + aC

Z2

A
1
3

+ aA
(A− 2Z)2

A
+ δ(A,Z),

where mp and mn are the masses of the proton and neutron respectively.
[mp = 938.3 MeV, mn = 939.6 MeV, me = 0.511 MeV, aV = 15.8 MeV, aS = 18.0 MeV,
aA = 23.5 MeV, nuclear radius R = R0A

1/3 with R0 = 1.2 fm]

(a) Explain the physical significance and functional form of the various terms. Which terms
are important for nuclear fission and fusion and why?

(b) Show that the Coulomb term constant aC can be written as

aC =
3e2

20πϵ0R0

,

assuming the nucleus can be treated as a sphere of uniform charge density. Calculate the
value of aC .

(c) Show that the value of Z of the most stable isobar of mass number A is

Z =
mn −mp + 4aA

2aCA
− 1

3 + 8aA/A
.

Use this to predict the Z value for the most stable nuclei with A = 118 and A = 201, and
compare with nuclear data, which you can find on the web (e.g.
https://www.nndc.bnl.gov/nudat3/). Predict the most stable super-heavy nucleus with
mass number 302.

(d) On the typical scale of a nucleus, gravitational effects can be safely ignored. However, a
neutron star may be considered as nucleus consisting entirely of neutrons and here we can
no longer ignore gravity. By treating a nucleus as a sphere of uniform mass density, show
the effect of gravitational forces on the binding energy may be accounted for by adding a
term −aGA

5
3 to the SEMF (neglecting the proton-neutron mass difference). Calculate a

value for aG and estimate the lightest mass for a neutron star.

32. Chapter 13: The SEMF Asymmetry and Pairing Terms
The form and magnitude of the asymmetry term can be estimated using the Fermi Gas model.
This involves treating the N neutrons and Z protons as free fermions of mass m moving in a
box of volume V = 4

3
πR3

0A. The model therefore only accounts for the kinetic energy of the
nucleons, and not their potential energy.

A standard calculation, which you have done before (at least for a cubic box), gives the density
of states for each species (including spin degeneracy) as

g(ϵ) = BAϵ
1
2 where B =

4
√
2m

3
2R3

0

3πℏ3
.

You need not prove this unless you want to practice.
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(a) Show that the Fermi energy for the neutrons is ϵF =
(

3N
2BA

)2
3

(b) Calculate the Fermi energy ϵF and the corresponding nucleon momentum for the symmetric
case N = Z = 1

2
A.

(c) Show that the total kinetic energy of the nucleons is given by 3
5

(
3

2BA

) 2
3

(
N

5
3 + Z

5
3

)
.

(d) Expand about the symmetric point N = Z = 1
2
A by writing N = 1

2
A(1 + α) and Z =

1
2
A(1− α) to show that the asymmetry energy has the form aA

(N−Z)2

A , where aA = 1
3
ϵF.

(e) One contribution to the pairing energy can also be estimated from this model, reflecting
the stepwise increase of the kinetic energy resulting from the exclusion principle. This
would be expected to be approximately equal to the energy spacing of levels at the Fermi
level, i.e. 1/g(ϵF).

Show that this is, for the N = Z = 1
2
A case

4ϵ̄F
3A . Evaluate and compare with the fitted

value in the SEMF for a typical value of A ∼ 100.

33. Chapter 13: Nuclear Size
The ground state of a 17F nucleus sits 2.25 MeV above the ground state of a 17O nucleus. What
is the maximum energy of the positron emitted in the β+ decay of 17F? Estimate the charge
radius of a nucleus with 17 nucleons.
[Consider the nuclear (or atomic) mass differences in terms of the maximum positron energy,
and again in terms of the change in the SEMF. mp = 938.272 MeV, mn = 939.566 MeV.]

34. Chapter 14: The Nuclear Shell Model
Outline the basis of the Nuclear Shell Model and show how it accounts for magic numbers.
How can the shell model be used to predict the spins and parities of nuclear ground states?

Use the shell model to predict the spins and parities of the ground stats of the nuclides listed
below and compare to the experimental values given. Comment on any discrepancies you find.

3
2He

9
4Be

7
3Li

12
6C

13
6C

15
7N

17
8O

23
11Na

131
54 Xe 207

82Pb
1
2

+ 3
2

− 3
2

−
0+ 1

2

− 1
2

− 5
2

+ 3
2

+ 3
2

+ 1
2

−

Assume the following ordering of levels:

1s 1
2
1p 3

2
1p 1

2
1d 5

2
1d 3

2
2s 1

2
1f 7

2
1f 5

2
2p 3

2
2p 1

2
1g 9

2
1g 7

2
2d 5

2
2d 3

2
1h 11

2
3s 1

2
1h 9

2
2f 7

2
3p 3

2
1i 13

2
3p 1

2
2f 5

2
· · ·
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35. Chapter 14: Energy Levels
The diagram below shows the low-lying energy levels for the nuclides:

18
10Ne

166
68Er

18
9F

208
82Pb

18
8O

The schemes are drawn to the same scale, with energies (in MeV) with respect to the ground
state and the spin and parity (JP ) values given for each level. Identify which scheme corresponds
to each nuclide and explain as fully as you can which features of the levels support your choices.

36. Chapter 14: Rotational Excitations
The spin-parity and excitation energies of the five lowest-energy states of 174

72 Hf are

JP 0+ 2+ 4+ 6+ 8+

E/ keV 0 91 297 608 1009

Show that these states are consistent with being rotational excitations and obtain a value for
the moment of inertia of the 174

72 Hf nucleus. Compare your result to the expectation if 174
72 Hf is

assumed to be a rigid spherical rotator.
[A solid sphere of mass m and radius R has moment of inertia U = 2

5
mR2.

Hint: remember ℏ = 6.66× 10−25GeV s or ℏ = 1.05× 10−4 fm2 kg s−1]

37. Chapter 15: Carbon Dating

(a) The 14
6 C half-life is 5730 years. What is its average lifetime?

(b) An organic artefact has been discovered in an Egyptian tomb and carbon dating shows it
to have an activity of 0.13Bq per gram. What is the age of the artefact?

(c) Use reasonable assumptions to estimate the oldest organic artefact we may age using
Carbon dating.

38. Chapter 15: Alpha Decay
An isotope of plutonium, 239Pu, is an alpha-emitter with a half-life of 24,120 years. What is
the initial activity of 1 kg of 239Pu?

13



39. Chapter 15: Beta Decay
What are the conditions under which the three types of β-decay are kinematically allowed?
Use these conditions to determine which of the following A = 142 isobars would you expect to
be stable, and how would you expect the others to decay. Use Sargent’s rule to estimate which
of the unstable ones should have the shortest lifetimes, and which the longest. Does this match
with your expectation from the classification of the β+ and β− decays?

Nuclide Atomic Mass / mu JP

142
57 La 141.9141 2−
142
58 Ce 141.9092 0+
142
59 Pr 141.9100 2−
142
60 Nd 141.9077 0+
142
61 Pm 141.9130 1+
142
62 Sm 141.9152 0+

[The mass of the electron is 0.00055 mu.]

40. Chapter 15: Fermi Theory and Sargent’s Rule
Show that the electron momentum spectrum in β-decay using Fermi theory can be written as

dΓ

dpe
=
G2

F

2π3
(E0 − Ee)

2 p2e,

where GF is the Fermi constant, Ee and pe are the energy and momentum of the electron and
E0 is the total energy released. You may treat the electron and neutrino as massless.

Show that the average kinetic energy carried off by the electron in β decay is E0/2 when the
electron is highly relativistic, and E0/3 when the electron is non-relativistic.

When the electron is highly relativistic, show that the total decay rate is given approximately
by

Γ =
G2

FE
5
0

60π3

The E5
0 dependence is sometimes known as Sargent’s Rule.

41. Chapter 15: Gamma Decay
In an experiment, the first three excited states of 17

9 F were studied and the following gamma
transitions were observed

E1 : 2.6 MeV, 4.2 MeV, 4.7 MeV
M1 : 1.6 MeV
E2 : 0.5 MeV, 1.6 MeV

In addition, a weaker transition of energy 3.1 MeV was seen. The 0.5 MeV gamma-ray corre-
sponds to a transition between the first excited state and the ground state. Use the nuclear
shell model to predict the spin-parity of the ground state of 17

9 F. Assuming that the first excited
state is a single particle excitation of a nucleon to a nearby (not necessarily closest) higher en-
ergy level, suggest the likely spin-parity assignment for this excited state and discuss whether
this is consistent with the observed gamma transition (and lack of any others).

Draw a possible decay scheme for 17
9 F showing the energy levels of the first three excited states,

the spin-parity assignments and the gamma-ray transitions given above. Explain your reasoning
clearly. What might be the likely nature of the 3.1 MeV gamma transition?

14



42. Chapter 16: Induced Fission
Using the SEMF, estimate the excitation energies of the 236

92 U∗ and 239
92 U∗ nuclear states formed

when 235
92 U and 238

92 U nuclei, respectively, capture a neutron of negligible kinetic energy. Iden-
tify the term in the SEMF which is primarily responsible for the difference in the predicted
excitation energies and the ground state for both these cases.

The observed excitation energies following low energy (thermal) neutron capture by 235
92 U and

238
92 U are approximately 6.5 MeV and 4.8 MeV, respectively. The fission activation energies for
235
92 U and 238

92 U are approximately 6.2 MeV and 6.6 MeV, respectively. Explain why thermal
neutrons can induce rapid fission of 235

92 U but not of 238
92 U. Discuss the implications of the energy

dependence of the cross sections for neutron induced fission for the design of nuclear reactors
which use uranium as a fuel.

43. Chapter 16: Moderating Neutrons for Fission
Compute the maximum fractional energy loss which a non-relativistic neutron can undergo in
a single elastic collision with

i. a 12
6 C nucleus

ii. a 10
5 B nucleus.

For each case, calculate the minimum number of collisions which would be required in order to
bring a 2.5 MeV fission neutron down to a thermal energy of 0.025 eV. What are the advantages
and disadvantages of using each material as a moderator in nuclear reactions?

44. Chapter 16: Fusion
Estimate the size of the Coulomb barrier between two 13

6 C nuclei which needs to be overcome
before they can undergo fusion, and thus estimate the temperature needed to bring about
fusion in this case.

Numerical answers

1) ; 2) b) 938MeV, c) 2.2µs, d) 1.3 × 10−9 GeV−2 ; 3) Eπ = 397 MeV, Eγ = 373 MeV, from π
Eγ = 67.5 MeV, in lab 11.8 − 385 MeV; 4) 4.5min, 1.2 × 1011 Bq ; 5) a) 99308 s−1, b) 513 s−1,
c) 179 s−1, d) 2 × 10−4 s−1 ; 6) 2.8 × 10−13 eV−2, 0; 7) 0.23mm; 8) a) 0.5% & 0.7%, 100% &
0.05%; 9) i) 10GeV, ii) 100GeV, 6.25 km; 10) 2MeV, 1MeV; 11) ; 12) ; 13) 8:5:17:∼0; 14)
10
3
, i) 11

3
& 3, ii) 4.9 & 2; 15) a) 4, b) gq 2, qγ 8; 16) ; 17) ; 18) a) K+ 485MeV, η 559MeV,

ω 780MeV, η′ 349MeV, b) ∆ 1230MeV, Ξ 1329MeV; 19) −1; 20) 2.38± 0.14µN ; 21) a) 1−, b)
10580MeV& 25MeV, c) 27%; 22) 0.8 keV, 693 keV; 23) ∼3; 24) b) βe = 1, βµ = 0.27; 25) ; 26)
a) 69.1%, 20.5%, 3.5%, b) mZ 91.2GeV, ΓZ 2.6GeV, Γττ 7MeV, BR 2.9%; 27) 3 × 10−20 s; 28)
b) 1:2.2:19.4, c) 20 pb ; 29) b) 0GeV, 0.11GeV, 3.5GeV; 30) ; 31) b) 0.72MeV, c) 50, 80, 114,
d) aG 5.8× 10−37 MeV, ∼5% solar mass; 32) b) 33.3MeV, 250MeV, d) aA 11MeV; 33) 1.7MeV,
4.1 fm; 34) ; 35) ; 36) 2.3 × 10−24 kg fm2, 5.19 × 10−24 kg fm2; 37) a) 8267 yrs, b) 3215 yrs, c)

∼60,000 yrs; 38) 2.27× 1012Bq; 39) ; 40) ; 41) 1st exc. 1
2

+
; 42) 6.7MeV& 5.2MeV; 43) i)

28% & 55, ii) 33% & 46; 44) 1.1× 1011K.
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Suggested Tripos Questions

Relativistic Kinematics: 2016 1(c), 2014 3, 2004 (3) C12(b) (not last part)

Breit-Wigner resonances, production and decay rates: 2020 A3, 2018 A1(a), 2005 (3) A3

Feynman Diagrams: 2016 3(a), 2009 (3) A1(b), 2008 (3) A4

QCD: 2018 B3 last part, 2014 3 last part, 2013 1(b)

Hadron physics and quark model: 2018 B3, 2016 1(b), 2010 A4

Weak interaction: 2020 2, 2018 B4, 2011 3

Electroweak unification: 2018 A1(b), 2015 3, 2013 1(a)

Neutrino Oscillation: 2009 (3) A4

Semi-Empirical Mass Formula: 2018 B2, 2010 A1(a)

Nuclear Forces & Scattering: 2016 4, 2012 1(a)

Shell Model: 2020 5(a)(b), 2017 1(b), 2016 1(a)

Nuclear excitations: 2017 3 (last part), 2015 1(a)

Nuclear decay: 2004 (3) A1

α-decay: 2017 3, 2010 A1(b), 2007 A3

β-decay: 2019 3, 2016 3(b)(c)(d), 2015 4

γ-decay: 2020 5(c), 2018 A1(b), 2014 4, 2010 A3 last part

Fission and Fusion: 2011 4

Supervisions

Supervisions might follow this pattern
Supo 1: Q1-10, Chapters 1-4, covered by week 2.5 LT
Supo 2: Q11-22, Chapters 5-8, covered by week 5.5 LT
Supo 3: Q23-30, Chapters 9-12, covered by week 8 LT
Supo 4: Q31-44, Chapters 13-16, covered by week 2 ET
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1. Introduction
Particle and Nuclear Physics

Prof. Tina Potter

Prof. Tina Potter 1. Introduction 1

In this section...

Course content

Practical information

Matter

Forces

Prof. Tina Potter 1. Introduction 2



Course content
These lectures will cover the core topics of Particle and Nuclear physics.

Particle Physics is the study of

Matter: Elementary particles

Forces: Basic forces in nature
Electroweak (EM & weak)
Strong

Current understanding is embodied
in the

Standard Model
which successfully describes all
current data∗.

Nuclear Physics is the study of

Matter: Complex nuclei
(protons & neutrons)

Forces: Strong “nuclear” force
(underlying strong force)
+ weak & EM decays

Complex many-body problem,
requires semi-empirical approach.

Many models of Nuclear Physics.

Historically, Nuclear Physics preceded and led to Particle Physics.
Our course will discuss Particle Physics first, and then Nuclear Physics.
∗ with some interesting exceptions!

Prof. Tina Potter 1. Introduction 3

Practical information
Website holds course information, notes, appendices and problem sheets

www.hep.phy.cam.ac.uk/~chpotter/particleandnuclearphysics/mainpage.html

Books

Introduction to High Energy Physics, Perkins

Introductory Nuclear Physics, Krane

Lecturing material provided as three handouts.
Lectures will cover additional examples – please attend!!

Problem sets in 4 parts
Part 1, q. 1-10: Chapters 1-4
Part 2, q.11-22: Chapters 5-8
Part 3, q.23-30: Chapters 9-12
Part 4, q.31-44: Chapters 13-16

My availability: before/after lectures, via email (cp594@cam.ac.uk), in-person chats are

always welcome

Prof. Tina Potter 1. Introduction 4



Zooming into matter

Atom Binding energy ∼ Rydberg ∼ 10 eV
Electrons bound to atoms by EM force

Size: Atom ∼ 10−10m, e− < 10−19m

Charge: Atom is neutral, electron −e

Mass: Atom mass ∼ nucleus, me = 0.511MeV /c2

Chemical properties depend of Atomic Number, Z

Nucleus Binding energy ∼ 10 MeV/nucleon
Nuclei held together by strong “nuclear” force

Size: Nucleus (medium Z ) ∼ 5 fm (1 fm= 10−15m)

Nucleon Binding energy ∼ 1 GeV
Protons & neutrons held together by the strong force

Size: p, n ∼ 1 fm

Charge: proton +e, neutron is neutral

Mass: p, n = 939.57 MeV/c2 ∼ 1836me

Prof. Tina Potter 1. Introduction 5

Matter

In the Standard Model, all matter is made of spin 1
2 fundamental particles.

There are two types, each with 3 generations:

Consequence of relativity and quantum mechanics (Dirac equation)
Antiparticle for every existing particle: identical mass, spin, energy,
momentum, but has the opposite sign of interaction (e.g. electric charge).

Particles and antiparticles
electron e− & positron e+

up quark u (Q = +2
3) & antiup ū (Q = −2

3)
proton udu & antiproton ūd̄ ū

Prof. Tina Potter 1. Introduction 6



Matter The first generation

Almost all the matter in the universe is made up from just four of the fermions.

Particle Symbol Type Charge [e]

Electron e− lepton −1

Neutrino νe lepton 0

Up quark u quark +2
3

Down quark d quark −1
3

The proton and neutron are simply the lowest energy bound states of a system
of three quarks: essentially all an atomic or nuclear physicist needs.

Proton
(p)

Neutron
(n)

Prof. Tina Potter 1. Introduction 7

Matter Three generations

Nature is not so simple.
There are 3 generations/families of fundamental fermions (and only 3).

1st generation 2nd generation 3rd generation

Electron e− Muon µ− Tau τ−

Electron Neutrino νe Muon Neutrino νµ Tau Neutrino ντ

Up quark u Charm quark c Top quark t

Down quark d Strange quark s Bottom quark b

Each generation is a replica of (e−, νe, u, d).

The mass of the particles increases with each generation:

the first generation is lightest and the third generation is the heaviest.

The generations are distinct

i.e. µ is not an excited e, or µ− → e−γ would be allowed – this is not seen.

There is a symmetry between the generations,

but the origin of 3 generations is not understood!

Prof. Tina Potter 1. Introduction 8



Matter Leptons

Leptons are fermions which do not interact via the strong interaction.
Flavour Charge [e] Mass Strong Weak EM

1st generation
e− −1 0.511 MeV/c2 ✗ ✓ ✓

νe 0 < 2 eV/c2 ✗ ✓ ✗

2nd generation
µ− −1 105.7 MeV/c2 ✗ ✓ ✓

νµ 0 < 0.19 MeV/c2 ✗ ✓ ✗

3rd generation
τ− −1 1777.0 MeV/c2 ✗ ✓ ✓

ντ 0 < 18.2 MeV/c2 ✗ ✓ ✗

Spin 1
2 fermions

6 distinct flavours

3 charged leptons: e−, µ−, τ−.
3 neutral leptons: νe, νµ, ντ .

Antimatter particles e+, ν̄e etc

e is stable,

µ and τ are unstable.

Neutrinos are stable and almost massless. Only know limits on ν masses, but have

measured mass differences to be < 1 eV/c2. Not completely true, see later...

Charged leptons experience only the electromagnetic & weak forces.

Neutrinos experience only the weak force.

Prof. Tina Potter 1. Introduction 9

Matter Quarks

Quarks experience all the forces (strong, electromagnetic, weak).

Flavour Charge [e] Mass Strong Weak EM

1st generation

u +2
3 2.3 MeV/c2 ✓ ✓ ✓

d −1
3 4.8 MeV/c2 ✓ ✓ ✓

2nd generation

c +2
3 1.3 GeV/c2 ✓ ✓ ✓

s −1
3 95 MeV/c2 ✓ ✓ ✓

3rd generation

t +2
3 173 GeV/c2 ✓ ✓ ✓

b −1
3 4.7 GeV/c2 ✓ ✓ ✓

Spin 1
2 fermions

6 distinct flavours

Fractional charge:
(

u

d

)(
c

s

)(
t

b

) (
+2

3

−1
3

)

Antiquarks ū, d̄ etc

Quarks are confined within hadrons,

e.g. p=(uud), π+=(ud̄)

Quarks come in three colours (colour charge) Red, Green, Blue.

Colour is a label for the charge of the strong interaction.

Unlike the electric charge (+−), the strong charge has three orthogonal colours (RGB).

Prof. Tina Potter 1. Introduction 10



Matter Hadrons

Single, free quarks have never been observed. They are always confined in
bound states called hadrons.
Macroscopically, hadrons behave as almost point-like composite particles.

Hadrons have two types:

Mesons (qq̄): Bound states of a quark and an antiquark.
Mesons have integer spin 0, 1, 2... bosons.
e.g. π+ ≡ (ud̄), charge = (+2

3 + +1
3)e = +1e

π− ≡ (ūd), charge = (−2
3 + −1

3)e = −1e; antiparticle of π+

π0 ≡ (uū − dd̄)/
√
2, charge = 0; is its own antiparticle.

Baryons (qqq): Bound states of three quarks.
Baryons have half-integer spin 1

2,
3
2... fermions.

e.g. p ≡ (udu), charge = (+2
3 + −1

3 + +2
3)e = +1e

n ≡ (dud), charge = (−1
3 + +2

3 + −1
3)e = 0

Antibaryons e.g. p̄ ≡ (ūd̄ ū), n̄ ≡ (d̄ ūd̄)

Prof. Tina Potter 1. Introduction 11

Matter Nuclei

A nucleus is a bound state of Z protons and N neutrons.
Protons and neutrons are generically referred to as nucleons.
A (mass number) = Z (atomic number) + N (neutron number).
A nuclide is a specific nucleus, characterised by Z ,N .

Notation: Nuclide A
ZX.

e.g. 1
1H or p: Z=1, N=0, A=1
2
1H or d : Z=1, N=1, A=2
4
2He or α: Z=2, N=2, A=4
208
82 Pb: Z=82, N=126, A=208

In principle, antinuclei and antiatoms can be made from antiprotons,
antineutrons and positrons – experimentally challenging!

Prof. Tina Potter 1. Introduction 12



Matter The Periodic Table

Periodic table classifies elements according to their chemical properties.

Only hydrogen, helium and lithium were formed in the Big Bang.
All other elements are formed in stars.
Natural elements, H(Z=1) to U(Z=92).

Prof. Tina Potter 1. Introduction 13

Matter Chart of the nuclides

Many more
nuclides
than
elements.

Colour
coded
according
to decay
mode.
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Forces Classical Picture

A force is ’something’ which pushes matter around and causes objects to
change their motion.

In classical physics, the electromagnetic forces arise via action at a distance
through the electric and magnetic fields, E⃗ and B⃗ .

F⃗ =
q1q2r⃗

r 2

Newton: “...that one body should act upon another at a distance, through a vacuum,

without the mediation of anything else, by and through which their force may be conveyed

from one to another, is to me so great an absurdity that I believe no man who has, in

philosophical matters, a competent faculty of thinking, can ever fall into it. Gravity must be

caused by an agent, acting constantly according to certain laws, but whether this agent be

material or immaterial, I leave to the consideration of my reader.”

Prof. Tina Potter 1. Introduction 15

Forces Quantum Mechanics

Matter particles are quantised in QM, and the electromagnetic field should also
be quantised (as photons).
Forces arise through the exchange of virtual field quanta called Gauge
Bosons.

This process is called
“second quantisation”.

This process violates energy/momentum conservation (more later).
However, this is permissible for sufficiently short times owing to the
Uncertainty Principle

The exchanged particle is “virtual” – meaning it doesn’t satisfy
E 2 = p2c2 +m2c4.

Uncertainty principle: ∆E∆t ∼ ℏ ⇒ range R ∼ c∆t ∼ ℏc/∆E
i.e. larger energy transfer (larger force) ↔ smaller range.

Prob(emission of a quantum)∝ q1, Prob(absorption of a quanta)∝ q2
Coulomb’s law can be regarded as the resultant effect of all virtual exchanges.

Prof. Tina Potter 1. Introduction 16



Forces The four forces

All known particle interactions can be explained by four fundamental forces.

Carried by the gluon.
Holds atomic nuclei
together.

Carried by the photon.
Acts between charged
particles.

Carried by the W and
Z bosons. Responsible
for radioactive decay.

Carried by the graviton.
Acts between massive
particles.

Prof. Tina Potter 1. Introduction 17

Forces Gauge bosons

Gauge bosons mediate the fundamental forces

Spin 1 particles i.e. Vector Bosons

Interact in a similar way with all fermion generations

The exact way in which the Gauge Bosons interact with each type of
lepton or quark determines the nature of the fundamental forces.
This defines the Standard Model.

Force Boson Spin Strength Mass

Strong 8 gluons g 1 1 massless

Electromagnetic photon γ 1 10−2 massless

Weak W and Z W +,W−,Z 1 10−7 80, 91 GeV

Gravity graviton ? 2 10−39 massless

Gravity is not included in the Standard Model. The others are.

Prof. Tina Potter 1. Introduction 18



Forces Range of forces

The maximum range of a force is inversely related to the mass of the
exchanged bosons.

∆E∆t ∼ ℏ, E = mc2

⇒ mc2 ∼ ℏ
∆t

∼ ℏc
r

⇒ r ∼ ℏ
mc

Force Range [m]

Strong inf

Strong (nuclear) 10−15

Electromagnetic inf

Weak 10−18

Gravity inf

Due to quark confinement, nucleons start to experience the strong interaction
at ∼2 fm.

Prof. Tina Potter 1. Introduction 19

Summary

Particle vs nuclear physics

Matter: generations, quarks, leptons, hadrons, nuclei

Forces: classical vs QM, fundamental forces, gauge bosons, range

Problem Sheet: q.1

Up next...
Section 2: Kinematics, Decays and Reactions.
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Glossary
Strong force - force which binds quarks into hadrons; mediated by gluons.

Electromagnetic Force - force between charged particles, mediated by photons.

Weak force - force responsible for β-decay. Mediated by W and Z bosons.

Gauge boson - particle which mediates a force.

Lepton - fermion which does not feel the strong interaction.

Neutrino - uncharged lepton which experiences only weak interactions.

Quark - fundamental fermion which experiences all forces.

Hadron - bound state of quarks and/or antiquarks.

Baryon - hadron formed from three quarks.

Meson - hadron formed from quark+antiquark.

Generations/Families - three replicas of the fundamental fermions.
Nucleus - massive bound state of neutrons and protons at centre of an atom.

Strong nuclear force - strong force between nucleons which binds atomic nucleus. Mediated by mesons,
such as the pion.

Nucleon - proton or neutron.

Nuclide - specific nuclear species with N neutrons and Z protons.

Mass number - total number of nucleons in nucleus, A.

Atomic Number - number of protons in nucleus, Z .

Neutron Number - number of neutrons in nucleus, N .

Isobars - nuclides with the same Mass Number A.

Isotopes - nuclides with the same Atomic Number Z .

Isotones - nuclides with the same Neutron Number N .
Prof. Tina Potter 1. Introduction 21



2. Kinematics, Decays and Reactions
Particle and Nuclear Physics

Prof. Tina Potter

Prof. Tina Potter 2. Kinematics, Decays and Reactions 1

In this section...

Natural units

Symmetries and conservation laws

Relativistic kinematics

Particle properties

Decays

Cross-sections

Scattering

Resonances

Prof. Tina Potter 2. Kinematics, Decays and Reactions 2



Units

The usual practice in particle and nuclear physics is to use Natural Units.

Energies are measured in units of eV:

Nuclear keV(103 eV), MeV(106 eV)

Particle GeV(109 eV), TeV(1012 eV)

Masses are quoted in units of MeV/c2 or GeV/c2 (using E = mc2)
e.g. electron mass me = 9.11× 10−31 kg = (9.11× 10−31)(3× 108)2 J/c2

= 8.20× 10−14/1.602× 10−19 eV/c2 = 5.11× 105 eV/c2 = 0.511 MeV/c2

Atomic/nuclear masses are often quoted in unified (or atomic) mass units

1 unified mass unit (u) = (mass of a 12
6 C atom) / 12

1 u = 1 g/NA = 1.66× 10−27kg = 931.5 MeV/c2

Cross-sections are usually quoted in barns: 1b = 10−28m2.

Prof. Tina Potter 2. Kinematics, Decays and Reactions 3

Units Natural Units

Choose energy as the basic ...and simplify by
unit of measurement... choosing ℏ = c = 1

Energy GeV GeV
Momentum GeV/c GeV
Mass GeV/c2 GeV
Time ( GeV/ℏ)−1 GeV−1

Length ( GeV/ℏc)−1 GeV−1

Cross-section ( GeV/ℏc)−2 GeV−2

Reintroduce “missing” factors of ℏ and c to convert back to SI units.

ℏc = 0.197 GeV fm = 1 Energy ←→ Length
ℏ = 6.6× 10−25 GeV s = 1 Energy ←→ Time
c = 3.0× 108ms−1 = 1 Length ←→ Time

Prof. Tina Potter 2. Kinematics, Decays and Reactions 4



Units Examples

1 cross-section σ = 2 × 10−6 GeV−2 change into standard units
Need to change units of energy to length. Use ℏc = 0.197 GeVfm = 1.

GeV−1 = 0.197 fm

GeV−1 = 0.197× 10−15m

GeV−2 = 3.89× 10−32m2
σ = 2× 10−6 × (3.89× 10−32m2)
= 7.76× 10−38m2

And using 1 b = 10−28m2, σ = 0.776 nb

2 lifetime τ = 1/Γ = 0.5 GeV−1 change into standard units
Need to change units of energy−1 to time. Use ℏ = 6.6× 10−25 GeV s = 1.

GeV−1 = 6.6× 10−25 s
τ = 0.5× (6.6× 10−25 s) = 3.3× 10−25 s

Also, can have Natural Units involving electric charge: ϵ0 = µ0 = ℏ = c = 1

3 Fine structure constant (dimensionless)

α = e2

4πϵ0ℏc ∼
1
137 becomes α = e2

4π ∼ 1
137 i.e. e ∼ 0.30(n.u.)

Prof. Tina Potter 2. Kinematics, Decays and Reactions 5

Symmetries and conservation laws

The most elegant and powerful idea in physics
Noether’s theorem:
every differentiable symmetry of the action of a
physical system has a corresponding conservation law.

Symmetry Conserved current

Time, t Energy, E

Translational, x Linear momentum, p

Rotational, θ Angular momentum, L

Probability Total probability always 1

Lorentz invariance Charge Parity Time (CPT)

Gauge charge (e.g. electric, colour, weak)

Lorentz invariance: laws of physics stay the same for all frames moving with a uniform velocity.

Gauge invariance: observable quantities unchanged (charge, E , v) when a field is transformed.

Prof. Tina Potter 2. Kinematics, Decays and Reactions 6



Relativistic Kinematics Special Relativity

Nuclear reactions
Low energy, typically K.E. O(10 MeV)≪ nucleon rest energies.
⇒ non-relativistic formulae ok

Exception: always treat β-decay relativistically
(me ∼ 0.5 MeV < 1.3 MeV ∼ mn −mp)

Particle physics
High energy, typically K.E. O(100 GeV)≫ rest mass energies.
⇒ relativistic formulae usually essential.

Prof. Tina Potter 2. Kinematics, Decays and Reactions 7

Relativistic Kinematics Special Relativity

Recall the energy E and momentum p of a particle with mass m

E = γm, |p⃗| = γβm γ =
1√

1− β2
, β =

v

c
= v

or γ =
E

m
, β =

|p⃗|
E and these are related by E2 = p⃗2 + m2

Interesting cases

when a particle is at rest, p⃗ = 0, E = m,

when a particle is massless, m = 0, E = |p⃗|,
when a particle is ultra-relativistic E ≫ m, E ∼ |p⃗|.

Kinetic energy (K.E., or T ) is the extra energy due to motion
T = E −m = (γ − 1)m

in the non-relativistic limit β ≪ 1, T = 1
2mv

2
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Relativistic Kinematics Four-Vectors

The kinematics of a particle can be expressed as a four-vector, e.g.

pµ = (E ,−p⃗), pµ = (E , p⃗) and xµ = (t,−x⃗), xµ = (t, x⃗)

µ : 0→ 3
multiply by a metric tensor to raise/lower indices

pµ = gµvp
v , pµ = gµvpv gµv = gµv =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




Scalar product of two four-vectors Aµ = (A0, A⃗), Bµ = (B0, B⃗) is invariant:

AµBµ = A.B = A0B0 − A⃗.B⃗

or pµpµ = pµgµvp
v =

∑

µ=0,3

∑

v=0,3

pµgµvp
v = g00p

2
0 + g11p

2
1 + g22p

2
2 + g33p

2
3

= E 2 − |p⃗|2 = m2 invariant mass

(t, x⃗) and (E , p⃗) transform between frames of reference, but
d 2 = t2 − x⃗2 Invariant interval is constant
m2 = E 2 − p⃗2 Invariant mass is constant
Prof. Tina Potter 2. Kinematics, Decays and Reactions 9

Relativistic Kinematics Invariant Mass

A common technique to identify particles is to form the invariant mass from
their decay products.

Remember, for a single particle m2 = E 2 − p⃗2.

For a system of particles, where X → 1 + 2 + 3...n:

M2
X = ((E1, p⃗1) + (E2, p⃗2) + ...)2 =

(
n∑

i=1

Ei

)2

−
(

n∑

i=1

p⃗i

)2

In the specific (and common) case of a two-body
decay, X → 1 + 2, this reduces to

M2
X = m2

1 +m2
2 + 2 (E1E2 − |p⃗1||p⃗2| cos θ)

n.b. sometimes invariant mass M is called “centre-of-mass

energy” ECM , or
√
s

Prof. Tina Potter 2. Kinematics, Decays and Reactions 10



Relativistic Kinematics Decay Example

Consider a charged pion decaying at rest in the lab frame π−→ µ−ν̄µ
Find the momenta of the decay products

Prof. Tina Potter 2. Kinematics, Decays and Reactions 11

How do we study particles and forces?
Static Properties
What particles/states exist?
Mass, spin and parity (JP), magnetic moments, bound states

Particle Decays
Most particles and nuclei are unstable.
Allowed/forbidden decays → Conservation Laws.

Particle Scattering
Direct production of new massive particles in matter-antimatter
annihilation.
Study of particle interaction cross-sections.
Use high-energies to study forces at short distances.

Force Typical Lifetime [s] Typical cross-section [mb]

Strong 10−23 10

Electromagnetic 10−20 10−2

Weak 10−8 10−13

Prof. Tina Potter 2. Kinematics, Decays and Reactions 12



Particle Decays Reminder

Most particles are transient states – only a few live forever (e−, p, ν, γ...).
Number of particles remaining at time t

N(t) = N(0)p(t) = N(0)e−λt

where N(0) is the number at time t = 0.

Rate of decays dN

dt
= −λN(0)e−λt = −λN(t)

Assuming the nuclei only decay. More complicated if they are also being created.

Activity A(t) =

∣∣∣∣
dN

dt

∣∣∣∣ = λN(t)

It’s rather common in nuclear physics to use the half-life (i.e. the time
over which 50% of the particles decay). In particle physics, we usually
quote the mean life. They are simply related:

N(τ1/2) =
N(0)

2
= N(0)e−λτ1/2 ⇒ τ1/2 =

ln 2

λ
= 0.693τ

Prof. Tina Potter 2. Kinematics, Decays and Reactions 13

Particle Decays Multiple Particle Decay

Decay Chains frequently occur in nuclear physics

N1 λ1−→ N2 λ2−→ N3 −→ ...

Parent Daughter Granddaughter

e.g. 235U → 231Th → 231Pa
τ1/2(

235U) = 7.1× 108 years
τ1/2(

231Th) = 26 hours

Activity (i.e. rate of decay) of the daughter is λ2N2(t).
Rate of change of population of the daughter

dN2(t)

dt
= λ1N1(t) − λ2N2(t)

Units of Radioactivity are defined as the number of decays per unit time.
Becquerel (Bq) = 1 decay per second
Curie (Ci) = 3.7× 1010 decays per second.
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Particle Decays

A decay is the transition from one quantum state (initial state) to another
(final or daughter).

The transition rate is given by Fermi’s Golden Rule:

Γ(i → f ) = λ = 2π |Mfi |2 ρ(Ef ) ℏ = 1

where λ is the number of transitions per unit time
Mfi is the transition matrix element
ρ(Ef ) is the density of final states.

⇒ λ dt is the (constant) probability a particle will decay in time dt.

Prof. Tina Potter 2. Kinematics, Decays and Reactions 15

Particle Decays Single Particle Decay

Let p(t) be the probability that a particle still exists at time t, given that it
was known to exist at t = 0.

Probability for particle decay in the next time interval dt is = p(t)λ dt
Probability that particle survives the next is = p(t + dt) = p(t)(1− λ dt)

p(t)(1− λ dt) = p(t + dt) = p(t) +
dp

dt
dt

dp

dt
= −p(t)λ

∫ p

1

dp

p
= −

∫ t

0

λ dt

⇒ p(t) = e−λt Exponential Decay Law

Probability that a particle lives until time t and then decays in time dt is

p(t)λ dt = λe−λt dt
Prof. Tina Potter 2. Kinematics, Decays and Reactions 16



Particle Decays Single Particle Decay

The average lifetime of the particle

τ = ⟨t⟩ =
∫ ∞

0

tλe−λt dt =
[
−te−λt

]∞
0
+

∫ ∞

0

e−λt dt =

[
−1
λ
e−λt

]∞

0

=
1

λ

τ =
1

λ
p(t) = e−t/τ

Finite lifetime ⇒ uncertain energy ∆E , (c.f. Resonances, Breit-Wigner)

Decaying states do not correspond to a single energy – they have a width
∆E

∆E .τ ∼ ℏ ⇒ ∆E ∼ ℏ
τ
= ℏλ ℏ = 1 (n.u.)

The width, ∆E , of a particle state is therefore

Inversely proportional to the lifetime τ
Proportional to the decay rate λ (or equal in natural units)
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Decay of Resonances

QM description of decaying states
Consider a state formed at t = 0 with energy E0 and mean lifetime τ

ψ(t) = ψ(0)e−iE0te−t/2τ |ψ(t)|2 = |ψ(0)|2 e−t/τ

i.e. the probability density decays exponentially (as required).

The frequencies (i.e. energies, since E = ω if ℏ = 1) present in the
wavefunction are given by the Fourier transform of ψ(t), i.e.

f (ω) = f (E ) =

∫ ∞

0

ψ(t)eiEt dt =

∫ ∞

0

ψ(0)e−t(iE0+
1
2τ )eiEt dt

=

∫ ∞

0

ψ(0)e−t(i(E0−E )+
1
2τ ) dt =

iψ(0)

(E0 − E )− i
2τ

Probability of finding state with
energy E = f (E ) ∗ f (E ) is P(E ) = |f (E )|2 = |ψ(0)|2

(E0 − E )2 + 1
4τ 2
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Decay of Resonances Breit-Wigner

Probability for producing the decaying state has
this energy dependence, i.e. resonant when E = E0

P(E ) ∝ 1

(E0 − E )2 + 1/4τ 2

Consider full-width at half-maximum Γ

P(E = E0) ∝ 4τ 2

P(E = E0 ±
1

2
Γ) ∝ 1

(E0 − E0 ∓ 1
2Γ)

2 + 1/4τ 2
=

1
Γ2

4 + 1
4τ 2

P(E = E0 ±
1

2
Γ) =

1

2
P(E = E0), ⇒ 1

Γ2

4 + 1
4τ 2

= 2τ 2

Total width (using natural units) Γ =
1

τ
= λ
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Partial Decay Widths

Particles can often decay with more than one decay mode
e.g. Z → e+e−, or µ+µ−, or qq̄ etc, each with its own transition rate,

i.e. from initial state i to final state f : λf = 2π |Mfi |2 ρ(Ef )

The total decay rate is given by λ =
∑

f λf

This determines the average lifetime τ = 1
λ

The total width of a particle state Γ = λ =
∑

f λf

is defined by the partial widths Γf = λf

The proportion of decays to a particular
decay mode is called the branching fraction
or branching ratio

Bf =
Γf
Γ ,

∑
f Bf = 1
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Reactions and Cross-sections

The strength of a particular reaction between two particles is specified by the
interaction cross-section.

Cross-section σ – the effective target area presented to the incoming particle
for it to cause the reaction.

Units: σ 1 barn (b) = 10−28m2 Area

σ is defined as the reaction rate per target particle Γ, per unit incident flux Φ

Γ = Φσ

where the flux Φ is the number of beam particles passing through unit area per
second.

Γ is given by Fermi’s Golden Rule (previously used λ).
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Scattering with a beam
Consider a beam of particles incident upon a target:

Beam of N particles per
unit time in an area A

Target of n nuclei per
unit volume

Target thickness dx is
small

Number of target particles in area A, NT = nA dx
Effective area for absorption = σNT = σnA dx
Incident flux Φ = N/A
Number of particles scattered per unit time

= −dN = ΦσNT = N
AσnA dx

σ =
−dN
nN dx
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Attenuation of a beam

Beam attenuation in a target of thickness L:

Thick target σnL≫ 1: ∫ N

N0

−dN
N

=

∫ L

0

σn dx

N = N0e
−σnL This is exact.

i.e. the beam attenuates exponentially.

Thin target σnL << 1, e−σnL ∼ 1− σnL
N = N0(1− σnL)

Useful approximation for thin targets.

Or, the number scattered = N0 − N = N0σnL

Mean free path between interactions = 1/nσ
often referred to as “interaction length”.
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Differential Cross-section
The angular distribution of the scattered
particles is not necessarily uniform
** n.b. dΩ can be considered in position space, or

momentum space **

Number of particles scattered per unit time into dΩ is dN dΩ = dσΦNT

Differential cross-section
units: area/steradian

dσ

dΩ
=

dN dΩ

(Φ× NT × dΩ)

The differential cross-section is the number of particles scattered per unit time and solid angle,

divided by the incident flux and by the number of target nuclei, NT , defined by the beam area.

Most experiments do not cover 4π solid angle, and in general we measure
dσ/ dΩ.

Angular distributions provide more information than the total cross-section
about the mechanism of the interaction, e.g. angular momentum.
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Partial Cross-section

Different types of interaction can occur between particles
e.g. e+e−→ γ, or e+e−→ Z ...

σtot =
∑

i

σi

where the σi are called partial cross-sections for different final states.

Types of interaction

Elastic scattering: a + b → a + b
only the momenta of a and b change

Inelastic scattering: a + b → c + d
final state is not the same as initial state
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Scattering in QM

Consider a beam of particles scattering from a fixed potential V (r):

q⃗ = p⃗f − p⃗i
“momentum transfer”

NOTE: using natural units p⃗ = ℏk⃗ → p⃗ = k⃗ etc

The scattering rate is characterised by the interaction cross-section

σ =
Γ

Φ
=

Number of particles scattered per unit time

Incident flux

How can we calculate the cross-section?

Use Fermi’s Golden Rule to get the transition rate

Γ = 2π|Mfi |2ρ(Ef )
where Mfi is the matrix element and ρ(Ef ) is the density of final states.
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Scattering in QM
1st order Perturbation Theory using plane wave solutions of form

ψ = Ne−i(Et−p⃗.r⃗)

Require:
1 Wave-function normalisation
2 Matrix element in perturbation theory Mfi

3 Expression for incident flux Φ
4 Expression for density of states ρ(Ef )

1 Normalisation
Normalise wave-functions to one particle in a box of side L:

|ψ|2 = N2 = 1/L3

N = (1/L)3/2
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Scattering in QM
2 Matrix Element

This contains the interesting physics of the interaction:

Mfi = ⟨ψf |Ĥ |ψi⟩ =
∫
ψ∗f Ĥψi d

3r⃗ =

∫
Ne−i p⃗f .r⃗V (r⃗)Nei p⃗i .r⃗ d3r⃗

Mfi =
1

L3

∫
e−i q⃗.r⃗V (r⃗) d3r⃗ where q⃗ = p⃗f − p⃗i

3 Incident Flux
Consider a “target” of area A and a beam of particles travelling at velocity
vi towards the target. Any incident particle within a volume viA will cross
the target area every second.

Φ =
viA

A
n = vin

where n is the number density of incident particles = 1 per L3

Flux = number of incident particles crossing unit area per second

Φ = vi/L
3
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Scattering in QM

4 Density of States also known as “phase space”
For a box of side L, states are given by the periodic boundary conditions:

p⃗ = (px , py , pz) =
2π

L
(nx , ny , nz)

Each state occupies a volume (2π/L)3 in p space (neglecting spin).

Number of states between p and p + dp in solid angle dΩ

dN =

(
L

2π

)3

d3p⃗ =

(
L

2π

)3

p2 dp dΩ ( d3p⃗ = p2 dp dΩ)

∴ ρ(p) =
dN

dp
=

(
L

2π

)3

p2 dΩ

Density of states in energy E 2 = p2 +m2 ⇒ 2E dE = 2p dp ⇒ dE
dp = p

E

ρ(E ) =
dN

dE
=

dN

dp

dp

dE
=

(
L

2π

)3

p2
E

p
dΩ

For relativistic scattering (E ∼ p) ρ(E ) =

(
L

2π

)3

E 2 dΩ
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Scattering in QM

Putting all the parts together:

dσ =
1

Φ
2π |Mfi |2 ρ(Ef ) =

L3

vi
2π

∣∣∣∣
1

L3

∫
e−i q⃗.r⃗V (r⃗) d3r⃗

∣∣∣∣
2( L

2π

)3

pf Ef dΩ

dσ

dΩ
=

1

(2π)2vi

∣∣∣∣
∫

e−i q⃗.r⃗V (r⃗) d3r⃗

∣∣∣∣
2

pf Ef

For relativistic scattering, vi = c = 1 and p ∼ E
Born approximation for the differential cross-section

dσ

dΩ
=

E 2

(2π)2

∣∣∣∣
∫

e−i q⃗.r⃗V (r⃗) d3r⃗

∣∣∣∣
2

n.b. may have seen the non-relativistic version, using m2 instead of E 2
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Rutherford Scattering
Consider relativistic elastic scattering in a Coulomb potential

V (r⃗) = − Ze2

4πϵ0r
= −Zα

r

Special case of Yukawa potential V = ge−mr/r
with g = Zα and m = 0 (see Appendix C)

|Mif |2 =
16π2Z 2α2

q4

q⃗ = p⃗f − p⃗i

|q⃗|2 = |p⃗i |2 + |p⃗f |2 − 2p⃗i .p⃗f
elastic scattering, |p⃗i | = |p⃗f | = |p⃗|

= 2|p⃗|2(1− cos θ) = 4E 2 sin2
θ

2

dσ

dΩ
=

4E 2Z 2α2

q4
=

4E 2Z 2α2

16E 4 sin4 θ2
=

Z 2α2

4E 2 sin4 θ2
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Cross-section for Resonant Scattering

Some particle interactions take
place via an intermediate
resonant state which then
decays

a + b → Z∗ → c + d

Two-stage picture: (Bohr Model)

Formation a + b → Z∗

Occurs when the collision energy
ECM ∼ the natural frequency (i.e.
mass) of a resonant state.

Decay Z∗ → c + d

The decay of the resonance Z ∗ is
independent of the mode of
formation and depends only on the
properties of the Z ∗.
May be multiple decay modes.
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Resonance Cross-Section
The resonance cross-section is given by

σ =
Γ

Φ
with Γ = 2π |Mfi |2 ρ(Ef )

dσ =
1

Φ
2π |Mfi |2 ρ(Ef ) ∗∗

=
L3

vi
2π |Mfi |2

p2f L
3

vf (2π)3
dΩ

dσ

dΩ
=

p2f
(2π)2vivf

|Mfi |2 factors of L cancel

as before, M ∝ 1/L3

** same as Born Approx.

incident flux Φ =
vi
L3

density of states ρ(p) =
dN

dp
=

(
L

2π

)3

p2 dΩ

Only need to account for ρ(E ) of one particle.
Energy conservation fixes the other.

→ ρ(E ) =
dN

dp

dp

dE
=

(
L

2π

)3

p2
E

p
dΩ

=

(
L

2π

)3

p2
1

v
dΩ

using β = v/c = p/E

The matrix element Mfi is given by 2nd order Perturbation Theory

Mfi =
∑

Z

MiZMZf

E − EZ
n.b. 2nd order effects are large since

E − EZ is small → large perturbation

where the sum runs over all intermediate states.
Near resonance, effectively only one state Z contributes.
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Resonance Cross-Section
Consider one intermediate state described by

ψ(t) = ψ(0)e−iE0te−t/2τ = ψ(0)e−i(E0−i
Γ
2)t

this describes a states with energy = E0 − iΓ/2

|Mfi |2 =
|MiZ |2 |MZf |2

(E − E0)
2 + Γ2

4

Rate of decay of Z :

ΓZ→f = 2π |MZf |2 ρ(Ef ) = 2π |MZf |2
4πp2f

(2π)3 vf
= |MZf |2

p2f
πvf

Rate of formation of Z :

Γi→Z = 2π |MiZ |2 ρ(Ei) = 2π |MiZ |2
4πp2i

(2π)3 vi
= |MiZ |2

p2i
πvi

nb. |MZi |2 = |MiZ |2.
Hence MiZ and MZf can be expressed in terms of partial widths.
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Resonance Cross-Section

Putting everything together:
dσ

dΩ
=

p2f
(2π)2 vivf

|Mfi |2

⇒ σ =
4πp2f

(2π)2 vivf

πvf
p2f

πvi
p2i

ΓZ→iΓZ→f

(E − E0)
2 + Γ2

4

=
π

p2i

ΓZ→iΓZ→f

(E − E0)
2 + Γ2

4

We need to include one more piece of information to account for spin...
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Resonance Cross-Section

Breit-Wigner Cross-Section σ =
πg

p2i
.

ΓZ→iΓZ→f

(E − E0)
2 + Γ2

4

The g factor takes into account the spin

a + b→ Z∗ → c + d, g =
2JZ + 1

(2Ja + 1)(2Jb + 1)

and is the ratio of the number of spin states for the resonant state to the total number of spin

states for the a+b system,

i.e. the probability that a+b collide in the correct spin state to form Z∗.

Useful points to remember:

pi is calculated in the centre-of-mass frame (σ is independent of frame of reference!)

pi ∼ lab momentum if the target is heavy (often true in nuclear physics, but not in

particle physics).

E is the total energy (if two particles colliding, E = E1 + E2)

Γ is the total decay rate

ΓZ→i and ΓZ→f are the partial decay rates
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Resonance Cross-Section Notes

Total cross-section σtot =
∑

f

σ(i → f ) σ =
πg

p2i

ΓZ→iΓZ→f

(E − E0)
2 + Γ2

4

Replace Γf by Γ in the Breit-Wigner formula

Elastic cross-section σel = σ(i → i)

so, Γf = Γi

On peak of resonance (E = E0) σpeak =
4πgΓiΓf
p2i Γ

2

Thus σel =
4πgB2

i

p2i
, σtot =

4πgBi

p2i
, Bi =

Γi
Γ
=
σel
σtot

By measuring σtot and σel, can cancel Bi and infer g and hence the spin of the
resonant state.
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Resonances Nuclear Physics Example

Can produce the same resonance from
different initial states, decaying into
various final states, e.g.

σ[60Ni(α, n)63Zn] ∼ σ[63Cu(p, n)63Zn]

n.b. common notation for nuclear
reactions:
a+A → b+B ≡ A(a,b)B

Energy of p selected to give same
c.m. energy as for α interaction.
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Resonances Particle Physics Example

The Z boson

ΓZ ∼ 2.5 GeV

τ =
1

ΓZ
= 0.4 GeV−1

= 0.4× ℏ

= 2.5× 10−25 s

(ℏ = 6.6×10−25 GeV s)
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Resonances π−p scattering example

Resonance observed at pπ ∼ 0.3 GeV, ECM ∼ 1.25 GeV

σtotal = σ(π−p → R → anything) ∼ 72mb

σelastic = σ(π−p → R → π−p) ∼ 28mb
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Resonances π−p scattering example
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Summary

Units: MeV, GeV, barns

Natural units: ℏ = c = 1

Relativistic kinematics: most particle physics calculations require this!

Revision of scattering theory: cross-section, Born Approximation.

Resonant scattering

Breit-Wigner formula (important in both nuclear and particle physics):

σ =
πg

p2i

ΓZ→iΓZ→f

(E − E0)
2 + Γ2

4

Measure total and elastic σ to measure spin of resonance.

Problem Sheet: q.2-6

Up next...
Section 3: Colliders and Detectors

Prof. Tina Potter 2. Kinematics, Decays and Reactions 42



APPENDIX A: PHYSICAL CONSTANTS

Summary of the physical constants and conversion factors used in this course:

Electron charge, e = 1.602× 10−19 C
h̄c = 0.197 GeV fm
h̄ = 6.58× 10−25 GeV s
Fine structure constant, α = 1/137.04
Bohr magneton, µB = 9.3× 10−24 JT−1

Nuclear magneton, µN = 5.1× 10−27 JT−1

1 eV = 1.602× 10−19 J, 1 MeV = 106 eV, 1 GeV = 109 eV
1 fermi(fm) = 10−15 m
1 barn(b) = 10−28 m2

1 Curie(Ci) = 3.7× 1010 decays s−1

Atomic masses are often given in unified (or atomic) mass units:
1 unified mass unit(u) = Mass of an atom of 12

6 C/12
1u = 1g/NA = 1.66× 10−27 kg = 931.5 MeV/c2



APPENDIX B: PARTICLE PROPERTIES

From the Review of Particle Physics, C. Amsler et al., Phys. Lett. B667 1 (2008)
http://pdg.lbl.gov/

Quarks (spin 1/2)

Name Flavour Mass Charge (e)
(GeV/c2)

up u ≈ 0.35 +2/3
down d md ≈ mu −1/3
charm c 1.5 +2/3
strange s 0.5 −1/3

top t 171.2(2.1) +2/3
bottom b 4.5 −1/3

Leptons (spin 1/2)

Lepton Charge Mass Mean life (s) Lepton Branching
(MeV/c2) Decay Mode Fraction (%)

νe 0 < 2 eV/c2 stable
νµ 0 < 0.19 stable
ντ 0 < 18.2 stable
e ±1 0.511a stable
µ ±1 105.658b 2.197× 10−6

c
e−ν̄eνµ ≈ 100

τ ±1 1776.8(2) 291(1)× 10−15 µ−ν̄µντ 17.36(5)
e−ν̄eντ 17.85(5)
hadrons +ντ ≈ 65

a The error on the e mass is 1.3× 10−8 MeV/c2.
b The error on the µ mass is 4× 10−6 MeV/c2.
c The error on the µ lifetime is 2× 10−11 s.

N.B. Numbers given in brackets correspond to the error in the last digit(s).
For example, mτ = 1776.8(2)MeV/c2 ≡ (1776.8± 0.2)MeV/c2.



Gauge Bosons (JP = 1−)

Force Gauge Charge (e) Mass Full Width Decay Mode Branching
Boson (GeV/c2) (GeV) Fraction (%)

E-M γ < 5× 10−30 < 10−18 eV/c2 stable

Weak W± ±1 80.40(3) 2.14(4) eνe 10.7(2)
(Charged) µνµ 10.6(2)

τντ 11.2(2)
hadrons 67.6(3)

Weak Z0 0 91.188(2) 2.495(2) ee 3.363(4)
(Neutral) µµ 3.366(7)

ττ 3.370(8)
νν 20.00(6)

hadrons 69.91(6)

Strong g 0 0 stable



Pseudoscalar Mesons (JP = 0−)

Particle Quark Mass Mean Life (s) or Decay Mode Branching
Content (MeV/c2) Width (keV) Fraction (%)

π± ud̄, dū 139.5702(4) 2.6033(5)× 10−8 s µ−ν̄µ ≈ 100

π0 (uū− dd̄)/
√

2 134.9766(6) 8.4(6)× 10−17 s γγ 98.80(3)
η see note a 547.85(2) 1.30(7) keV γγ 39.3(2)

π0π0π0 32.6(2)
π+π−π0 22.7(3)
π+π−γ 4.6(2)

η′ see note a 957.7(2) 0.20(2) MeV π+π−η 45(2)
ρ0γ 29(1)
π0π0η 21(1)

K± us̄, sū 493.677(16) 1.238(2)× 10−8 s µ−ν̄µ 63.5(1)
π−π0 20.7(1)
π+π−π− 5.59(4)
π0µ−ν̄µ 3.35(4)
π0e−ν̄e 5.08(5)

K0,K0 ds̄, sd̄ 497.61(2) K0
S: 0.8953(5)× 10−10 s π+π− 69.2(1)

π0π0 30.7(1)
K0

L: 5.12(2)× 10−8 s π0π0π0 19.5(1)
π+π−π0 12.5(1)
π±µ∓νµ 27.0(1)
π±e∓νe 40.5(1)

D± cd̄, dc̄ 1869.3(4) 1.040(7)× 10−12 s e− + anyb 16.0(4)
K− + any 26(1)
K+ + any 5.9(8)
K0 + any
plus

K0 + any 61(5)

D0,D0 uc̄, cū 1864.8(2) 0.410(2)× 10−12 s K− + anyc 55(3)
K+ + any 3.4(4)
e+ + any 6.5(2)
µ+ + any 6.7(6)

K0 + any
plus
K0 + any 47(4)

D±s cs̄, sc̄ 1968.5(3) 0.500(7)× 10−12 s seen
B± ub̄, bū 5279.1(3) 1.64(1)× 10−12 s many

B0,B0 db̄, bd̄ 5279.5(3) 1.53(1)× 10−12 s many

B0
s ,B

0
s sb̄, bs̄ 5366.3(6) 1.47(3)× 10−12 s many

B±c cb̄, bc̄ 6276(4) 0.46(18)× 10−12 s many
ηc cc̄ 2980(1) 27(3) MeV hadrons

a η and η′ are linear combinations of the quark state (uū + dd̄)/
√

2 and ss̄ (see lectures).
b D− decay modes; c D0 decay modes.



Vector Mesons (JP = 1−)

Particle Quark Mass Full Width (MeV) Decay Mode Branching
Content (MeV/c2) Fraction (%)

ρ± ud̄, dū 775.5(4) 149(1) ππ 100

ρ0 (uū− dd̄)/
√

2

ω (uū + dd̄)/
√

2 782.6(1) 8.49(8) π+π−π0 89.2(7)
π0γ 8.9(2)
π+π− 1.5(1)

φ ss̄ 1019.46(2) 4.26(4) K+K− 49.2(6)
K0

LK0
S 34.0(5)

K∗± us̄, sū 891.7(3) 50.8(9) Kπ ≈ 100

K∗0,K∗0 ds̄, sd̄ 896.0(3) 50.3(6) Kπ ≈ 100
D∗± cd̄, dc̄ 2010.3(2) 0.096(22) D0π−a 67.7(5)

D−π0 30.7(5)

D∗0, D∗0 uc̄, cū 2007.0(2) < 2.1 D0π0b 62(3)
D0γ 38(3)

D∗±s cs̄, sc̄ 2112.3(5) < 1.9 D±s γ 94(1)
D±s π

0 6(1)
B∗ ub̄, bū, db̄, bd̄, 5325.1(5) Bγ dominant

sb̄, bs̄
J/ψ cc̄ 3096.92(1) 93(2) keV hadrons 87.7(5)

e+e− 5.9(1)
µ+µ− 5.9(1)

Υ(1s) bb̄ 9460.3(3) 54(1) keV τ+τ− 2.6(1)
e+e− 2.4(1)
µ+µ− 2.48(5)

a D∗− decay modes; b D∗0 decay modes.



Baryons (JP = 1/2+)

Particle Quark Mass Mean Life (s) or Decay Mode Branching
Content (MeV/c2) Full Width (MeV) Fraction (%)

p uud 938.27203(8) > 2.1× 1029 years
n udd 939.56536(8) 885.7(8) s pe−ν̄e 100
Λ0 uds 1115.683(6) 2.63(2)× 10−10 s pπ− 63.9(5)

nπ0 35.8(5)
Σ+ uus 1189.37(7) 0.802(3)× 10−10 s pπ0 51.6(3)

nπ+ 48.3(3)
Σ0 uds 1192.64(2) 7.4(7)× 10−20 s Λ0γ 100
Σ− dds 1197.45(3) 1.48(1)× 10−10 s nπ− 99.848(5)
Ξ0 uss 1314.8(2) 2.90(9)× 10−10 s Λ0π0 99.52(1)
Ξ− dss 1321.7(1) 1.64(2)× 10−10 s Λ0π− 99.89(4)
Λ+

c udc 2286.5(1) 2.00(6)× 10−13 s many
Λb udb 5620(2) 1.38(5)× 10−12 s many

Baryons (JP = 3/2+)

∆ uuu, uud ≈ 1232 ≈ 118 MeV Nπ > 99
udd, ddd

Σ∗ uus, uds, dds ≈ 1385 ≈ 36 MeV Λ0π 87(2)
Σπ 12(2)

Ξ∗ uss, dss ≈ 1533 ≈ 9 MeV Ξπ 100
Ω− sss 1672.5(3) 0.82(1)× 10−10 s Λ0K− 67.8(7)

Ξ0π− 23.6(7)
Ξ−π0 8.6(4)



APPENDIX C: Scattering from a Yukawa potential

Consider relativistc elastic scattering from a Yukawa potential

V (~r) =
g e−mr

r

The matrix element is given by

|Mif |2 =
∣∣∣∣
∫

e−i~q.~r V (~r) d3~r

∣∣∣∣
2

In order to perform the integral, choose the z axis to lie along ~r. Then ~q.~r = −qr cos θ
and

∫
e−i~q.~r V (~r) d3~r =

∫ ∞

0

∫ 2π

0

∫ π

0

V (r) eiqr cos θ r2 sin θ dθ dφ dr

=

∫ ∞

0

∫ +1

−1
2πV (r) eiqr cos θ r2 d(cos θ) dr

=

∫ ∞

0

2πV (r)

(
eiqr− e−iqr

iqr

)
r2 dr

=

∫ ∞

0

2πg
e−mr

r

(
eiqr− e−iqr

iqr

)
r2 dr

=

∫ ∞

0

2πg e−mr
(
eiqr− e−iqr

iq

)
dr

=

∫ ∞

0

2πg

iq

(
e−r(m−iq)− e−r(m+iq)

)
dr

=
2πg

iq

(
1

m− iq
− 1

m+ iq

)
=

2πg

iq

2iq

m2 + q2

=
4πg

m2 + q2

The matrix element is then

|Mif |2 =
16π2g2

(m2 + q2)2

The Yukawa potential is a general potential, and can be extended to other potentials, e.g.
for the Coulomb potential

V (~r) = −Zα
r

using g = Zα and m = 0, the matrix element for Rutherford Scattering is

|Mif |2 =
16π2Z2α2

q4



Appendix D: Interaction via Particle Exchange

We need to evaluate the following integral in order to determine the energy shift when in
state i when a particle of mass m is exchanged between particle 1 and particle 2,

∆E1→2
i = − g2

2(2π)2

∫ ∞

0

p2

p2 +m2

eipr− e−ipr

ipr
dp

Start by rewriting

∆E1→2
i = −1

2

g2

2(2π)2

∫ ∞

−∞

p

p2 +m2

eipr− e−ipr

ir
dp

using the fact that the integrand is even in p. The integrand has poles at p = ±im (see
the figure). The integrals with the eipr and e−ipr terms are performed separately. This is
because one chooses an infinite semi-circular contour to do the integration over, in such
a way that on the circular piece the contribution from infinity vanishes. This happens if
the integrand contains a decaying exponential in |p|. For eipr, this happens for p = +i|p|
and so one closes the contour in the upper half plane (C1 in the figure). For e−ipr, we
want p = −i|p|, and so close the contour in the lower half plane (C2 in the figure).

The whole integral is thus:

− g2

2(2π)2

[∮

C1

p

p2 +m2

eipr

ir
dp−

∮

C2

p

p2 +m2

e−ipr

ir
dp

]
.

The residue of the pole at p = im in the first integrand is:

lim
p→im

(p− im)

(p− im)(p+ im)

p

ir
eipr =

1

2ir
e−mr

and the residue of the pole at p = −im in the second integrand is:

lim
p→−im

(p+ im)

(p− im)(p+ im)

−p e−ipr

ir
= − 1

2ir
e−mr .



Cauchy’s residue theorem tells us that the contour integral over an anti-clockwise contour
is 2πi multiplied by the sum of the residues of the poles enclosed by the contour. For
a clockwise contour, there is an additional minus sign. Noting that C1 is anti-clockwise,
and C2 is clockwise, one has:

∆E1→2
i = − g2

2(2π)2
2πi

[
e−mr

2ir
+

e−mr

2ir

]

= − g
2

8π

e−mr

r

as given in the notes.



APPENDIX E: LOCAL GAUGE INVARIANCE IN
QED

Consider a non-relativistic charged particle in an electromagnetic field:

F = q (E + v ×B)

where E and B can be written in terms of the vector and scalar potentials, A and φ:

B = ∇× A and E = −∇φ− ∂A

∂t
.

The classical Hamiltonian,

H =
1

2m

(
p− qA

)2
+ qφ,

can be used along with Schrödinger’s equation to obtain

Hψ =

[
1

2m
(−i∇− qA)2 + qφ

]
ψ(x, t) = i

∂ψ

∂t
(x, t). (1)

where we have substituted p→ −i∇. We now need to show that Schrödinger’s equation
is invariant under the local guage transformation

ψ → ψ′ = eiqα(x,t)ψ

A→ A′ = A+∇α

φ→ φ′ = φ− ∂α

∂t

Substituting for ψ′, A′ and φ′ in equation (1):

[
1

2m
(−i∇− q(A+∇α))2 + q(φ− ∂α

∂t
)

]
eiqαψ = i

∂

∂t
(eiqαψ)

[
1

2m
(−i∇− qA− q∇α)2 + qφ− q∂α

∂t

]
eiqαψ = i

(
eiqα

∂ψ

∂t
+ iqψ

∂α

∂t
eiqα

)
.

The last terms on either side of the above equation cancel.
Now consider the (−i∇− qA− q∇α)2 term. In order to show local gauge invariance, we
need to show that

(−i∇− qA− q∇α)2 eiqαψ = (−i∇− qA)2 eiqαψ

or, equivalently,
(−i∇− qA′)

2
ψ′ = (−i∇− qA)2 eiqαψ.

Now,

(−i∇− qA− q∇α)2 eiqαψ = (−i∇− qA− q∇α) · (−i∇− qA− q∇α) eiqαψ

and
∇
(
eiqαψ

)
= eiqα (∇+ iq∇α)ψ.



Therefore,

(−i∇− qA− q∇α) eiqαψ = eiqα (−i∇+ q∇α− qA− q∇α)ψ

= eiqα (−i∇− qA)ψ

and

(−i∇− qA− q∇α)2 ψ′ = (−i∇− qA− q∇α) eiqα (−i∇− qA)ψ

= eiqα (−i∇− qA)2 ψ.

Hence,
(−i∇− qA′)

2
ψ′ = eiqα (−i∇− qA)2 ψ

and Schrödinger’s equation is invariant under a local gauge transformation.



APPENDIX F: NEUTRINO SCATTERING IN
FERMI THEORY

Calculation of the cross-section for νe +n→ p+ e− using Fermi theory. The cross-section
is given by Fermi’s Golden Rule

Γ = 2π |Mfi|2 ρ (Ef )

where the matrix element, Mfi, is given by the 4-point interaction with a strength equal
to the Fermi constant, GF ;

|Mfi|2 ≈ G2
F .

There are a total of 4 possible spin states for the spin-1
2
e and ν. These correspond to

a singlet state S = 0 (Fermi transition) and three triplet states S = 1 (Gamow-Teller
transition). Therefore, the matrix element becomes

|Mfi|2 ≈ 4G2
F .

The differential cross-section is then given by,

dσ = 2π4G2
F

E2
e

(2π)3
dΩ

where Ee is the energy of the electron in the zero-momentum frame. It follows that

dσ

dΩ
=
G2

FE
2
e

π2
.

The total energy in the zero-momentum frame,
√
s = 2Ee. Hence, the total cross-section

can be written as

σ =

∫
dσ

dΩ
dΩ =

4G2
FE

2
e

π
=
G2

F s

π
.



APPENDIX G: NEUTRINO SCATTERING WITH
A MASSIVE W BOSON

From Appendix F, the differential cross-section in Fermi theory is

dσ

dΩ
=
G2

FE
2
e

π2
.

The correct theory involves exchange of a massive vector boson of mass MW , which leads
to a propagator in the matrix element

1

q2 −M2
W

.

Fermi theory is equivalent to neglecting the q2 term in the denominator. Hence, treating
W-boson exchange correctly, we have

dσ

dΩ
=
G2

FE
2
e

π2

(
M2

W

M2
W − q2

)2

.

Now, for elastic scattering, q2 = 0− |q|2, where

|q|2 =

(
2Ee sin

θ

2

)2

=
1

2
s(1− cos θ) ≡ u

and so

du =
1

2
s sin θ dθ =

s

4π
dΩ .

We can thus integrate the differential cross-section in terms of u:

σ =

∫
dΩ

G2
F s

4π2

(
M2

W

M2
W + u

)2

=
G2

FM
4
W

π

∫ s

0

du
1

(M2
W + u)2

=
G2

FM
4
W

π

[ −1

M2
W + u

]s

0

=
G2

FM
4
W

π

(
1

M2
W

− 1

M2
W + s

)

=
G2

FM
2
W s

π(M2
W + s)

At small values of s this reduces to the Fermi theory result, while for s � M2
W the

cross-section tends towards the constant value

σ =
G2

FM
2
W

π

and is no longer divergent.



APPENDIX H: GAMOW FACTOR IN ALPHA
DECAY

The probability for an α particle to tunnel through the Coulomb barrier can be written
as

P =
∏

i

exp{−2G}

where G is the Gamow Factor,

G =

∫ R′

R

[2m (V (r)− E0)]
1/2

h̄
dr.

R is the radius of the nucleus of mass number Z, R′ is the radius at which the α particle
escapes, m is the mass of the α particle, V (r) = 2 (Z − 2) e2/4πε0r ≡ B/r is the Coulomb
potential, and E0 is the energy release in the decay.
The α particle escapes the nucleus when r = R′. Hence, the potential V (R′) = E0 and
R′ = B/E0. Therefore,

G =

(
2m

h̄2

)1/2 ∫ R′

R

[
B

r
− E0

]1/2
dr

=

(
2mB

h̄2

)1/2 ∫ R′

R

[
1

r
− 1

R′

]1/2
dr

In order to perform the integration, let r = R′ cos2 θ and dr = −2R′ cos θ sin θ dθ. Then

∫ [
1

r
− 1

R′

]1/2
dr =

∫ [
1

R′ cos2 θ
− 1

R′

]1/2
(−2R′ cos θ sin θ) dθ

=

∫
−2R′1/2 sin2 θ dθ

= R′1/2 [sin 2θ − θ]

Now, using cos θ = (r/R′)1/2, sin θ = (1− r/R′)1/2 and sin 2θ = 2 sin θ cos θ, then

R′1/2 [sin 2θ − θ]R′

R = R′1/2
[
2 (1− r/R′)1/2 (r/R′)

1/2 − cos−1 (r/R′)
1/2
]R′

R

= R′1/2
[
cos−1 (R/R′)

1/2 − 2{(1−R/R′) (R/R′)}1/2
]

Hence, the Gamow factor

G =

(
2mB

h̄2

)1/2

R′1/2
[
cos−1 (R/R′)

1/2 − 2{(1−R/R′) (R/R′)}1/2
]

or

G =

(
2m

E0

)1/2
B

h̄

[
cos−1 (R/R′)

1/2 − 2{(1−R/R′) (R/R′)}1/2
]

For most practical cases, R� R′, so the term in square brackets is ≈ π/2 and G becomes

G ≈
(

2m

E0

)1/2
B

h̄

π

2


