15. Nuclear Decay
Particle and Nuclear Physics
In this section...

- Radioactive decays
- Radioactive dating
- α decay
- β decay
- γ decay
Radioactivity

Natural radioactivity: three main types α, β, γ, and in a few cases, spontaneous fission.

α decay
α decay α nuclei emitted.
$\frac{A}{Z}X \rightarrow \frac{A-4}{Z-2}Y + \frac{4}{2}\text{He}$
Occurs for $A \geq 210$

For decay to occur, energy must be released $Q > 0$

$Q = m_X - m_Y - m_{\text{He}} = B_Y + B_{\text{He}} - B_X$

β decay
emission of electron e^- or positron e^+

$n \rightarrow p + e^- + \bar{\nu}_e$
$\frac{A}{Z}X \rightarrow \frac{A}{Z+1}Y + e^- + \bar{\nu}_e$
β^- decay

$p \rightarrow n + e^+ + \nu_e$
$\frac{A}{Z}X \rightarrow \frac{A}{Z-1}Y + e^+ + \nu_e$
β^+ decay

$p + e^- \rightarrow n + \nu_e$
$\frac{A}{Z}X + e^- \rightarrow \frac{A}{Z-1}Y + \nu_e$
Electron capture

n.b. of these processes, only $n \rightarrow p e^- \nu$ can occur outside a nucleus.
Radioactivity

γ decay Nuclei in excited states can decay by emission of a photon γ. Often follows α or β decay.

\[
\begin{array}{c}
\text{Excited states} \\
\downarrow \\
\text{Photons emitted} \\
\downarrow \\
\text{Ground state}
\end{array}
\]

ΔE

<table>
<thead>
<tr>
<th>ΔE</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom ~ 10 eV</td>
<td>$\sim 10^{-7}$ m optical</td>
</tr>
<tr>
<td>~ 10 keV</td>
<td>$\sim 10^{-10}$ m X-ray</td>
</tr>
<tr>
<td>Nucleus \sim MeV</td>
<td>$\sim 10^{-12}$ m γ-ray</td>
</tr>
</tbody>
</table>

A variant of γ decay is Internal Conversion:

- an excited nucleus loses energy by emitting a virtual photon,
- the photon is absorbed by an atomic e^-, which is then ejected
- n.b. not β decay, as nucleus composition is unchanged (e^- not from nucleus)
The **half-life**, $\tau_{1/2}$, is the time over which 50% of the nuclei decay

$$\tau_{1/2} = \frac{\ln 2}{\lambda} = 0.693\tau$$

Some $\tau_{1/2}$ values may be long compared to the age of the Earth.

4n series

<table>
<thead>
<tr>
<th>Series Name</th>
<th>Type</th>
<th>Final Nucleus (A_X)</th>
<th>Longest-lived Nucleus</th>
<th>$\tau_{1/2}$ (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thorium</td>
<td>4n</td>
<td>208Pb</td>
<td>232Th</td>
<td>1.41×10^{10}</td>
</tr>
<tr>
<td>Neptunium</td>
<td>4n+1</td>
<td>209Bi</td>
<td>237Np</td>
<td>2.14×10^6</td>
</tr>
<tr>
<td>Uranium</td>
<td>4n+2</td>
<td>206Pb</td>
<td>238U</td>
<td>4.47×10^9</td>
</tr>
<tr>
<td>Actinium</td>
<td>4n+3</td>
<td>207Pb</td>
<td>235U</td>
<td>7.04×10^8</td>
</tr>
</tbody>
</table>

n is an integer
Radioactive Dating Geological Dating

Can use β^- decay to age the Earth,

$$^{87}\text{Rb} \rightarrow ^{87}\text{Sr} \quad (\tau_{1/2} = 4.8 \times 10^{10} \text{ years})$$

N_1 N_2

^{87}Sr is stable $\rightarrow \lambda_2 = 0$

So in this case, we have (using expressions from Chapter 2)

$$N_2(t) = N_1(0) \left[1 - e^{-\lambda_1 t}\right] + N_2(0) = N_1(t) \left[e^{\lambda_1 t} - 1\right] + N_2(0)$$

Assume we know λ_1, and can measure $N_1(t)$ and $N_2(t)$ e.g. chemically. But we don’t know $N_2(0)$.

Solution is to normalise to another (stable) isotope – ^{86}Sr – for which number is $N_0(t) = N_0(0)$.

$$\frac{N_2(t)}{N_0} = \frac{N_1(t)}{N_0} \left[e^{\lambda_1 t} - 1\right] + \frac{N_2(0)}{N_0}$$

Method: plot $N_2(t)/N_0$ vs $N_1(t)/N_0$ for lots of minerals. Gradient gives $[e^{\lambda_1 t} - 1]$ and hence t.

Intercept = $N_2(0)/N_0$, which should be the same for all minerals (determined by chemistry of formation).
Radioactive Dating

Dating the Earth

\[
\frac{N_2(t)}{N_0} = \frac{N_1(t)}{N_0} [e^{\lambda_1 t} - 1] + \frac{N_2(0)}{N_0}
\]

Method: plot \(\frac{N_2(t)}{N_0}\) vs \(\frac{N_1(t)}{N_0}\) for lots of minerals.
Gradient gives \([e^{\lambda_1 t} - 1]\) and hence \(t\).
Intercept = \(N_2(0)/N_0\), which should be the same for all minerals (determined by chemistry of formation).

Using minerals from the Earth, Moon and meteorites.

Intercept gives \(N_2(0)/N_0 = 0.70\)

Slope gives the age of the Earth = \(4.5 \times 10^9\) yrs
Radioactive Dating Radio-Carbon Dating

For recent organic matter, use 14C dating

Continuously formed in the upper atmosphere at approx. constant rate.
14N + n → 14C + p

Undergoes β^- decay
14C → 14N + e$^-$ + $\bar{\nu}$
$\tau_{1/2} = 5730$ yrs

Atmospheric carbon continuously exchanged with living organisms.
Equilibrium: 1 atom of 14C to every 10^{12} atoms of other carbon isotopes (98.9% 12C, 1.1% 13C)

No more 14C intake for dead organisms.
Fresh organic material
~15 decays/minute/gram of carbon.

Measure the specific activity of material to obtain age, i.e. number of decays per second per unit mass

Complications for the future!
Burning of fossil fuels increases 12C in atmosphere,
Nuclear bomb testing (adds 14C to atmosphere)
α Decay

α decay is due to the emission of a 4_2He nucleus.

4_2He is doubly magic and very tightly bound.

α decay is energetically favourable for almost all with $A \geq 190$ and for many $A \geq 150$.

Why α rather than any other nucleus?
Consider energy release (Q) in various possible decays of ^{232}U

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>p</th>
<th>^2H</th>
<th>^3H</th>
<th>^3He</th>
<th>^4He</th>
<th>^5He</th>
<th>^6Li</th>
<th>^7Li</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q/MeV</td>
<td>-7.26</td>
<td>-6.12</td>
<td>-10.70</td>
<td>-10.24</td>
<td>-9.92</td>
<td>+5.41</td>
<td>-2.59</td>
<td>-3.79</td>
<td>-1.94</td>
</tr>
</tbody>
</table>

α is easy to form inside a nucleus $2p \uparrow\downarrow + 2n \uparrow\downarrow$

(though the extent to which α particles really exist inside a nucleus is still debatable)
A very striking feature of α decay is the strong dependence of lifetime on E_0.

Example

^{232}Th \hspace{1cm} $E_0 = 4.08$ MeV \hspace{1cm} $\tau_{1/2} = 1.4 \times 10^{10}$ yrs

^{218}Th \hspace{1cm} $E_0 = 9.85$ MeV \hspace{1cm} $\tau_{1/2} = 1.0 \times 10^{-7}$ s

A factor of ~ 2.5 in E_0 \Rightarrow factor 10^{24} in $\tau_{1/2}$!

e.g. even N, even Z nuclei for a given Z see smooth trend ($\tau_{1/2}$ increases as Z does)
The nuclear potential for the \(\alpha \) particle due to the daughter nucleus includes a Coulomb barrier which inhibits the decay.

\[
V(r) = E_0 - V_0 - \frac{1}{r}
\]

Classically, \(\alpha \) particle cannot enter or escape from nucleus.

Quantum mechanically, \(\alpha \) particle can penetrate the Coulomb barrier

\[\Rightarrow \text{Quantum Mechanical Tunnelling} \]
α Decay
Simple Theory
(Gamow, Gurney, Condon 1928)

Assume α exists inside the nucleus and hits the barrier.

$$\alpha \text{ decay rate}, \quad \lambda = f \ P$$

$f = \text{escape trial frequency}, \ P = \text{probability of tunnelling through barrier}$

semi-classically,
$$f \sim \frac{v}{2R}$$

$v = \text{velocity of a particle inside nucleus}$, given by:
$$v^2 = \frac{2E_\alpha}{m_\alpha}$$

and $R = \text{radius of nucleus}$

Typical values: $V_0 \sim 35 \ \text{MeV}, \ E_0 \sim 5 \ \text{MeV} \Rightarrow E_\alpha = 40 \ \text{MeV}$ inside nucleus

$$f \sim \frac{v}{2R} = \frac{1}{2R} \sqrt{\frac{2E_\alpha}{m_\alpha}} \sim 10^{22} \ \text{s}^{-1} \quad m_\alpha = 3.7 \ \text{GeV}$$

$$R \sim 2.1 \ \text{fm}$$

Obtain tunnelling probability, P, by solving Schrödinger equation in three regions and using boundary conditions.
Transmission probability (1D square barrier):

\[P = \left[1 + \frac{V_0^2}{4(V_0 - E)E} \sinh^2 ka \right]^{-1} \]

\[\frac{\hbar^2 k^2}{2m} = V_0 - E \quad m = \text{reduced mass} \]

For \(ka \gg 1 \), \(P \) is dominated by the exp. decay within barrier \(\Rightarrow P \sim e^{-2ka} \).

Coulomb potential, \(V \propto 1/r \), and thus \(k \) varies with \(r \).
Divide into rectangular pieces and multiply together exponentials, i.e. sum exponents.

Probability to tunnel through Coulomb barrier

\[P = \prod_i e^{-2k_i \Delta R} = e^{-2G} \quad k = \frac{[2m\alpha(V(r) - E_0)]^{1/2}}{\hbar} \]

The **Gamow Factor**

\[G = \int_{R}^{R'} \frac{[2m\alpha(V(r) - E_0)]^{1/2}}{\hbar} \, dr = \int_{R}^{R'} k(r) \, dr \]
\(\alpha\) Decay \textbf{Simple Theory} (Gamow, Gurney, Condon 1928)

For \(r > R\), \[V(r) = \frac{Z_\alpha Z'_\alpha e^2}{4\pi \epsilon_0 r} = \frac{B}{r} \quad Z' = Z - Z_\alpha \quad (Z_\alpha = 2)\]

\(\alpha\)-particle escapes at \(r = R'\), \(V(R') = E_0 \Rightarrow R' = \frac{B}{E_0}\)

\[\therefore G = \int_R^{R'} \left(\frac{2m_\alpha}{\hbar^2}\right)^{1/2} \left[\frac{B}{r} - E_0\right]^{1/2} dr = \left(\frac{2m_\alpha B}{\hbar^2}\right)^{1/2} \int_R^{R'} \left[\frac{1}{r} - \frac{1}{R'}\right]^{1/2} dr\]

See Appendix H

\[G = \left(\frac{2m_\alpha}{E_0}\right)^{1/2} \frac{B}{\hbar} \left[\cos^{-1}\left(\frac{R}{R'}\right)^{1/2} - \left\{\left(1 - \frac{R}{R'}\right)\left(\frac{R}{R'}\right)\right\}\right]^{1/2}\]

To perform integration, substitute \(r = R' \cos^2 \theta\)

In most practical cases \(R \ll R'\), so term in \([\ldots]\) \(\sim \pi/2\)

\[G \sim \left(\frac{2m_\alpha}{E_0}\right)^{1/2} \frac{B \pi}{\hbar^2}\]

\(B = \frac{Z_\alpha Z'_\alpha e^2}{4\pi \epsilon_0}\)

e.g. typical values: \(Z = 90, E_0 \sim 6\text{ MeV} \Rightarrow R' \sim 40\text{ fm} \gg R\)

\[G \sim Z' \left(\frac{3.9\text{ MeV}}{E_0}\right)^{1/2}\]
\[\tau = \frac{1}{\lambda} = \frac{1}{fP} \sim \frac{2R}{ve^2} \]

\[\Rightarrow \ln \tau \sim 2G + \ln \frac{2R}{v} \]

\[\ln \lambda \sim -\frac{Z'}{E_0^{1/2}} + \text{constant} \]

Geiger-Nuttall Law

Not perfect, but provides an explanation of the dominant trend of the data

Simple tunnelling model accounts for

- strong dependence of \(\tau_{1/2} \) on \(E_0 \)
- \(\tau_{1/2} \) increases with \(Z \)
- disfavoured decay to heavier fragments e.g. \(^{12}\text{C}\)

\[G \propto m^{1/2} \quad \text{and} \quad G \propto \text{charge of fragment} \]
Deficiencies/complications with simple tunnelling model:

- Assumed existence of a single α particle in nucleus and have taken no account of probability of formation.
- Assumed “semi-classical” approach to estimate escape trial frequency, $f \sim \nu/2R$, and make absolute prediction of decay rate.
- If α is emitted with some angular momentum, ℓ, the radial wave equation must include a centrifugal barrier term in Schrödinger equation

$$V' = \frac{\ell(\ell + 1)\hbar^2}{2\mu r^2}$$

where ℓ = relative a.m. of α and daughter nucleus, μ = reduced mass

which raises the barrier and suppresses emission of α in high ℓ states.
α Decay Selection rules

Nuclear Shell Model: α has $J^P = 0^+$

Angular momentum

* e.g. $X \rightarrow Y + \alpha$

Conserving J: $J_X = J_Y \oplus J_\alpha = J_Y \oplus \ell_\alpha$

ℓ_α can take values from $J_X + J_Y$ to $|J_X - J_Y|$

Parity

Parity is conserved in α decay (strong force).

Orbital wavefunction has $P = (-1)^\ell$

- X, Y same parity $\Rightarrow \ell_\alpha$ must be even
- X, Y opposite parity $\Rightarrow \ell_\alpha$ must be odd

* e.g. if X, Y are both even-even nuclei in their ground states, shell model predicts both have $J^P = 0^+ \Rightarrow \ell_\alpha = 0$.

More generally, if X has $J^P = 0^+$, the states of Y which can be formed in α decay are $J^P = 0^+, 1^-, 2^+, 3^-, 4^+, \ldots$
\(\beta \) Decay

\(\beta^- \)
\[n \rightarrow p + e^- + \bar{\nu}_e \quad \]
\[^A_Z X \rightarrow ^A_{Z+1} Y + e^- + \bar{\nu}_e \]

\(\beta^+ \)
\[p \rightarrow n + e^+ + \nu_e \quad \]
\[^A_Z X \rightarrow ^A_{Z-1} Y + e^+ + \nu_e \]

Electron capture
\[p + e^- \rightarrow n + \nu_e \quad \]
\[^A_Z X + e^- \rightarrow ^A_{Z-1} Y + \nu_e \]

- \(\beta \) decay is a weak interaction mediated by the \(W \) boson.
- Parity is violated in \(\beta \) decay.
- Responsible for Fermi postulating the existence of the neutrino.
- Kinematics: Decay is possible if energy release \(E_0 > 0 \)

\[\begin{align*}
\text{Nuclear Masses} \quad & \quad \text{Atomic Masses} \\
\beta^- & \quad E_0 = m_X - m_Y - m_e - m_\nu \quad & \quad E_0 = M_X - M_Y - m_\nu \\
\beta^+ & \quad E_0 = m_X - m_Y - m_e - m_\nu \quad & \quad E_0 = M_X - M_Y - 2m_e - m_\nu \\
e.c. & \quad E_0 = m_X - m_Y + m_e - m_\nu \quad & \quad E_0 = M_X - M_Y - m_\nu \\
\quad (\text{and note that } m_\nu \sim 0) & \quad \text{using } M(A, Z) = m(A, Z) + Zm_e \\
n.b. \text{ electron capture may be possible even if } \beta^+ \text{ not allowed}
\end{align*} \]
Consider nuclear mass as a function of N and Z

$$m(A, Z) = Zm_p + (A - Z)m_n - a_V A + a_S A^{2/3} + \frac{a_C Z^2}{A^{1/3}} + a_A \frac{(N - Z)^2}{A} - \delta(A)$$

For β decay, A is constant, but Z changes by ± 1 and $m(A, Z)$ is quadratic in Z

Most stable nuclide when

$$\left[\frac{\partial m(A, Z)}{\partial Z} \right]_{A} = 0$$
Typical situation at constant A.

Usually only one isotope table against β-decay; occasionally two.

Typically two even-even nuclides are stable against β-decay; almost no odd-odd ones (pairing term).
Fermi Theory of β-decay

In nuclear decay, weak interaction taken to be a 4-fermion contact interaction:

\[X \rightarrow Y \ e^- \ \bar{\nu}_e \]

No “propagator” – absorb the effect of the exchanged W boson into an effective coupling strength given by the Fermi constant $G_F = 1.166 \times 10^{-5}$ GeV$^{-2}$.

Use Fermi's Golden Rule to get the transition rate

\[\Gamma = 2\pi |M_{fi}|^2 \rho(\E_f) \]

where M_{fi} is the matrix element and $\rho(\E_f) = \frac{dN}{d\E_f}$ is the density of final states.

\[\Gamma = \frac{G_F^2 |M_{\text{nuclear}}|^2}{2\pi^3} \int_0^{\E_0} (\E_0 - \E_e)^2 \E_e^2 d\E_e \]

Total decay rate given by Sargent's Rule, $\Gamma \propto \E_0^5$
Fermi Theory of β-decay

β decay spectrum described by

$$\sqrt{\frac{d\Gamma}{dp_e p_e^2}} \propto (E_0 - E_e)$$

Kurie Plot

$^3\text{H} \rightarrow ^3\text{He} + e^- + \bar{\nu}_e$

Endpoint E_0
Fermi Theory of β-decay

BUT, the momentum of the electron is modified by the Coulomb interaction as it moves away from the nucleus (different for e^- and e^+).

\Rightarrow Multiply spectrum by Fermi function $F(Z_Y, E_e)$

$$\Gamma = \frac{G_F^2 |M_{\text{nuclear}}|^2}{2\pi^3} \int_0^{E_0} (E_0 - E_e)^2 E_e^2 F(Z_Y, E_e) \, dE_e$$

All the information about the nuclear wavefunctions is contained in the matrix element. Values for the complicated Fermi Integral are tabulated.

$$f(Z_Y, E_0) = \frac{1}{m_e^5} \int_0^{E_0} (E_0 - E_e)^2 E_e^2 F(Z_Y, E_e) \, dE_e$$

Mean lifetime $\tau = 1/\Gamma$, half-life $\tau_{1/2} = \frac{\ln 2}{\Gamma}$

$$f\tau_{1/2} = \ln 2 \frac{2\pi^3}{m_e^5 G_F^2 |M_{\text{nuclear}}|^2}$$

Comparative half-life

this is rather useful because it depends only on the nuclear matrix element
Fermi Theory of β-decay

Comparative half-lives

In rough terms, decays with

$\log f \tau_{1/2} \sim 3 - 4$ known as super-allowed

$\sim 4 - 7$ known as allowed

≥ 6 known as forbidden (i.e. suppressed, small M_{if})

Number of cases

log $f \tau$

Prof. Tina Potter

15. Nuclear Decay
Fermi Theory of β-decay

Selection Rules

Fermi theory

$$M_{fi} = G_F \int \psi_p^* e^{-i(\vec{p}_e + \vec{p}_\nu) \cdot \vec{r}} \psi_n \, d^3 \vec{r}$$

e, ν wavefunctions

Allowed Transitions $\log_{10} f_{\tau_{1/2}} \sim 4 - 7$

Angular momentum of $e\nu$ pair relative to nucleus, $\ell = 0$.

Equivalent to: $e^{-i(\vec{p}_e + \vec{p}_\nu) \cdot \vec{r}} \sim 1$

Superallowed Transitions $\log_{10} f_{\tau_{1/2}} \sim 3 - 4$

subset of Allowed transitions: often mirror nuclei in which p and n have approximately the same wavefunction

$$M_{\text{nuclear}} \sim \int \psi_p^* \psi_n \, d^3 \vec{r} \sim 1$$

e, ν both have spin $1/2$ \Rightarrow Total spin of $e\nu$ system can be $S_{e\nu} = 0$ or 1.

There are two types of allowed/superallowed transitions depending on the relative spin states of the emitted e and ν...
Fermi Theory of β-decay

Selection Rules

For allowed/superallowed transitions, $\ell_{e\nu} = 0$

$S_{e\nu} = 0$ Fermi transitions

$$\begin{align*}
n\uparrow & \rightarrow p\uparrow + \frac{1}{\sqrt{2}} \left[(e^- \uparrow \bar{\nu}_e \downarrow) - (e^- \downarrow \bar{\nu}_e \uparrow) \right] \\
\Delta J & = 0
\end{align*}$$

$S_{e\nu} = 0, m_s = 0$

$J_X = J_Y$

$S_{e\nu} = 1$ Gamow-Teller transitions

$$\begin{align*}
n\uparrow & \rightarrow p\uparrow + \frac{1}{\sqrt{2}} \left[(e^- \uparrow \bar{\nu}_e \downarrow) + (e^- \downarrow \bar{\nu}_e \uparrow) \right] \\
\Delta J & = 0
\end{align*}$$

$S_{e\nu} = 1, m_s = 0$

$J_X = J_Y$

$S_{e\nu} = 1, m_s = \pm 1$

$J_X = J_Y \pm 1$

No change in angular momentum of the $e\nu$ pair relative to the nucleus, $\ell_{e\nu} = 0$

\Rightarrow Parity of nucleus unchanged
Fermi Theory of β-decay

Selection Rules

Forbidden Transitions $\log_{10} f_{\tau_{1/2}} \geq 6$

Angular momentum of $e\nu$ pair relative to nucleus, $\ell_{e\nu} > 0$.

$$e^{-i(\vec{p}_e + \vec{p}_\nu) \cdot \vec{r}} = 1 - i(\vec{p}_e + \vec{p}_\nu) \cdot \vec{r} + \frac{1}{2} \left[(\vec{p}_e + \vec{p}_\nu) \cdot \vec{r}\right]^2 - ...$$

<table>
<thead>
<tr>
<th>ℓ</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P = (-1)^\ell$</td>
<td>even</td>
<td>odd</td>
<td>even</td>
</tr>
</tbody>
</table>

Allowed 1st forbidden 2nd forbidden

Transition probabilities for $\ell > 0$ are small \Rightarrow forbidden transitions (really means “suppressed”).

Forbidden transitions are only competitive if an allowed transition cannot occur (selection rules). Then the lowest permitted order of “forbiddeness” will dominate.

In general, n^{th} forbidden \Rightarrow $e\nu$ system carries orbital angular momentum $\ell = n$, and $S_{e\nu} = 0$ (Fermi) or 1 (G-T). Parity change if ℓ is odd.
Fermi Theory of β-decay

Selection Rules

Examples

$^{34}\text{Cl}(0^+) \rightarrow ^{34}\text{S}(0^+)$

$^{14}\text{C}(0^+) \rightarrow ^{14}\text{N}(1^+)$

$n(1/2^+) \rightarrow p(1/2^+)$

$^{39}\text{Ar}(7/2^-) \rightarrow ^{39}\text{K}(3/2^+)$

$^{87}\text{Rb}(3/2^-) \rightarrow ^{87}\text{Sr}(9/2^+)$
Emission of γ-rays (EM radiation) occurs when a nucleus is created in an excited state (e.g. following α, β decay or collision).

The photon carries away net angular momentum ℓ_γ when a proton in the nucleus makes a transition from its initial a.m. state J_i to its final a.m. state J_f.

$$\vec{J}_i = \ell_\gamma \oplus \vec{J}_f \quad \text{and} \quad |\vec{J}_i - \vec{J}_f| \leq \ell_\gamma \leq |\vec{J}_i + \vec{J}_f|$$

The photon carries $J^P = 1^-$ $\Rightarrow \ell_\gamma \geq 1$.

\Rightarrow Single γ emission is forbidden for a transition between two $J = 0$ states. (0 \rightarrow 0 transitions can only occur via internal conversion (emitting an electron) or via the emission of more than one γ.)
Radiative transitions in nuclei are generally the same as for atoms, except

Atom \(E_\gamma \sim \text{eV} ; \quad \lambda \sim 10^8 \text{ fm} \sim 10^3 \times r_{\text{atom}} ; \quad \Gamma \sim 10^9 \text{s}^{-1} \)

Only dipole transitions are important.

Nuclei \(E_\gamma \sim \text{MeV} ; \quad \lambda \sim 10^2 \text{ fm} \sim 25 \times r_{\text{nucl}} ; \quad \Gamma \sim 10^{16} \text{s}^{-1} \)

Collective motion of many protons lead to higher transition rates.

\[\Rightarrow \] Higher order transitions are also important.

Two types of transitions:

Electric (E) transitions arise from an oscillating charge which causes an oscillation in the external electric field.

Magnetic (M) transitions arise from a varying current or magnetic moment which sets up a varying magnetic field.

Obtain transition probabilities using Fermi’s Golden Rule

\[\Gamma = 2\pi |M_{if}|^2 \rho(E_f) \]
\[\Gamma_{i \rightarrow f} = \frac{\omega^3}{3\pi\varepsilon_0 c^3 \hbar} |\langle \psi_f | e \hat{r} | \psi_i \rangle|^2 \]

see Adv. Quantum Physics; after averaging over initial and summing over final states

Order of magnitude estimate of this rate,

\[|\langle \psi_f | e \hat{r} | \psi_i \rangle|^2 \sim |eR|^2 \Rightarrow \Gamma \sim \frac{4}{3} \alpha E_\gamma^3 R^2 \]

\(R = \text{radius of nucleus}, \quad \alpha = \frac{e^2}{4\pi\varepsilon_0 c\hbar}, \quad E_\gamma = \hbar\omega, \quad \hbar = c = 1. \)

e.g. \(E_\gamma = 1 \text{ MeV}, \ R = 5 \text{ fm} \) \((\hbar c = 197 \text{ MeVfm}, \ \hbar = 6.6 \times 10^{-22} \text{ MeVs})\)

\[\Gamma(E1) = 0.24 \text{ MeV}^3\text{fm}^2 = \frac{0.24}{(197)^2 \times 6.6 \times 10^{-22}} \text{s}^{-1} = 10^{16} \text{s}^{-1} \] \(\text{c.f. atoms } \Gamma \sim 10^9 \text{s}^{-1} \)

As nuclear wavefunctions have definite parity, the matrix element can only be non-zero if the initial and final states have opposite parity.

\[e \hat{r} \xrightarrow{\hat{P}} - e \hat{r} \quad \text{ODD} \]

E1 transition \(\Rightarrow \) parity change of nucleus
Magnetic dipole matrix element
\[|\langle \psi_f | \mu \vec{\sigma} | \psi_i \rangle |^2 \]

\(\mu = \) magnetic moment, \(\vec{\sigma} = \) Pauli spin matrices

Typically
\[\langle \mu \sigma \rangle \sim \frac{e\hbar}{2m_p} = \mu_N \]
Nuclear magneton

For a proton
\[\frac{\hbar}{m_p} \sim 0.2 \text{fm} \sim \frac{R}{25} \]
for \(R = 5 \text{ fm} \)

Compare to E1 transition rate
\[\frac{\Gamma(M1)}{\Gamma(E1)} = \left(\frac{e\hbar}{2m_p} \right)^2 \frac{1}{(eR)^2} = 10^{-3} \]

Magnetic moment transforms the same way as angular momentum
\[e\vec{r} \times \vec{p} \rightarrow e(-\vec{r}) \times (-\vec{p}) = e\vec{r} \times \vec{p} \]
EVEN

M1 transition \(\Rightarrow \) no parity change of nucleus
γ Decay

Higher Order Transitions (\(E_\ell, M_\ell\), where \(\ell > 1\))

If the initial and final nuclear states differ by more than 1 unit of angular momentum
\[\Rightarrow \text{higher multipole radiation} \]

The perturbing Hamiltonian is a function of electric and magnetic fields and hence of the vector potential \[\langle \psi_f | H'(\vec{A}) | \psi_i \rangle \]

\(\vec{A}\) for a photon is taken to have the form of a plane wave
\[\vec{A}e^{i\vec{p}.\vec{r}} = 1 - i\vec{p}.\vec{r} + \frac{1}{2}(\vec{p}.\vec{r})^2 + \frac{(-i\vec{p}.\vec{r})^n}{n!} \]

\(\ell = 1\) \(\ell = 2\) \(\ell = 3\)
Dipole Quadrupole Octupole
\(E_1,M_1\) \(E_2,M_2\) \(E_3,M_3\)

Each successive term in the expansion of \(\vec{A}\) is reduced from the previous one by a factor of roughly \(\vec{p}.\vec{r}\).

e.g. Compare \(E_1\) to \(E_2\) for \(p \sim 1\) MeV, \(R \sim 5\) fm
\[pR \sim 5\text{ MeVfm} \sim 0.025, \ \ |pR|^2 \sim 10^{-3} \]

\[\frac{\Gamma(E_2)}{\Gamma(E_1)} \sim 10^{-3} \sim \frac{\Gamma(M_1)}{\Gamma(E_1)} \]

The matrix element for \(E_2\) transitions \(\sim r^2\) i.e. even under a parity transformation.
In general, E^ℓ transitions Parity $= (-1)^\ell$

M^ℓ transitions Parity $= (-1)^{\ell+1}$

<table>
<thead>
<tr>
<th>Parity change</th>
<th>γ</th>
<th>1^-</th>
<th>2^+</th>
<th>3^-</th>
<th>4^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>1</td>
<td>10^{-3}</td>
<td>10^{-6}</td>
<td>10^{-9}</td>
<td>...</td>
</tr>
<tr>
<td>E^1</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>E^2</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>E^3</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>E^4</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>M^1</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>M^2</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>M^3</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

In general, a decay will proceed dominantly by the lowest order (i.e. fastest) process permitted by angular momentum and parity.

e.g. if a process has $\Delta J = 2$, no parity change, it will go by the $E2$, even though $M3$, $E4$ are also allowed.
Information about the nature of transitions (based on rates and angular distributions) is very useful in inferring the J^P values of states.

Please note: this discussion of rates is fairly naïve. More complete formulae can be found in textbooks.

Also collective effects may be important if
- many nucleons participate in transitions,
- nucleus has a large electric quadrupole moment, Q, \rightarrow rotational excited states enhance E2 transitions.
Summary

- **Radioactive decays and dating.**

 - **α-decay** Strong dependence on E, Z
 Tunnelling model (Gamow) – Geiger-Nuttall law $\ln \frac{\tau_1}{2} \sim \frac{Z'}{E_0^{1/2}} + \text{const.}$

 - **β-decay** β^+, β^-, electron capture; energetics, stability
 Fermi theory – 4-fermion interaction plus 3-body phase space.
 \[
 \Gamma = \frac{G_F^2 |M_{\text{nuclear}}|^2}{2\pi^3} \int_0^{E_0} (E_0 - E_e)^2 p_e^2 dp_e
 \]
 Electron energy spectrum; Kurie plot.
 Comparative half-lives.
 Selection rules; Fermi, Gamow-Teller; allowed, forbidden.

 - **γ-decay** Dipole, quadrupole; electric, magnetic transitions.
 Selection rules.

Up next...
Section 16: Fission and Fusion