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In this section...

Magic Numbers

The Nuclear Shell Model

Excited States
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Magic Numbers
Magic Numbers = 2, 8, 20, 28, 50, 82, 126...

Nuclei with a magic number of Z and/or N are particularly stable,
e.g. Binding energy per nucleon is large for magic numbers

Doubly magic nuclei are especially stable.
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Magic Numbers

Other notable behaviour includes

Greater abundance of isotopes and isotones for magic numbers
e.g. Z = 20 has 6 stable isotopes (average = 2)

Z = 50 has 10 stable isotopes (average = 4)

Odd A nuclei have small quadrupole moments when magic

First excited states for magic nuclei higher than neighbours

Large energy release in α, β decay when the daughter nucleus is magic

Spontaneous neutron emitters have N = magic + 1

Nuclear radius shows only small change with Z , N at magic numbers.

etc... etc...
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Magic Numbers

Analogy with atomic behaviour as electron shells fill.

Atomic case - reminder

Electrons move independently in central potential V (r) ∼ 1/r (Coulomb
field of nucleus).

Shells filled progressively according to Pauli exclusion principle.

Chemical properties of an atom defined by valence (unpaired) electrons.

Energy levels can be obtained (to first order) by solving Schrödinger
equation for central potential.

En =
1

n2
n = principle quantum number

Shell closure gives noble gas atoms.

Are magic nuclei analogous to the noble gas atoms?
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Magic Numbers

Nuclear case (Fermi gas model)

Nucleons move in a net nuclear potential that represents the average effect of
interactions with the other nucleons in the nucleus.

Nuclear Potential

V (r) ∼ −V0(
1 + e(r−R)/s

)
“Saxon-Woods potential”,

i.e. a Fermi function, like the

nuclear charge distribution

Nuclear force short range + saturated ⇒ near centre V (r) ∼constant.

Near surface: density and no. of neighbours decreases ⇒ V (r) decreases

For protons, V (r) is modified by the Coulomb interaction
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Magic Numbers
In the ground state, nucleons occupy energy levels of the nuclear potential so
as to minimise the total energy without violating the Pauli principle.

The exclusion principle operates
independently for protons and neutrons.

Tendency for Z=N
to give the minimum E

Postulate: nucleons move in well-defined orbits with discrete energies.

Objection: nucleons are of similar size to nucleus ∴ expect many collisions.
How can there be well-defined orbits?

Pauli principle: if energy is transferred in a collision then nucleons must
move up/down to new states. However, all nearby states are occupied ∴ no
collision. i.e. almost all nucleons in a nucleus move freely within nucleus if it is
in its ground state.
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The Nuclear Shell Model
Treat each nucleon independently and solve Schrödingers equation for
nuclear potential to obtain nucleon energy levels.

Consider spherically symmetric central potential e.g. Saxon-Woods
potential

V (r) ∼ −V0(
1 + e(r−R)/s

)
Solution of the form ψ(r⃗) = RnL(r)Y

m
L (θ, ϕ)

Obtain 2 equations separately for radial and angular coordinates.

Radial Equation:

[
1

r 2
∂

∂r

(
r 2
∂

∂r

)
− L(L + 1)

r 2
+ 2M(E − V (r))

]
RnL(r) = 0

Allowed states specified by n, L,m:
n radial quantum number (n.b. different to atomic notation)
L orbital a.m. quantum no. n.b. any L for given n (c.f. Atomic L < n)
m magnetic quantum number m = −L... + L
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The Nuclear Shell Model
Energy levels increase with n and L (similar to atomic case)

Fix L, increase n

As n increases:
rRnL has more nodes, greater
curvature and E increases.

Fix n, increase L

As L increases:
rRnL has greater curvature and
E increases.

Fill shells for both p and n:
Degeneracy = (2s + 1)(2L + 1) = 2(2L + 1) (s = 1/2)

But, this central potential alone cannot reproduce the observed magic
numbers. Need to include spin-orbit interaction.
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Spin-orbit interaction
Mayer and Jensen (1949) included (strong) spin-orbit potential to explain
magic numbers.

V (r) = Vcentral(r) + Vso(r)
⃗̂
L.
⃗̂
S n.b. Vso is negative

Spin-orbit interaction splits L levels into their different j values
⃗̂
J =

⃗̂
L +

⃗̂
S ;

⃗̂
J2 =

⃗̂
L2 +

⃗̂
S2 + 2

⃗̂
L.
⃗̂
S ;

⃗̂
L.
⃗̂
S =

1

2

[
⃗̂
J2 − ⃗̂

L2 − ⃗̂
S2
]

⃗̂
L.
⃗̂
S |ψ⟩ = 1

2
[j(j + 1)− L(L + 1)− s(s + 1)] |ψ⟩

For a single
nucleon
with s = 1

2,

j = L− 1

2
:

⃗̂
L.
⃗̂
S |ψ⟩ = −1

2
(L + 1)|ψ⟩ V = Vcentral −

1

2
(L + 1)Vso

j = L +
1

2
:

⃗̂
L.
⃗̂
S |ψ⟩ = 1

2
L|ψ⟩ V = Vcentral +

1

2
LVso

Vcentral with
⃗̂
L.
⃗̂
S

∆E =
1

2
(2L + 1)Vso

n.b. larger j lies lower
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Nuclear Shell Model Energy Levels

  

0
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2

3
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6

Harmonic 
oscillator

Infinite 
square 
well

Finite 
square 
well

Square 
well with 
rounded 
edges

Plus 
spin-orbit 
coupling

1s 1s
1s

1/2

1p

1p 1p
1/2

1p
3/2

1d

2s

1f

2p

1g

2d
1h
3s

2f

1i

3p

2g

3d

4s

1d

2s

1f

2p

1g

2d

3s

1h

2f

3p

1i

2g
3d
4s

1d
5/2

1d
3/2

2s
1/2

1f
7/2

1f
5/2

2p
3/2

2p
1/2

1g
9/2

1g
7/2

2d
5/2

2d
3/2

1h
11/2

3s
1/2

1h
9/2

2f
7/2

3p
3/2

1i
13/2

3p
1/2

2f
5/2

2g
9/2

1i
11/2

3d
5/2

2g
7/2

3d
3/2

4s
1/2

Multiplicity 
of states

2

4

2

2

2

2

4

4

4

4

4

6

6

6

6

6

2

8

8

8

8

2

10

10

10

12

12

14

2

8

20

28

50 Closed shells 
indicated by 
magic numbers 
of nucleons

82

126

Notation 
nℓ

j

Splitting increases 
with increasing ℓ
(same for all nuclei)

∑ (2 j+1)

Degeneracy in 
each level (2j+1)

Nuclear Shell Model
Predictions
1 Magic Numbers.

The Shell Model successfully

predicts the origin of the

magic numbers. It was

constructed to achieve this.

2 Spin & Parity.
3 Magnetic Dipole

Moments.
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Nuclear Shell Model Spin and Parity

The Nuclear Shell Model predicts the spin & parity of ground state nuclei.

Case 1: Near closed shells

Even-Even Nuclei : JP = 0+

Even-Odd Nuclei : JP given by unpaired nucleon or hole; P = (−1)L

Odd-Odd Nuclei : Find J values of unpaired p and n, then apply jj coupling

i.e. |jp − jn| ≤ J ≤ jp + jn, Parity = (−1)Lp(−1)Ln

e.g.

  

1s1/2

1p3/2

1p1/2

1d5/2 Degeneracy, 
(2j+1)

2

4

2

p n p n p n

18
8O

15
7N

10
5B

JP=0+ (obs) JP=1/2− (obs) jp=3/2
−, jn=3/2

−

JP=0+,1+,2+,3+ (JP = 3+ observed)
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Nuclear Shell Model Spin and Parity

The Nuclear Shell Model predicts the spin & parity of ground state nuclei.

Case 1: Near closed shells

Even-Even Nuclei : JP = 0+

Even-Odd Nuclei : JP given by unpaired nucleon or hole; P = (−1)L

Odd-Odd Nuclei : Find J values of unpaired p and n, then apply jj coupling

i.e. |jp − jn| ≤ J ≤ jp + jn, Parity = (−1)Lp(−1)Ln

There are however cases where this simple prescription fails.

The pairing interaction between identical nucleons is not described by a spherically symmetric

potential nor by the spin-orbit interaction.

Lowest energy spin state of pair: ↑↓ with (j ,m) and (j ,−m). Total J = 0.

Need antisymmetric ψtotal = ψspinψspatial: ψspin antisymmetric, thus ψspatial is symmetric.

This maximises the overlap of their wavefunctions, increasing the binding energy (attractive

force). The pairing energy increases with increasing L of nucleons.

Example: 207
82Pb naively expect odd neutron in 2f5/2 subshell.

But, pairing interaction means it is energetically favourable for the 2f5/2 neutron and a neutron

from nearby 3p1/2 to pair and leave hole in 3p1/2. ⇒ JP = 1/2− (observed)
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Nuclear Shell Model Spin and Parity

The Nuclear Shell Model predicts the spin & parity of ground state nuclei.

Case 2: Away from closed shells

More than one nucleon can contribute and electric quadrupole moment Q is often large

⇒ V (r) no longer spherically symmetric.

Example: 23
11Na Q is observed to be large, i.e. non-spherical.

Three protons in 1d5/2; if two were paired up, we expect JP = 5/2+.

  

1s1/2

1p3/2

1p1/2

1d5/2

p n

In fact, all three protons

must contribute

⇒ can get JP = 3/2+

(observed)
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Nuclear Shell Model Magnetic Dipole Moments

The Nuclear Shell Model predicts the magnetic dipole moments of ground state nuclei.

Even-even nuclei : J = 0 ⇒ µ = 0

Odd A nuclei: µ corresponds to the unpaired nucleon or hole

For a single nucleon µ⃗ = µN
ℏ (gLL⃗ + gs s⃗) with p : gL = 1, gs = +5.586,

n : gL = 0, gs = −3.826,

where µN = eℏ
2mp

is the Nuclear Magneton.
µ⃗ is not parallel to j⃗ (since j⃗ = L⃗ + s⃗).

However, the angle between µ⃗ and j⃗ is constant, because

cos θ ∼ µ⃗.⃗j ∼ gLL⃗.⃗j + gs s⃗ .⃗j =
1

2

[
gL(L

2 + j2 − s2) + gs(s
2 + j2 − L2)

]
and j2, L2 and s2 are all constants of motion.

Hence, we can calculate the nuclear magnetic moment (projection of µ⃗ along the z-axis)

µz =
µ⃗.J⃗

|J⃗ |
× Jz

|J⃗ | c.f. derivation of Landé g-factor

in Quantum course

project µ⃗ onto J⃗ then J⃗ onto z⃗

∴ µz = µN
mJ

2j(j + 1)
( gL [L(L + 1) + j(j + 1)− s(s + 1)] + gs [s(s + 1) + j(j + 1)− L(L + 1)] )
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Nuclear Shell Model Magnetic Dipole Moments

The Nuclear Shell Model predicts the magnetic dipole moments of ground state nuclei.

Even-even nuclei : J = 0 ⇒ µ = 0

Odd A nuclei: µ corresponds to the unpaired nucleon or hole

Thus µ = gJµNJ for mJ = J and

gJ =
1

2j(j + 1)
(gL [L(L + 1) + j(j + 1)− s(s + 1)] + gs [s(s + 1) + j(j + 1)− L(L + 1)])

For a single nucleon (s = 1/2), there are two possibilities (j = L + 1/2 or L− 1/2)

gJ = gL ±
gs − gL
2L + 1

j = L± 1/2

Odd p: gL = 1 gs = +5.586

Odd n: gL = 0 gs = −3.826

called the “Schmidt Limits”.
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Nuclear Shell Model Magnetic Dipole Moments

The Nuclear Shell Model predicts the magnetic dipole moments of ground state nuclei.

Even-even nuclei : J = 0 ⇒ µ = 0

Odd A nuclei: µ corresponds to the unpaired nucleon or hole

Schmidt Limits compared to data: The Nuclear Shell Model predicts the broad trend of

the magnetic moments. But not good in detail, except for closed shell ±1 nucleon or so.

⇒ wavefunctions must be more complicated than our simple model.
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Excited States of Nuclei
In nuclear spectra, we can identify three kinds of excitations:

Single nucleon excited states

Vibrational excited states

Rotational excited states

Single nucleon excited states may, to some extent, be predicted from the
simple Shell Model. Most likely to be successful for lowest-lying excitations of
odd A nuclei near closed shells.

e.g.

  

MeV

0 0 0

0.87

3.06

3.84
4.55
5.08

2.61

0.90
1.61

2.83
3.12

5/2+

1/2+

1/2– 

5/2– 

3/2– 

3/2+ 

0+

3–  

9/2–  

13/2+

5/2– 

3/2– 

7/2–  

J P

17
8 O

208
82 Pb

209
83 Bi

Prof. Tina Potter 14. Structure of Nuclei 18



Excited States of Nuclei
Vibrational and rotational motion of nuclei involve the collective motion of
the nucleons in the nucleus.

Collective motion can be incorporated into the shell model by replacing the
static symmetrical potential with a potential that undergoes deformations in
shape. ⇒ Collective vibrational and rotational models.

Here we will only consider even Z , even N nuclei
Ground state : JP = 0+

Lowest excited state (nearly always): JP = 2+

Tend to divide into two categories:

A E(2+) Type

30–150 ∼ 1 MeV Vibrational

150–190 (rare earth) ∼ 0.1 MeV Rotational
>220 (actinides)
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Nuclear Vibrations
Vibrational excited states occur when a nucleus oscillates about a spherical
equilibrium shape (low energy surface vibrations, near closed shells). Form of
the excitations can be represented by a multipole expansion (just like
underlying nuclear shapes).

Monopole Dipole Quadrupole Octupole
Incorporated into the

average radius
Involves a net displacement of

centre of mass ⇒ cannot result

from action of nuclear forces

(can be induced by applied e/m

field i.e. a photon)

Quadrupole oscillations are the

lowest order nuclear vibrational

mode.

Similar to SHM – the quanta of vibrational energy are called phonons.
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Nuclear Vibrations
A quadrupole phonon
carries 2 units of angular
momentum and has even
parity ⇒ JP = 2+

An octupole phonon
carries 3 units of angular
momentum and has odd
parity ⇒ JP = 3−

Phonons are bosons and must satisfy Bose-Einstein statistics (overall
symmetric wavefunction under the interchange of two phonons).
e.g. for quadrupole phonons:

Even-even ground state 0+ 1 phonon−−−−−→ 2+

2 phonons−−−−−−→ 0+, 2+, 4+

(in practice not degenerate)

Energies of vibrational excitations are not predicted, but we can predict the
ratios Second excited (2 phonons; 0+, 2+, 4+)

First excited (1 phonon; 2+)
∼ 2
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Nuclear Vibrations
Example of vibrational excitations:

  

MeV

0

0.488

1.165
1.270
1.286

0+

2+

0+

2+

4+

J P

118Cd

Two phonons

One phonon

Predict
2nd excited

1st excited
∼ 2

Observe
2nd excited

1st excited
∼ 2.4

Octupole states (JP = 3−) are often seen near the triplet of two-phonon
quadrupole states.
Vibrational states decay rapidly by γ emission (see later).
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Nuclear Rotations

Collective rotational motion can only be observed in
nuclei with non-spherical equilibrium shapes (i.e. far
from closed shells, large Q).

Rotating deformed nucleus: nucleons in rapid internal motion in the nuclear
potential + entire nucleus rotating slowly. Slow to maintain a stable
equilibrium shape and not to affect the nuclear structure.

Nuclear mirror symmetry restricts the sequence of rotational states to even
values of angular momentum.

Even-even ground state 0+ → 2+, 4+, 6+

... (total angular momentum = nuclear a.m. + rotational a.m.)

Energy of a rotating nucleus
E =

ℏ2

2Ieff
J(J + 1)

where Ieff is the effective moment of inertia.
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Nuclear Rotations
Energies of rotational excitations are not predicted, but we can predict the
ratios
e.g.

  

keV

0

91.4

299.5

614.4

0+

2+

4+

6+

J P

164Er

Predict
E (4+)

E (2+)
=

4(4 + 1)

2(2 + 1)
= 3.33

Observe
E (4+)

E (2+)
=

299.5

91.4
= 3.28

Deduce Ieff from the absolute energies; it is found that Irigid > Ieff > Ifluid
→ the nucleus does not rotate like a rigid body. Only some of its nucleons

are in collective motion (presumably the outer ones).

Rotational behaviour is intermediate between the nucleus being tightly bonded
and weakly bonded i.e. the strong force is not long range.
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Nuclear Vibrations and Rotations
For even-even ground state nuclei, the ratio of excitation energies E (4+)

E (2+) is a
diagnostic of the type of excitation.

  

E(4+)
E(2+)

A

Vibration  A < 150 Rotation   150 < A < 190, A > 230

2

3.33

Rare 
Earth

Actinides

Closed 
shells
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Summary

The Nuclear Shell Model is successful in predicting

Origin of magic numbers

Spins and parities of ground states

Trend in magnetic moments

Some excited states near closed shells, small excitations in odd A nuclei

In general, it is not good far from closed shells and for non-spherically symmetric potentials.

The collective properties of nuclei can be incorporated into the Nuclear Shell Model by

replacing the spherically symmetric potential by a deformed potential.

Improved description for

Even A excited states

Electric quadrupole and magnetic dipole moments.

Many more sophisticated models exist (see Cont. Physics 1994 vol. 35 No. 5 329

http://www.tandfonline.com/doi/pdf/10.1080/00107519408222099)

Problem Sheet: q.34-36

Up next... Section 15: Nuclear Decays
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