Appendix D: Interaction via Particle Exchange

We need to evaluate the following integral in order to determine the energy shift when in
state ¢+ when a particle of mass m is exchanged between particle 1 and particle 2,
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Start by rewriting
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using the fact that the integrand is even in p. The integrand has poles at p = £im (see
the figure). The integrals with the e'”” and e terms are performed separately. This is
because one chooses an infinite semi-circular contour to do the integration over, in such
a way that on the circular piece the contribution from infinity vanishes. This happens if
the integrand contains a decaying exponential in |p|. For e?", this happens for p = +i|p|
and so one closes the contour in the upper half plane (C; in the figure). For e " we
want p = —i|p|, and so close the contour in the lower half plane (Cy in the figure).
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The whole integral is thus:
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The residue of the pole at p = im in the first integrand is:
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and the residue of the pole at p = —im in the second integrand is:
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Cauchy’s residue theorem tells us that the contour integral over an anti-clockwise contour
is 271 multiplied by the sum of the residues of the poles enclosed by the contour. For
a clockwise contour, there is an additional minus sign. Noting that C is anti-clockwise,
and Cs is clockwise, one has:

2 —mr —mr
AELI2 — _ g 9 € €
i 22m2 " 2 T i
B g2 e~ mr
8 1

as given in the notes.



