7. QCD
Particle and Nuclear Physics
In this section...

- The strong vertex
- Colour, gluons and self-interactions
- QCD potential, confinement
- Hadronisation, jets
- Running of α_s
- Experimental tests of QCD
Quantum Electrodynamics is the quantum theory of the electromagnetic interaction.

- mediated by massless photons
- photon couples to electric charge
- strength of interaction: \(\langle \psi_f | \hat{H} | \psi_i \rangle \propto \sqrt{\alpha} \)
 \(\alpha = \frac{e^2}{4\pi} = \frac{1}{137} \)

Quantum Chromodynamics is the quantum theory of the strong interaction.

- mediated by massless gluons
- gluon couples to “strong” charge
- only quarks have non-zero “strong” charge, therefore only quarks feel the strong interaction.
- strength of interaction: \(\langle \psi_f | \hat{H} | \psi_i \rangle \propto \sqrt{\alpha_s} \)
 \(\alpha_s = \frac{g_s^2}{4\pi} \sim 1 \)
Basic QCD interaction looks like a stronger version of QED:

\[\alpha = \frac{e^2}{4\pi} = \frac{1}{137} \]

\[\alpha_s = \frac{g_s^2}{4\pi} \sim 1 \]

• The coupling of the gluon, \(g_s \), is to the “strong” charge.
• Energy, momentum, angular momentum and charge always conserved.
• QCD vertex never changes quark flavour
• QCD vertex always conserves parity
Colour

QED:
- Charge of QED is electric charge, a conserved quantum number

QCD:
- Charge of QCD is called “colour”
- Colour is a conserved quantum number with 3 values labelled red, green and blue.

 Quarks carry colour \(r \ b \ g \)

 Antiquarks carry anti-colour \(\bar{r} \ \bar{b} \ \bar{g} \)

- Colorless particles either have
 - no color at all e.g. leptons, \(\gamma \), \(W \), \(Z \) and do not interact via the strong interaction
 - or equal parts \(r \), \(b \), \(g \) e.g. meson \(q\bar{q} \) with \(\frac{1}{\sqrt{3}}(r\bar{r} + b\bar{b} + g\bar{g}) \), baryon \(qqq \) with \(rgb \)

- Gluons do not have equal parts \(r \), \(b \), \(g \), so carry color (e.g. \(r\bar{r} \), see later)
QCD as a gauge theory

- Recall QED was invariant under gauge symmetry
 \[\psi \rightarrow \psi' = e^{iq\alpha(\vec{r}, t)}\psi \]

- The equivalent symmetry for QCD is invariance under
 \[\psi \rightarrow \psi' = e^{ig\vec{\lambda}.\vec{\Lambda}(\vec{r}, t)}\psi \]

 an “SU(3)” transformation (\(\lambda\) are eight 3x3 matrices).

- Operates on the colour state of the quark field – a “rotation” of the colour state which can be different at each point of space and time.

- Invariance under SU(3) transformations \(\rightarrow\) eight massless gauge bosons, **gluons** (eight in this case). Gluon couplings are well specified.

- Gluons also have self-couplings, i.e. they carry colour themselves...
Gluons are massless spin-1 bosons, which carry the colour quantum number (unlike γ in QED which is charge neutral).

Consider a red quark scattering off a blue quark. Colour is exchanged, but always conserved (overall and at each vertex).

Expect 9 gluons (3x3): $r\bar{b} \ r\bar{g} \ g\bar{r} \ g\bar{b} \ b\bar{g} \ b\bar{r} \ r\bar{r} \ b\bar{b} \ g\bar{g}$

However: Real gluons are orthogonal linear combinations of the above states. The combination $\frac{1}{\sqrt{3}}(r\bar{r} + b\bar{b} + g\bar{g})$ is colourless and does not participate in the strong interaction. \Rightarrow 8 coloured gluons

Conventionally chosen to be (all orthogonal):

$$r\bar{b} \ r\bar{g} \ g\bar{r} \ g\bar{b} \ b\bar{g} \ b\bar{r} \ \frac{1}{\sqrt{2}}(r\bar{r} - b\bar{b}) \ \frac{1}{\sqrt{6}}(r\bar{r} + b\bar{b} - 2g\bar{g})$$
Gluon Self-Interactions

QCD looks like a stronger version of QED. However, there is one big difference and that is gluons carry colour charge.

⇒ Gluons can interact with other gluons

Example: Gluon-gluon scattering $gg \rightarrow gg$

Same colour flow in each case: $r\bar{g} + g\bar{b} \rightarrow r\bar{r} + r\bar{b}$
QED Potential:

\[V_{\text{QED}} = -\frac{\alpha}{r} \]

QCD Potential:

\[V_{\text{QCD}} = -C\frac{\alpha_s}{r} \]

At short distances, QCD potential looks similar, apart from the “colour factor” \(C \).

For \(q\bar{q} \) in a colourless state in a meson, \(C = 4/3 \)

For \(qq \) in a colourless state in baryon, \(C = 2/3 \)

Note: the colour factor \(C \) arises because more than one gluon can participate in the process \(q \rightarrow qg \). Obtain colour factor from averaging over initial colour states and summing over final/intermediate colour states.
Confinement

Never observe single free quarks or gluons
- Quarks are always confined within hadrons
- This is a consequence of the strong interaction of gluons.

Qualitatively, compare QCD with QED:

![QCD Diagram](image1)

![QED Diagram](image2)

Self interactions of the gluons squeezes the lines of force into a narrow tube or string. The string has a “tension” and as the quarks separate the string stores potential energy.

Energy stored per unit length in field \sim constant $V(r) \propto r$

Energy required to separate two quarks is infinite. Quarks always come in combinations with zero net colour charge \Rightarrow confinement.
QCD potential between quark and antiquark has two components:

- Short range, Coulomb-like term: \(-\frac{4}{3} \alpha_s \frac{1}{r}\)
- Long range, linear term: \(+kr\)

\[V_{\text{QCD}} = -\frac{4}{3} \alpha_s \frac{1}{r} + kr \]

with \(k \sim 1 \text{ GeV/fm}\)

\[F = -\frac{dV}{dr} = \frac{4}{3} \frac{\alpha_s}{r^2} + k \]

at large \(r\)

\[F = k \sim \frac{1.6 \times 10^{-10}}{10^{-15}} \text{ N} = 160,000 \text{ N} \]

Equivalent to weight of \(\sim 150\) people
Jets

Consider the $q\bar{q}$ pair produced in $e^+e^- \rightarrow q\bar{q}$

As the quarks separate, the potential energy in the colour field ("string") starts to increase linearly with separation. When the energy stored exceeds $2m_q$, new $q\bar{q}$ pairs can be created.

As energy decreases, hadrons (mainly mesons) freeze out
As quarks separate, more $q\bar{q}$ pairs are produced. This process is called hadronisation. Start out with quarks and end up with narrowly collimated jets of hadrons.

Typical $e^+e^- \rightarrow q\bar{q}$ event

The hadrons in a quark(antiquark) jet follow the direction of the original quark(antiquark). Consequently, $e^+e^- \rightarrow q\bar{q}$ is observed as a pair of back-to-back jets.
Nucleon-Nucleon Interactions

- Bound \(qqq\) states (e.g. protons and neutrons) are \textit{colourless} (colour singlets).
- They can only emit and absorb another colour singlet state, i.e. not single gluons (conservation of colour charge).
- Interact by exchange of \textit{pions}.

Example: \(pp\) scattering (One possible diagram)

\[
\begin{align*}
V(r) &= -\frac{g^2 e^{-m_{\pi}r}}{4\pi r} \\
\text{Range} &= \frac{1}{m_{\pi}} = (0.140 \text{ GeV})^{-1} = 7 \text{ GeV}^{-1} = 7 \times (\hbar c) \text{ fm} = 1.4 \text{ fm}
\end{align*}
\]
Running of α_s

- α_s specifies the strength of the strong interaction.
- **But**, just as in QED, α_s is not a constant. It “runs” (i.e. depends on energy).
- In QED, the bare electron charge is screened by a cloud of virtual electron-positron pairs.
- In QCD, a similar “colour screening” effect occurs.

In QCD, quantum fluctuations lead to a cloud of virtual $q\bar{q}$ pairs.
One of many (an infinite set) of such diagrams analogous to those for QED.

In QCD, the gluon self-interactions **also** lead to a cloud of virtual gluons.
One of many (an infinite set) of such diagrams. No analogy in QED, photons do not carry the charge of the interaction.
Colour Anti-Screening

- Due to gluon self-interactions bare colour charge is **screened** by both virtual quarks and gluons.
- The cloud of virtual gluons carries colour charge and the effective colour charge **decreases** at smaller distances (high energy)!
- Hence, at low energies, α_s is large \rightarrow cannot use perturbation theory.
- But at high energies, α_s is small. In this regime, can treat quarks as free particles and use perturbation theory \rightarrow **Asymptotic Freedom**.

\[
\sqrt{s} = 100 \text{ GeV}, \quad \alpha_s \approx 0.12
\]
Scattering in QCD

Example: High energy proton-proton scattering.

Visible jet in direction of q

Jet along beam direction

$M \sim \frac{1}{q^2} \sqrt{\alpha_s} \sqrt{\alpha_s}$

$\Rightarrow \frac{d\sigma}{d\Omega} \sim \frac{(\alpha_s)^2}{\sin^4 \theta/2}$

Upper points: Geiger and Marsden data (1911) for the elastic scattering of a particles from gold and silver foils.

Lower points: angular distribution of quark jets observed in pp scattering at $q^2 = 2000$ GeV2.

Both follow the Rutherford formula for elastic scattering.
Scattering in QCD

Example: \(pp \) vs \(\pi^+ p \) scattering

Calculate ratio of \(\sigma(pp)_{\text{total}} \) to \(\sigma(\pi^+ p)_{\text{total}} \)

QCD does not distinguish between quark flavours, only \textit{colour} charge of quarks matters.

At high energy \((E \gg \text{binding energy of quarks within hadrons}) \), ratio of \(\sigma(pp)_{\text{total}} \) and \(\sigma(\pi^+ p)_{\text{total}} \) depends on number of possible quark-quark combinations.

Predict: \[\frac{\sigma(\pi p)}{\sigma(pp)} = \frac{2 \times 3}{3 \times 3} = \frac{2}{3} \]

Experiment: \[\frac{\sigma(\pi p)}{\sigma(pp)} = \frac{24 \text{ mb}}{38 \text{ mb}} \sim \frac{2}{3} \]
QCD in e^+e^- Annihilation

e^+e^- annihilation at high energies provides direct experimental evidence for colour and for gluons.

Start by comparing the cross-sections for $e^+e^- \rightarrow \mu^+\mu^-$ and $e^+e^- \rightarrow q\bar{q}$

$$M \sim \frac{1}{q^2} \sqrt{\alpha} \sqrt{\alpha}$$

$$\Rightarrow \sigma(e^+e^- \rightarrow \mu^+\mu^-) = \frac{4\pi\alpha^2}{3s}$$

If we neglect the mass of the final state quarks/muons then the only difference is the charge of the final state particles:

$$Q_\mu = -1 \quad Q_q = \pm \frac{2}{3}, \quad -\frac{1}{3}$$
Evidence for Colour

Consider the ratio

\[R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} \]

For a single quark of a given colour \(R = Q^2_q \)

However, we measure \(\sigma(e^+e^- \rightarrow \text{hadrons}) \) not just \(\sigma(e^+e^- \rightarrow u\bar{u}) \).
A jet from a \(u \)-quark looks just like a jet from a \(d \)-quark etc.
Thus, we need to sum over all available flavours (\(u, d, c, s, t, b \)) and colours (\(r, g, b \)):

\[R = 3 \sum_i Q^2_i \quad \text{(3 colours)} \]

where the sum is over all quark flavours (\(i \)) that are kinematically accessible at centre-of-mass energy, \(\sqrt{s} \), of the collider.
Evidence for Colour

Expect to see steps in R as energy is increased.

$$R = 3 \sum_i Q_i^2$$

<table>
<thead>
<tr>
<th>Energy</th>
<th>Expected ratio R</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s} > 2m_s$, ~ 1 GeV</td>
<td>$3 \left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} \right) = 2$</td>
</tr>
<tr>
<td>$\sqrt{s} > 2m_c$, ~ 4 GeV</td>
<td>$3 \left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9} \right) = 3\frac{1}{3}$</td>
</tr>
<tr>
<td>$\sqrt{s} > 2m_b$, ~ 10 GeV</td>
<td>$3 \left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9} + \frac{1}{9} \right) = 3\frac{2}{3}$</td>
</tr>
<tr>
<td>$\sqrt{s} > 2m_t$, ~ 350 GeV</td>
<td>$3 \left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9} + \frac{1}{9} + \frac{4}{9} \right) = 5$</td>
</tr>
</tbody>
</table>

Dr. Tina Potter
Evidence for Colour

\[R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} \]

- \(R \) increases in steps with \(\sqrt{s} \)
- Strong evidence for colour

- \(\sqrt{s} < 11 \text{ GeV} \) region observe bound state resonances: charmonium \((c\bar{c})\) and bottomonium \((b\bar{b})\)

- \(\sqrt{s} > 50 \text{ GeV} \) region observe low edge of \(Z \) resonance \(\Gamma \sim 2.5 \text{ GeV} \).
Experimental Evidence for Colour

\[R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} \]

The existence of \(\Omega^- (sss) \)

The \(\Omega^- (sss) \) is a \((L = 0)\) spin-3/2 baryon consisting of three \(s\)-quarks.

The wavefunction: \[\psi = s \uparrow s \uparrow s \uparrow \]

is symmetric under particle interchange. However, quarks are fermions, therefore require an anti-symmetric wave-function, i.e. need another degree of freedom, namely colour, whose wavefunction must be antisymmetric.

\[\psi = \left(s \uparrow s \uparrow s \uparrow \right) \psi_{\text{colour}} \]

\[\psi_{\text{colour}} = \frac{1}{\sqrt{6}} (rgb + gbr + brg - grb - rgb - bgr) \]

i.e. need to introduce a new quantum number (colour) to distinguish the three quarks in \(\Omega^- \) – avoids violation of Pauli’s Exclusion Principle.

Drell-Yan process

Need colour to explain cross-section; colours of the annihilating quarks must match to form a virtual photon. Cross-section suppressed by a factor \(N_{\text{colour}}^{-2} \).
Evidence for Gluons

In QED, electrons can radiate photons. In QCD, quarks can radiate gluons.

Example: \(e^- e^+ \rightarrow q\bar{q}g \)

\[
\begin{align*}
\gamma & \quad q \\
Qe & \quad \sqrt{\alpha_s} \\
\bar{q} & \quad g
\end{align*}
\]

Given an extra factor of \(\sqrt{\alpha_s} \) in the matrix element, i.e. an extra factor of \(\alpha_s \) in the cross-section.

In QED we can detect the photons. In QCD, we never see free gluons due to confinement.

Experimentally, detect gluons as an additional jet: 3-jet events.

– Angular distribution of gluon jet depends on gluon spin.
Evidence for Gluons

JADE event $\sqrt{s} = 31$ GeV
First direct evidence of gluons (1978)

ALEPH event $\sqrt{s} = 91$ GeV (1990)

Distribution of the angle, ϕ, between the highest energy jet (assumed to be one of the quarks) relative to the flight direction of the other two (in their cm frame). ϕ distribution depends on the spin of the gluon.

\Rightarrow Gluon is spin 1
Evidence for Gluon Self-Interactions

Direct evidence for the existence of the gluon self-interactions comes from 4-jet events:

The angular distribution of jets is sensitive to existence of triple gluon vertex (lower left diagram)

- qqg vertex consists of two spin $1/2$ quarks and one spin 1 gluon
- ggg vertex consists of three spin-1 gluons

\implies Different angular distribution.
Evidence for Gluon Self-Interactions

Experimental method:
- Define the two lowest energy jets as the gluons. (Gluon jets are more likely to be lower energy than quark jets).
- Measure angle χ between the plane containing the “quark” jets and the plane containing the “gluon” jets.

Gluon self-interactions are required to describe the experimental data.
Measurements of α_s

α_s can be measured in many ways. The cleanest is from the ratio

$$R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

In practise, measure

$$\gamma e^- e^+ \bar{q} q Q e Q q$$

i.e. don’t distinguish between 2 and 3 jets

When gluon radiation is included:

$$R = 3 \sum Q_q^2 \left(1 + \frac{\alpha_s}{\pi}\right)$$

Therefore,

$$\left(1 + \frac{\alpha_s}{\pi}\right) \sim \frac{3.9}{3.66}$$

$$\alpha_s(q^2 = 25^2) \sim 0.2$$
Measurements of α_s

Many other ways to measure α_s

Example: 3-jet rate $e^+e^- \rightarrow q\bar{q}g$

$$R_3 = \frac{\sigma(e^+e^- \rightarrow 3 \text{ jets})}{\sigma(e^+e^- \rightarrow 2 \text{ jets})} \propto \alpha_s$$

α_s decreases with energy

α_s runs!

in accordance with QCD
Observed running of α_s
Summary

- QCD is a gauge theory, similar to QED, based on SU(3) symmetry
- Gluons are vector gauge bosons, which couple to (three types of) colour charge (r, b, g)
- Gluons themselves carry colour charge – hence they have self-interactions (unlike QED).
- Leads to running of α_s, in the opposite sense to QED. Force is weaker at high energies (“asymptotic freedom”) and very strong at low energies.
- Quarks and gluons are confined. Seen as hadrons and jets of hadrons.
- Tests of QCD
 - Evidence for colour
 - Existence of gluons, test of their spin and self-interactions
 - Measurement of α_s and observation that it runs.

Up next...

Section 8: Quark Model of Hadrons