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In this section...

GWS model

Allowed vertices

Revisit Feynman diagrams

Experimental tests of Electroweak theory
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Electroweak Unification
Weak CC interactions explained by W± boson exchange
W± bosons are charged, thus they couple to the γ

Consider e−e+ → W+W−: 2 diagrams
(+interference)

νe

e−

e+

W−

W+

γ

e−

e+

W−

W+

Cross-section diverges at high energy

Divergence cured by introducing Z boson

Extra diagram for e−e+ → W +W−

Idea only works if γ, W±, Z couplings are related

⇒ Electroweak Unification

Z

e−

e+

W−

W+
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Electroweak gauge theory (non-examinable)

Postulate invariance under a gauge transformation like:

ψ → ψ′ = eig σ⃗.Λ⃗(r⃗ ,t)ψ

an “SU(2)” transformation (σ are 2x2 matrices).

Operates on the state of “weak isospin” – a “rotation” of the isospin state.

Invariance under SU(2) transformations ⇒ three massless gauge bosons
(W1, W2, W3) whose couplings are well specified.

They also have self-couplings.

But this doesn’t quite work...
Predicts W and Z have the same couplings – not seen experimentally!
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Electroweak gauge theory

The solution...

Unify QED and the weak force ⇒ electroweak model

“SU(2)xU(1)” transformation
U(1) operates on the “weak hypercharge” Y = 2(Q − I3)
SU(2) operates on the state of “weak isospin, I”

Invariance under SU(2)xU(1) transformations ⇒ four massless gauge
bosons W +, W−, W3, B

The two neutral bosons W3 and B then mix to produce the physical
bosons Z and γ

Photon properties must be the same as QED ⇒ predictions of the
couplings of the Z in terms of those of the W and γ

Still need to account for the masses of the W and Z . This is the job of the
Higgs mechanism (later).
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The GWS Model
The Glashow, Weinberg and Salam model
treats EM and weak interactions as
different manifestations of a single unified
electroweak force (Nobel Prize 1979)

Start with 4 massless bosons W +, W3, W
− and B . The neutral bosons mix to

give physical bosons (the particles we see), i.e. the W±, Z , and γ.W +

W3

W−

 ; B →

W +

Z

W−

 ; γ

Physical fields: W +, Z , W− and A (photon).

Z = W3 cos θW − B sin θW

A = W3 sin θW + B cos θW θW Weak Mixing Angle

W±, Z “acquire” mass via the Higgs mechanism.
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The GWS Model
The beauty of the GWS model is that it makes exact predictions of the W±

and Z masses and of their couplings with only 3 free parameters.

Couplings given by αEM and θW

γ

g

W±

gW

Z

gZ

αEM =
e2

4π
g ∼ e gW =

e

sin θW
gZ =

e

sin θW cos θW
=

gW
cos θW

Masses also given by GF and θW
From Fermi theory
GF√
2
=

g 2
W

8m2
W

=
e2

8m2
W sin2 θW

mW± =

( √
2e2

8GF sin
2 θW

)1/2

mZ =
mW

cos θW

If we know αEM , GF , sin θW (from experiment), everything else is defined.
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Example — mass relation (non-examinable)

As a result of the mixing, we require that the mass eigenstates should be
the Z and γ, and the mass of the photon be zero.
We then compute the matrix elements of the mass operator:

m2
Z = ⟨W3 cos θW − B sin θW |M̂2|W3 cos θW − B sin θW ⟩

= m2
W cos2 θW +m2

B sin
2 θW − 2m2

WB cos θW sin θW

m2
γ = ⟨W3 sin θW + B cos θW |M̂2|W3 sin θW + B cos θW ⟩

= m2
W sin2 θW +m2

B cos
2 θW + 2m2

WB cos θW sin θW = 0

m2
Zγ = ⟨W3 cos θW − B sin θW |M̂2|W3 sin θW + B cos θW ⟩

= (m2
W −m2

B) sin θW cos θW +m2
WB(cos

2 θW − sin2 θW ) = 0

Solving these three equations gives

mZ =
mW

cos θW
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Couplings
Slightly simplified – see Part III for better treatment. Starting from

Z = W3 cos θW − B sin θW
A = W3 sin θW + B cos θW

W3 couples to I3 with strength gW and B couples to Y = 2(Q − I3) with g ′

So, coupling of A (photon) is

gW I3 sin θW + g ′2(Q − I3) cos θW = Qe for all I3

⇒ g ′ =
gW tan θW

2
and g ′ cos θW =

e

2
⇒ gW =

e

sin θW

The couplings of the Z are therefore

gW I3 cos θW − g ′2(Q − I3) sin θW =
e

sin θW cos θW

[
I3 − Q sin2 θW

]
= gZ

[
I3 − Q sin2 θW

]
For right-handed fermions, I3 = 0, while for left-handed fermions
I3 = +1/2(ν, u, c, t) or I3 = −1/2(e−, µ−, τ−, d ′, s ′, b′); Q is charge in
units of e
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Evidence for GWS Model

Discovery of Neutral Currents (1973)
The process ν̄µe

− → ν̄µe
− was observed.

Only possible Feynman diagram (no W± diagram).
Indirect evidence for Z .

Z

e−

ν̄µ

e−

ν̄µ

Gargamelle Bubble
Chamber at CERN
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Evidence for GWS Model
Discovery of Neutral Currents (1973)
The process ν̄µe

− → ν̄µe
− was observed.

Only possible Feynman diagram (no W± diagram).
Indirect evidence for Z .

Z

e−

ν̄µ

e−

ν̄µ

Direct Observation of W± and Z (1983)
First direct observation in pp̄ collisions at

√
s = 540 GeV via decays into

leptons pp̄ → W± + X pp̄ → Z + X
↪→ e±νe, µ

±νµ ↪→ e+e−, µ+µ−

UA1 Experiment at CERN
Used Super Proton Synchrotron
(now part of LHC!)
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Evidence for GWS Model
Discovery of Neutral Currents (1973)
The process ν̄µe

− → ν̄µe
− was observed.

Only possible Feynman diagram (no W± diagram).
Indirect evidence for Z .

Z

e−

ν̄µ

e−

ν̄µ

Direct Observation of W± and Z (1983)
First direct observation in pp̄ collisions at

√
s = 540 GeV via decays into

leptons pp̄ → W± + X pp̄ → Z + X
↪→ e±νe, µ

±νµ ↪→ e+e−, µ+µ−

Precision Measurements of the Standard Model (1989-2000)
LEP e+e− collider provided many precision measurements of the Standard
Model.

Wide variety of different processes consistent with GWS model predictions
and measure same value of

sin2 θW = 0.23113± 0.00015 θW ∼ 29◦
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The Weak NC Vertex
All weak neutral current interactions can be described by the Z boson
propagator and the weak vertices:

e−, µ−, τ−

e−, µ−, τ−

Z

gZ νe, νµ, ντ

νe, νµ, ντ

Z

gZ

The Standard Model
Weak NC Lepton
Vertex

+ antiparticles

u, d, s, c, b, t

u, d, s, c, b, t

Z

gZ

The Standard Model
Weak NC Quark Vertex

+ antiparticles

Z never changes type of particle

Z never changes quark or lepton flavour

Z couplings are a mixture of EM and weak couplings, and therefore depend
on sin2 θW .
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Examples

Z → e+e−, µ+µ−, τ+τ−

Z

e+, µ+, τ+

e−, µ−, τ−

Z → νeν̄e, νµν̄µ, ντ ν̄τ

Z

ν̄e, ν̄µ, ν̄τ

νe, νµ, ντ

Z → qq̄

Z

q̄

q

e+e− → µ+µ−

Z

e−

e+

µ+

µ−
νee

− → νee
−

Z

e−

νe

e−

νe
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Summary of Standard Model (matter) Vertices

Electromagnetic
(QED)

`−

`−

γ

e

q

q

γ

Qe

α =
e2

4π

q = u, d , s, c, b, t

+ antiparticles

Strong
(QCD)

q

q

g

gs

αs =
g 2
s

4π

Weak
CC

`−

ν`

W−

gW

u, c, t

d, s, b

W−

gWVCKM

αW =
g 2
W

4π

Weak
NC

`±, ν`

`±, ν`

Z

gZ

q

q

Z

gZ

gZ =
gW

cos θW
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Feynman Diagrams a reminder

1 π− + p → K 0 + Λ

2 ντ + e− → ντ + e−

3 ν̄τ + τ− → ν̄τ + τ−

4 D+ → K−π+π+
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Experimental Tests of the Electroweak model at LEP

The Large Electron Positron (LEP) collider at CERN provided high precision
measurements of the Standard Model (1989-2000).

Designed as a Z and W± boson factory

Z

e−

e+

f̄

f

Z

e−

e+

W−

W+

Precise measurements of the properties of Z
and W± bosons provide the most stringent test
of our current understanding of particle physics.

LEP is the highest energy e+e− collider ever built
√
s = 90− 209 GeV

Large circumference, 27 km

4 experiments combined saw 16× 106 Z events, 30× 103 W± events
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OPAL: a LEP detector
OPAL was one of the 4 experiments at LEP. Size: 12m × 12m × 15m.
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Typical e+e− → Z events

e+e− → Z → e+e− e+e− → Z → µ+µ−
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Typical e+e− → Z events

e+e− → Z → τ+τ−

Taus decay within the detector

(lifetime ∼ 10−13 s).

Here τ− → e−ν̄eντ , τ
+ → µ+νµν̄τ

e+e− → Z → qq̄

3-jet event (gluon emitted by q/q̄)
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The Z Resonance

Consider the process e+e− → qq̄

At small
√
s(< 50 GeV), we only considered an intermediate photon

At higher energies, the Z exchange diagram contributes (+Zγ interference)

γ

e−

e+

q̄

q

Qe Qqe
Z

e−

e+

q̄

q

gW gW

σ(e+e− → γ → qq̄) =
4πα2

3s

∑
3Q2

q

The Z is a decaying intermediate massive state (lifetime ∼ 10−25 s)
⇒ Breit-Wigner resonance

Around
√
s ∼ mZ , the Z diagram dominates
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The Z Resonance

Prof. Tina Potter 10. Electroweak Unification 22



The Z Resonance
Breit-Wigner cross-section for e+e− → Z → f f̄ (where f f̄ is any
fermion-antifermion pair)

Centre-of-mass energy
√
s = ECM = Ee+ + Ee−

σ(e+e− → Z → f f̄ ) =
gπ

E 2
e

ΓeeΓf f̄

(ECM −mZ)2 +
Γ2Z
4

with g =
2JZ + 1

(2Je− + 1)(2Je+ + 1)
=

3

4
JZ = 1; Je± =

1

2

giving

σ(e+e− → Z → f f̄ ) =
3π

4E 2
e

ΓeeΓf f̄

(ECM −mZ)2 +
Γ2Z
4

=
3π

s

ΓeeΓf f̄

(
√
s −mZ)2 +

Γ2Z
4

ΓZ is the total decay width, i.e. the sum over the partial widths for different
decay modes ΓZ = Γee + Γµµ + Γττ + Γqq̄ + Γνν̄
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The Z Resonance
At the peak of the resonance

√
s = mZ :

σ(e+e− → Z → f f̄ ) =
12π

m2
Z

ΓeeΓf f̄
Γ2Z

Hence, for all fermion/antifermion pairs in the final state

σ(e+e− → Z → anything) =
12π

m2
Z

Γee
ΓZ

Γf f̄ = ΓZ

Compare to the QED cross-section at
√
s = mZ

σQED =
4πα2

3s

σ(e+e− → Z → anything)

σQED
=

9

α2

Γee
ΓZ

∼ 5700

Γee = 85 MeV, ΓZ = 2.5 GeV, α = 1/137
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Measurement of mZ and ΓZ
Run LEP at various centre-of-mass energies (

√
s) close to the peak of the

Z resonance and measure σ(e+e− → qq̄)

Determine the parameters of the resonance:

Mass of the Z , mZ

Total decay width, ΓZ
Peak cross-section, σ0

One subtle feature: need to correct

measurements for QED effects due to

radiation from the e+e− beams. This

radiation has the effect of reducing the

centre-of-mass energy of the e+e−

collision which smears out the resonance.

Z

e−

e+

q̄

q

γ
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Measurement of mZ and ΓZ
mZ was measured with precision 2 parts in 105

Need a detailed understanding of the accelerator and astrophysics.

Tidal distortions of the Earth by the Moon

cause the rock surrounding LEP to be

distorted – changing the radius by 0.15

mm (total 4.3 km). This is enough to

change the centre-of-mass energy.

LHC ring is stretched by 0.1mm by the 7.5 magnitude earthquake

in New Zealand, Nov 2016. Tidal forces can also be seen.Also need a train timetable.
Leakage currents from the TGV rail via Lake Geneva follow the path of least resistance...

using LEP as a conductor.

Accounting for these effects (and many others):
mZ = 91.1875± 0.0021 GeV

ΓZ = 2.4952± 0.0023 GeV

σ0qq̄ = 41.450± 0.037 nb
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Number of Generations
Currently know of three generations of fermions. Masses of quarks and
leptons increase with generation. Neutrinos are approximately massless (or
are they?) (

e−

νe

)(
µ−

νµ

)(
τ−

ντ

) (
u

d

)(
c

s

)(
t

b

)

Could there be more generations? e.g.
(

t ′

b′

) (
L

νL

)
The Z boson couples to all fermions, including neutrinos. Therefore, the
total decay width, ΓZ , has contributions from all fermions with mf < mZ/2

ΓZ = Γee + Γµµ + Γττ + Γqq̄ + Γνν̄

with Γνν̄ = Γνe ν̄e + Γνµν̄µ + Γντ ν̄τ

If there were a fourth generation, it seems likely that the neutrino would be
light, and, if so would be produced at LEP e+e− → Z → νLν̄L

The neutrinos would not be observed directly, but could infer their presence
from the effect on the Z resonance curve.
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Number of Generations
At the peak of the Z resonance,

√
s = mZ σ0f f̄ =

12π

m2
Z

ΓeeΓf f̄
Γ2Z

A fourth generation neutrino would increase the Z decay rate and thus increase
ΓZ . As a result, a decrease in the measured peak cross-sections for the visible
final states would be observed.

Measure the e+e− → Z → f f̄ cross-sections for all visible decay models (i.e.
all fermions apart from νν̄)

Examples: e+e− → µ+µ− e+e− → τ+τ−
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Number of Generations

Have already measured mZ and ΓZ from the shape of the Breit-Wigner
resonance. Therefore, obtain Γf f̄ from the peak cross-sections in each
decay mode using

σ0f f̄ =
12π

m2
Z

ΓeeΓf f̄
Γ2Z

Note, obtain Γee from σ0ee =
12π

m2
Z

Γ2ee
Γ2Z

Can relate the partial widths to the measured total width (from the
resonance curve)

ΓZ = Γee + Γµµ + Γττ + Γqq̄ + NνΓνν

where Nν is the number of neutrino species and Γνν is the partial width for
a single neutrino species.
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Number of Generations

The difference between the measured value of ΓZ and the sum of the partial
widths for visible final states gives the invisible width NνΓνν

ΓZ 2495.2±2.3 MeV

Γee 83.91±0.12 MeV

Γµµ 83.99±0.18 MeV

Γττ 84.08±0.22 MeV

Γqq 1744.4±2.0 MeV

NνΓνν 499.0±1.5 MeV

In the Standard Model, calculate Γνν ∼ 167 MeV

Therefore
Nν =

Γmeasured
νν

ΓSMνν
= 2.984± 0.008

⇒ three generations of light neutrinos for mν < mZ/2
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Number of Generations
Most likely that only 3 generations of quarks and leptons exist

In addition

Γee, Γµµ, Γττ are consistent ⇒ tests universality of the lepton couplings to
the Z boson.

Γqq is consistent with the expected value which assumes 3 colours – further
evidence for colour
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W +W− at LEP
In e+e− collisions W bosons are produced in pairs.
Standard Model: 3 possible diagrams:

νe

e−

e+

W−

W+

γ

e−

e+

W−

W+

Z

e−

e+

W−

W+

LEP operated above the threshold for W +W− production (1996-2000)√
s > 2mW

Cross-section sensitive to the
presence of the Triple Gauge Boson
vertex
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W +W− at LEP
In the Standard Model W ℓν and Wqq̄ couplings are ∼ equal.

W−

ν̄e, ν̄µ, ν̄τ

e−, µ−, τ−

W−

d′, s′

ū, c̄

mW < mt

×3 for colour

Expect (assuming 3 colours)

B(W± → qq̄) =
6

9
=

2

3

B(W± → ℓν) =
3

9
=

1

3

QCD corrections ∼
(
1 + αs

π

)
⇒ B(W± → qq̄) = 0.675

Measured BR
W +W− → ℓνℓν 10.5%

W +W− → qq̄ℓν 43.9%

W +W− → qq̄qq̄ 45.6%
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W +W− events in OPAL
W +W− → eνµν W +W− → qq̄eν

W +W− → qq̄qq̄
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Measurement of mW and ΓW
Unlike e+e− → Z , W boson production at LEP was not a resonant process.

mW was measured by measuring the invariant mass in each event

4-momenta pq1, pq2, pe, pν

mW = 1
2 (mqq̄ +mℓν)

mW = 80.423± 0.038 GeV

ΓW = 2.12± 0.11 GeV

Prof. Tina Potter 10. Electroweak Unification 35



W Boson Decay Width
In the Standard Model, the W boson decay width is given by

Γ(W− → e−ν̄e) =
g 2
WmW

48π
=

GFm
3
W

6
√
2π

µ-decay: GF = 1.166× 10−5 GeV−2 LEP: mW = 80.423± 0.038 GeV

⇒ Γ(W− → e−ν̄e) = 227 MeV

Total width is the sum over all partial widths:

W− → e−ν̄e, µ
−ν̄µ, τ

−ν̄τ ,

W− → d ′ū, s ′c̄ , ×3 for colour

If the W coupling to leptons and quarks is equal and there are 3 colours:

Γ =
∑
i

Γi = (3 + 2× 3)Γ(W− → e−ν̄e) ∼ 2.1 GeV

Compare with measured value from LEP: ΓW = 2.12± 0.11 GeV

Universal coupling constant
Yet more evidence for colour!
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Summary of Electroweak Tests

Now have 5 precise measurements of fundamental parameters of the Standard
Model

αEM = 1/(137.03599976± 0.00000050) (at q2 = 0 )

GF = (1.16632± 0.00002)× 10−5 GeV−2

mW = 80.385± 0.015 GeV

mZ = 91.1875± 0.0021 GeV

sin2 θW = 0.23143± 0.00015

In the Standard Model, only 3 are independent.

The measurements are consistent, which is an incredibly powerful test of the
Standard Model of Electroweak Interactions.
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Summary

Weak interaction with W± fails at high energy.

Introduction of unified theory involving and relating Z and γ can resolve
the divergences.

One new parameter, θW , allows predictions of Z couplings and mass
relations.

Extensively and successfully tested at LEP.

Problem Sheet: q.26-27

Up next...
Section 11: The Top Quark and the Higgs Mechanism
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