10. Electroweak Unification
Particle and Nuclear Physics
In this section...

- GWS model
- Allowed vertices
- Revisit Feynman diagrams
- Experimental tests of Electroweak theory
Electroweak Unification

- Weak CC interactions explained by W^\pm boson exchange
- W^\pm bosons are charged, thus they couple to the γ

Consider $e^- e^+ \rightarrow W^+ W^-$: 2 diagrams (+interference)

Cross-section diverges at high energy
- Divergence cured by introducing Z boson
- Extra diagram for $e^- e^+ \rightarrow W^+ W^-$
- Idea only works if γ, W^\pm, Z couplings are related
 \Rightarrow Electroweak Unification
Electroweak gauge theory

Postulate invariance under a gauge transformation like:

\[\psi \rightarrow \psi' = e^{ig\vec{\sigma} \cdot \vec{A}(\vec{r}, t)} \psi \]

an “SU(2)” transformation (\(\sigma \) are 2x2 matrices).

Operates on the state of “weak isospin” – a “rotation” of the isospin state.

Invariance under SU(2) transformations \(\Rightarrow \) three massless gauge bosons \((W_1, W_2, W_3) \) whose couplings are well specified.

They also have self-couplings.

But this doesn’t quite work...
Predicts \(W \) and \(Z \) have the same couplings – not seen experimentally!
Electroweak gauge theory

The solution...

- Unify QED and the weak force ⇒ electroweak model
- “SU(2)×U(1)” transformation
 - U(1) operates on the “weak hypercharge” \(Y = 2(Q - I_3) \)
 - SU(2) operates on the state of “weak isospin, I”
- Invariance under SU(2)×U(1) transformations ⇒ four massless gauge bosons \(W^+, W^-, W_3, B \)
- The two neutral bosons \(W_3 \) and \(B \) then mix to produce the physical bosons \(Z \) and \(\gamma \)
- Photon properties must be the same as QED ⇒ predictions of the couplings of the \(Z \) in terms of those of the \(W \) and \(\gamma \)
- Still need to account for the masses of the \(W \) and \(Z \). This is the job of the Higgs mechanism (later).
The GWS Model

The Glashow, Weinberg and Salam model treats EM and weak interactions as different manifestations of a single unified electroweak force (Nobel Prize 1979)

Start with 4 massless bosons W^+, W_3, W^- and B. The neutral bosons mix to give physical bosons (the particles we see), i.e. the W^\pm, Z, and γ.

\[
\begin{pmatrix}
W^+ \\
W_3 \\
W^-
\end{pmatrix}; \quad B \rightarrow \begin{pmatrix}
W^+ \\
Z \\
W^-
\end{pmatrix}; \quad \gamma
\]

\[
Z = W_3 \cos \theta_W - B \sin \theta_W \\
A = W_3 \sin \theta_W + B \cos \theta_W
\]

θ_W Weak Mixing Angle

W^\pm, Z “acquire” mass via the Higgs mechanism.
The beauty of the GWS model is that it makes exact predictions of the W^\pm and Z masses and of their couplings with only 3 free parameters.

Couplings given by α_{EM} and θ_W

\[
\alpha_{EM} = \frac{e^2}{4\pi} \quad g \sim e \quad g_W = \frac{e}{\sin \theta_W} \quad g_Z = \frac{e}{\sin \theta_W \cos \theta_W} = \frac{g_W}{\cos \theta_W}
\]

Masses also given by G_F and θ_W

From Fermi theory

\[
\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8m_W^2} = \frac{e^2}{8m_W^2 \sin^2 \theta_W} \quad m_{W^\pm} = \left(\frac{\sqrt{2}e^2}{8G_F \sin^2 \theta_W}\right)^{1/2} \quad m_Z = \frac{m_W}{\cos \theta_W}
\]

If we know α_{EM}, G_F, $\sin \theta_W$ (from experiment), everything else is defined.
As a result of the mixing, we require that the mass eigenstates should be the Z and γ, and the mass of the photon be zero.

We then compute the matrix elements of the mass operator:

\[
m_Z^2 = \langle W_3 \cos \theta_W - B \sin \theta_W | \hat{M}^2 | W_3 \cos \theta_W - B \sin \theta_W \rangle
\]
\[
= m_W^2 \cos^2 \theta_W + m_B^2 \sin^2 \theta_W - 2m_{WB}^2 \cos \theta_W \sin \theta_W
\]

\[
m_\gamma^2 = \langle W_3 \sin \theta_W + B \cos \theta_W | \hat{M}^2 | W_3 \sin \theta_W + B \cos \theta_W \rangle
\]
\[
= m_W^2 \sin^2 \theta_W + m_B^2 \cos^2 \theta_W + 2m_{WB}^2 \cos \theta_W \sin \theta_W = 0
\]

\[
m_{Z\gamma}^2 = \langle W_3 \cos \theta_W - B \sin \theta_W | \hat{M}^2 | W_3 \sin \theta_W + B \cos \theta_W \rangle
\]
\[
= (m_W^2 - m_B^2) \sin \theta_W \cos \theta_W + m_{WB}^2 (\cos^2 \theta_W - \sin^2 \theta_W) = 0
\]

Solving these three equations gives

\[
m_Z = \frac{m_W}{\cos \theta_W}
\]
Couplings

- Slightly simplified – see Part III for better treatment. Starting from
 \[Z = W_3 \cos \theta_W - B \sin \theta_W \]
 \[A = W_3 \sin \theta_W + B \cos \theta_W \]
- \(W_3 \) couples to \(l_3 \) with strength \(g_W \) and \(B \) couples to \(Y = 2(Q - l_3) \) with \(g' \)
- So, coupling of \(A \) (photon) is
 \[g_W l_3 \sin \theta_W + g'2(Q - l_3) \cos \theta_W = Qe \quad \text{for all } l_3 \]
 \[\Rightarrow g' = \frac{g_W \tan \theta_W}{2} \quad \text{and} \quad g' \cos \theta_W = \frac{e}{2} \quad \Rightarrow g_W = \frac{e}{\sin \theta_W} \]
- The couplings of the \(Z \) are therefore
 \[g_W l_3 \cos \theta_W - g'2(Q - l_3) \sin \theta_W = \frac{e}{\sin \theta_W \cos \theta_W} \left[l_3 - Q \sin^2 \theta_W \right] \]
 \[= g_Z \left[l_3 - Q \sin^2 \theta_W \right] \]
- For right-handed fermions, \(l_3 = 0 \), while for left-handed fermions
 \(l_3 = +1/2(\nu, u, c, t) \) or \(l_3 = -1/2(e^-, \mu^-, \tau^-, d', s', b') \); \(Q \) is charge in units of \(e \)
Discovery of Neutral Currents (1973)

The process $\bar{\nu}_\mu e^- \rightarrow \bar{\nu}_\mu e^-$ was observed.

Only possible Feynman diagram (no W^\pm diagram).

Indirect evidence for Z.

Gargamelle Bubble Chamber at CERN
Evidence for GWS Model

- **Discovery of Neutral Currents (1973)**
 The process $\bar{\nu}_\mu e^- \rightarrow \bar{\nu}_\mu e^-$ was observed.
 Only possible Feynman diagram (no W^\pm diagram).
 Indirect evidence for Z.

- **Direct Observation of W^\pm and Z (1983)**
 First direct observation in $p\bar{p}$ collisions at $\sqrt{s} = 540$ GeV via decays into leptons

 $p\bar{p} \rightarrow W^\pm + X$

 $p\bar{p} \rightarrow Z + X$

 $\leftrightarrow e^\pm \nu_e, \mu^\pm \nu_\mu$

 $\leftrightarrow e^+ e^-, \mu^+ \mu^-$

 UA1 Experiment at CERN
 Used Super Proton Synchrotron
 (now part of LHC!)
Evidence for GWS Model

- **Discovery of Neutral Currents (1973)**
 - The process $\bar{\nu}_\mu e^- \rightarrow \bar{\nu}_\mu e^-$ was observed.
 - Only possible Feynman diagram (no W^\pm diagram).
 - Indirect evidence for Z.

- **Direct Observation of W^\pm and Z (1983)**
 - First **direct** observation in $p\bar{p}$ collisions at $\sqrt{s} = 540$ GeV via decays into leptons

 $p\bar{p} \rightarrow W^\pm + X$
 $p\bar{p} \rightarrow Z + X$
 $\leftrightarrow e^\pm \nu_e, \mu^\pm \nu_\mu$
 $\leftrightarrow e^+ e^-, \mu^+ \mu^-$

 - LEP $e^+ e^-$ collider provided many precision measurements of the Standard Model.

- **Wide variety of different processes consistent with GWS model predictions**
 - and measure same value of

 $\sin^2 \theta_W = 0.23113 \pm 0.00015$
 $\theta_W \sim 29^\circ$
All weak neutral current interactions can be described by the Z boson propagator and the weak vertices:

- **Weak NC Lepton Vertex**
 - e^-, μ^-, τ^-
 - ν_e, ν_μ, ν_τ

- **Weak NC Quark Vertex**
 - u, d, s, c, b, t

- Z never changes type of particle
- Z never changes quark or lepton flavour
- Z couplings are a mixture of EM and weak couplings, and therefore depend on $\sin^2 \theta_W$.

The Standard Model
Weak NC Lepton Vertex

+ antiparticles

The Standard Model
Weak NC Quark Vertex

+ antiparticles
Examples

$Z \rightarrow e^+ e^-, \mu^+ \mu^-, \tau^+ \tau^-$

e^-, μ^-, τ^-

$Z \rightarrow \nu_e \bar{\nu}_e, \nu_\mu \bar{\nu}_\mu, \nu_\tau \bar{\nu}_\tau$

ν_e, ν_μ, ν_τ

$Z \rightarrow q \bar{q}$

q

$e^+ e^- \rightarrow \mu^+ \mu^-$

e^+, μ^+, τ^+

e^-, μ^-, τ^-

$\nu_e e^- \rightarrow \nu_e e^-$

ν_e

ν_e

Z
Summary of Standard Model (matter) Vertices

Electromagnetic (QED)
- $\ell^- \to e$
- γ

- $\alpha = \frac{e^2}{4\pi}$
- $q = u, d, s, c, b, t$

Strong (QCD)
- $q \to g$
- g_s

- $\alpha_s = \frac{g_s^2}{4\pi}$

Weak CC
- $\ell^- \to W^-$
- ν_{ℓ}

- $\alpha_W = \frac{g_W^2}{4\pi}$

Weak NC
- ℓ^\pm, ν_{ℓ}
- Z

- $g_Z = \frac{g_W}{\cos \theta_W}$
Feynman Diagrams

1. $\pi^- + p \rightarrow K^0 + \Lambda$

2. $\nu_\tau + e^- \rightarrow \nu_\tau + e^-$

3. $\bar{\nu}_\tau + \tau^- \rightarrow \bar{\nu}_\tau + \tau^-$

4. $D^+ \rightarrow K^- \pi^+ \pi^+$

Prof. Tina Potter
10. Electroweak Unification
Experimental Tests of the Electroweak model at LEP

Precise measurements of the properties of Z and W^\pm bosons provide the most stringent test of our current understanding of particle physics.

- LEP is the highest energy e^+e^- collider ever built $\sqrt{s} = 90 - 209$ GeV
- Large circumference, 27 km
- 4 experiments combined saw 16×10^6 Z events, 30×10^3 W^\pm events
OPAL: a LEP detector

OPAL was one of the 4 experiments at LEP. Size: $12 \text{ m} \times 12 \text{ m} \times 15 \text{ m}$.

Electromagnetic calorimeters

Muon detectors

Jet chamber

Vertex chamber

μ-Vertex detector

Solenoid and Pressure vessel

Forward detector

SiW luminometer

Muon Chambers

Hadron Calorimeter

Tracking Chambers

Electromagnetic Calorimeter
Typical $e^+e^- \rightarrow Z$ events

$e^+e^- \rightarrow Z \rightarrow e^+e^-$

$e^+e^- \rightarrow Z \rightarrow \mu^+\mu^-$
Typical $e^+e^- \rightarrow Z$ events

$$e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-$$

$$e^+e^- \rightarrow Z \rightarrow q\bar{q}$$

Taus decay within the detector (lifetime $\sim 10^{-13}$ s).
Here $\tau^- \rightarrow e^-\bar{\nu}_e\nu_\tau$, $\tau^+ \rightarrow \mu^+\nu_\mu\bar{\nu}_{\bar{\tau}}$

3-jet event (gluon emitted by q/\bar{q})
The Z Resonance

Consider the process $e^+ e^- \rightarrow q \bar{q}$

- At small $\sqrt{s} (< 50 \text{ GeV})$, we only considered an intermediate photon
- At higher energies, the Z exchange diagram contributes ($+Z\gamma$ interference)

\[
\sigma(e^+ e^- \rightarrow \gamma \rightarrow q\bar{q}) = \frac{4\pi\alpha^2}{3s} \sum 3Q_q^2
\]

- The Z is a decaying intermediate massive state (lifetime $\sim 10^{-25} \text{ s}$)
 \[\Rightarrow\text{ Breit-Wigner resonance}\]
- Around $\sqrt{s} \sim m_Z$, the Z diagram dominates
The Z Resonance

$e^+ e^- \rightarrow \text{hadrons}$

Cross-section (pb)

Centre-of-mass energy (GeV)
The Z Resonance

Breit-Wigner cross-section for $e^+ e^- \rightarrow Z \rightarrow f \bar{f}$ (where $f \bar{f}$ is any fermion-antifermion pair)

Centre-of-mass energy $\sqrt{s} = E_{CM} = E_{e^+} + E_{e^-}$

$$\sigma(e^+ e^- \rightarrow Z \rightarrow f \bar{f}) = \frac{g\pi}{E_e^2} \frac{\Gamma_{ee}\Gamma_{f\bar{f}}}{(E_{CM} - m_Z)^2 + \frac{\Gamma_Z^2}{4}}$$

with $g = \frac{2J_Z + 1}{(2J_{e^-} + 1)(2J_{e^+} + 1)} = \frac{3}{4}$, $J_Z = 1$; $J_{e^\pm} = \frac{1}{2}$

giving

$$\sigma(e^+ e^- \rightarrow Z \rightarrow f \bar{f}) = \frac{3\pi}{4E_e^2} \frac{\Gamma_{ee}\Gamma_{f\bar{f}}}{(E_{CM} - m_Z)^2 + \frac{\Gamma_Z^2}{4}} = \frac{3\pi}{s} \frac{\Gamma_{ee}\Gamma_{f\bar{f}}}{(\sqrt{s} - m_Z)^2 + \frac{\Gamma_Z^2}{4}}$$

Γ_Z is the total decay width, i.e. the sum over the partial widths for different decay modes

$$\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{q\bar{q}} + \Gamma_{\nu\bar{\nu}}$$
The Z Resonance

At the peak of the resonance $\sqrt{s} = m_Z$:

$$\sigma(e^+ e^- \rightarrow Z \rightarrow f \bar{f}) = \frac{12\pi \Gamma_{ee} \Gamma_{f\bar{f}}}{m_Z^2 \Gamma_Z^2}$$

Hence, for all fermion/antifermion pairs in the final state

$$\sigma(e^+ e^- \rightarrow Z \rightarrow \text{anything}) = \frac{12\pi \Gamma_{ee}}{m_Z^2 \Gamma_Z} \quad \Gamma_{f\bar{f}} = \Gamma_Z$$

Compare to the QED cross-section at $\sqrt{s} = m_Z$

$$\sigma_{\text{QED}} = \frac{4\pi \alpha^2}{3s}$$

$$\frac{\sigma(e^+ e^- \rightarrow Z \rightarrow \text{anything})}{\sigma_{\text{QED}}} = \frac{9 \Gamma_{ee}}{\alpha^2 \Gamma_Z} \sim 5700$$

$\Gamma_{ee} = 85 \text{ GeV}, \quad \Gamma_Z = 2.5 \text{ GeV}, \quad \alpha = 1/137$
Measurement of m_Z and Γ_Z

- Run LEP at various centre-of-mass energies (\sqrt{s}) close to the peak of the Z resonance and measure $\sigma(e^+e^- \rightarrow q\bar{q})$
- Determine the parameters of the resonance:
 - Mass of the Z, m_Z
 - Total decay width, Γ_Z
 - Peak cross-section, σ^0

One subtle feature: need to correct measurements for QED effects due to radiation from the e^+e^- beams. This radiation has the effect of reducing the centre-of-mass energy of the e^+e^- collision which smears out the resonance.

![Graph showing measurements, error bars increased by factor 10, QED unfolded, M_Z, and E_cm (GeV) with axes labeled.](image)
Measurement of m_Z and Γ_Z

m_Z was measured with precision 2 parts in 10^5

- Need a detailed understanding of the accelerator and astrophysics.

Tidal distortions of the Earth by the Moon cause the rock surrounding LEP to be distorted – changing the radius by 0.15 mm (total 4.3 km). This is enough to change the centre-of-mass energy.

- Also need a train timetable.

 Leakage currents from the TGV rail via Lake Geneva follow the path of least resistance... using LEP as a conductor.

Accounting for these effects (and many others):

$$m_Z = 91.1875 \pm 0.0021 \text{ GeV}$$

$$\Gamma_Z = 2.4952 \pm 0.0023 \text{ GeV}$$

$$\sigma_{qq}^0 = 41.450 \pm 0.037 \text{ nb}$$
Number of Generations

- Currently know of three generations of fermions. Masses of quarks and leptons increase with generation. Neutrinos are approximately massless (or are they?)

\[
\begin{pmatrix}
 e^- \\
 \nu_e \\
 \mu^- \\
 \nu_\mu \\
 \tau^- \\
 \nu_\tau \\
 u \\
 d \\
 c \\
 s \\
 t \\
\end{pmatrix}
\]

- Could there be more generations? e.g.

\[
\begin{pmatrix}
 t' \\
 b' \\
\end{pmatrix}
\begin{pmatrix}
 L \\
 \nu_L \\
\end{pmatrix}
\]

- The Z boson couples to all fermions, including neutrinos. Therefore, the total decay width, \(\Gamma_Z\), has contributions from all fermions with \(m_f > m_Z/2\)

\[
\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{q\bar{q}} + \Gamma_{\nu\bar{\nu}}
\]

with \(\Gamma_{\nu\bar{\nu}} = \Gamma_{\nu_e\bar{\nu}_e} + \Gamma_{\nu_\mu\bar{\nu}_\mu} + \Gamma_{\nu_\tau\bar{\nu}_\tau}\)

- If there were a fourth generation, it seems likely that the neutrino would be light, and, if so would be produced at LEP

\[
e^+ e^- \rightarrow Z \rightarrow \nu_L \bar{\nu}_L
\]

- The neutrinos would not be observed directly, but could infer their presence from the effect on the Z resonance curve.
Number of Generations

At the peak of the Z resonance, $\sqrt{s} = m_Z$

$$\sigma^0_{f\bar{f}} = \frac{12\pi \Gamma_{ee} \Gamma_{f\bar{f}}}{m_Z^2 \Gamma_Z^2}$$

A fourth generation neutrino would increase the Z decay rate and thus increase Γ_Z. As a result, a decrease in the measured peak cross-sections for the visible final states would be observed.

Measure the $e^+e^- \rightarrow Z \rightarrow f\bar{f}$ cross-sections for all visible decay models (i.e. all fermions apart from $\nu\bar{\nu}$)

Examples:

- $e^+e^- \rightarrow \mu^+\mu^-$
- $e^+e^- \rightarrow \tau^+\tau^-$
Number of Generations

- Have already measured m_Z and Γ_Z from the shape of the Breit-Wigner resonance. Therefore, obtain $\Gamma_{f\bar{f}}$ from the peak cross-sections in each decay mode using

$$\sigma_{f\bar{f}}^0 = \frac{12\pi \Gamma_{ee} \Gamma_{f\bar{f}}}{m_Z^2 \Gamma_Z^2}$$

Note, obtain Γ_{ee} from

$$\sigma_{ee}^0 = \frac{12\pi \Gamma_{ee}^2}{m_Z^2 \Gamma_Z^2}$$

- Can relate the partial widths to the measured total width (from the resonance curve)

$$\Gamma_Z = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{q\bar{q}} + N_{\nu} \Gamma_{\nu\nu}$$

where N_{ν} is the number of neutrino species and $\Gamma_{\nu\nu}$ is the partial width for a single neutrino species.
Number of Generations

The difference between the measured value of Γ_Z and the sum of the partial widths for visible final states gives the invisible width $N\nu\Gamma_{\nu\nu}$

<table>
<thead>
<tr>
<th>(\Gamma)</th>
<th>Value (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_Z</td>
<td>2495.2±2.3</td>
</tr>
<tr>
<td>Γ_{ee}</td>
<td>83.91±0.12</td>
</tr>
<tr>
<td>$\Gamma_{\mu\mu}$</td>
<td>83.99±0.18</td>
</tr>
<tr>
<td>$\Gamma_{\tau\tau}$</td>
<td>84.08±0.22</td>
</tr>
<tr>
<td>Γ_{qq}</td>
<td>1744.4±2.0</td>
</tr>
<tr>
<td>$N\nu\Gamma_{\nu\nu}$</td>
<td>499.0±1.5</td>
</tr>
</tbody>
</table>

In the Standard Model, calculate $\Gamma_{\nu\nu} \sim 167$ MeV

Therefore

$$N\nu = \frac{\Gamma_{\text{measured}}^{\nu\nu}}{\Gamma_{\nu\nu}^{\text{SM}}} = 2.984 \pm 0.008$$

\Rightarrow three generations of light neutrinos for $m_\nu < m_Z/2$
Most likely that only 3 generations of quarks and leptons exist.

In addition:

- $\Gamma_{ee}, \Gamma_{\mu\mu}, \Gamma_{\tau\tau}$ are consistent \Rightarrow tests universality of the lepton couplings to the Z boson.

- Γ_{qq} is consistent with the expected value which assumes 3 colours – further evidence for colour.
In e^+e^- collisions W bosons are produced in pairs.

Standard Model: 3 possible diagrams:

- $\nu e e^−e^++W^−W^+$
- $\gamma e e^−e^++W^−W^+$
- $Z e e^−e^++W^−W^+$

LEP operated above the threshold for $W^+W^−$ production (1996-2000)

$\sqrt{s} > 2m_W$

Cross-section sensitive to the presence of the Triple Gauge Boson vertex
In the Standard Model $W\ell\nu$ and $Wq\bar{q}$ couplings are \sim equal.

W^- \quad \text{to} \quad \bar{e}, \bar{\mu}, \bar{\tau}$

W^- \quad \text{to} \quad \bar{u}, \bar{c}$

$m_W < m_t \times 3 \text{ for colour}$

Expect (assuming 3 colours)

\[
B(W^\pm \rightarrow q\bar{q}) = \frac{6}{9} = \frac{2}{3}
\]

\[
B(W^\pm \rightarrow \ell\nu) = \frac{3}{9} = \frac{1}{3}
\]

QCD corrections $\sim (1 + \frac{\alpha_s}{\pi})$

\[
\Rightarrow B(W^\pm \rightarrow q\bar{q}) = 0.675
\]

Measured BR

- $W^+W^- \rightarrow \ell\nu\ell\nu \quad 10.5\%$
- $W^+W^- \rightarrow q\bar{q}\ell\nu \quad 43.9\%$
- $W^+W^- \rightarrow q\bar{q}q\bar{q} \quad 45.6\%$

Prof. Tina Potter

10. Electroweak Unification
$W^+ W^- \rightarrow e\nu\mu\nu$

$W^+ W^- \rightarrow q\bar{q}e\nu$

$W^+ W^- \rightarrow q\bar{q}q\bar{q}$
Unlike $e^+e^- \rightarrow Z$, W boson production at LEP was not a resonant process. m_W was measured by measuring the invariant mass in each event.

$$m_W = \frac{1}{2} (m_{q\bar{q}} + m_{\ell\nu})$$

$m_W = 80.423 \pm 0.038$ GeV

$\Gamma_W = 2.12 \pm 0.11$ GeV
In the Standard Model, the W boson decay width is given by

$$\Gamma(W^\rightarrow e^- \bar{\nu}_e) = \frac{g_W^2 m_W}{48\pi} = \frac{G_F m_W^3}{6\sqrt{2}\pi}$$

μ-decay: $G_F = 1.166 \times 10^{-5}$ GeV$^{-2}$

LEP: $m_W = 80.423 \pm 0.038$ GeV

$$\Rightarrow \Gamma(W^\rightarrow e^- \bar{\nu}_e) = 227 \text{ MeV}$$

Total width is the sum over all partial widths:

$W^\rightarrow e^- \bar{\nu}_e, \mu^- \bar{\nu}_\mu, \tau^- \bar{\nu}_\tau,$

$W^\rightarrow d'\bar{u}, s'\bar{c}, \times 3$ for colour

If the W coupling to leptons and quarks is equal and there are 3 colours:

$$\Gamma = \sum_i \Gamma_i = (3 + 2 \times 3)\Gamma(W^\rightarrow e^- \bar{\nu}_e) \sim 2.1 \text{ GeV}$$

Compare with measured value from LEP: $\Gamma_W = 2.12 \pm 0.11$ GeV

- Universal coupling constant
- Yet more evidence for colour!
Summary of Electroweak Tests

Now have 5 precise measurements of fundamental parameters of the Standard Model

\[\alpha_{EM} = \frac{1}{(137.03599976 \pm 0.00000050)} \]
\[G_F = (1.16632 \pm 0.00002) \times 10^{-5} \text{ GeV}^{-2} \]
\[m_W = 80.385 \pm 0.015 \text{ GeV} \]
\[m_Z = 91.1875 \pm 0.0021 \text{ GeV} \]
\[\sin^2 \theta_W = 0.23143 \pm 0.00015 \]

In the Standard Model, only 3 are independent.

The measurements are consistent, which is an incredibly powerful test of the Standard Model of Electroweak Interactions.
Summary

- Weak interaction with W^\pm fails at high energy.
- Introduction of unified theory involving and relating Z and γ can resolve the divergences.
- One new parameter, θ_W, allows predictions of Z couplings and mass relations.
- Extensively and successfully tested at LEP.

Up next...
Section 11: The Top Quark and the Higgs Mechanism