
Preface

In this course, we cover some more advanced and mathematical topics in quantum mechanics (with

which you have some familiarity from previous courses) and apply the mathematical tools learnt

in the IB Mathematics course (complex analysis, differential equations, matrix methods, special

functions, etc.) to topics such as scattering theory. A course outline is provided below.

Course Outline

• Introduction/Revision: Mathematical foundations of non-relativistic quantum mechanics.

Vector spaces. Operator methods for discrete and continuous eigenspectra. Generalized form

of the uncertainty principle. Dirac delta function and delta-function potential.

• Quantum Dynamics: Time development operator. Schrödinger, Heisenberg and interac-

tion pictures. Canonical quantisation and constants of motion. Coordinate and momentum

representations. Free particle and simple harmonic oscillator propagators. Introduction to

path integral formulation.

• Approximate Methods: Variational methods and their application to problems of interest.

The JWKB method and connection formulae, with applications to bound states and barrier

penetration. The anharmonic oscillator. Asymptotic expansions.

• Scattering Theory: Scattering amplitudes and differential cross section. Partial wave anal-

ysis and the optical theorem. Green functions, weak scattering and the Born approximation.

Relation between Born approximation and partial wave expansions. Beyond the Born ap-

proximation.

• Density Matrices: Pure and mixed states. The density operator and its properties. Position

and momentum representation of the density operator. Spin density matrix and polarisation.

Density matrix for the harmonic oscillator. Applications in statistical mechanics.

• Lie Groups: Rotation group, SO(3) and SU(2). SO(4) and the hydrogen atom.
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Problem Sets

The problem sets (integrated within the lecture notes) are a vital and integral part of the course.

The problems have been designed to reinforce key concepts and mathematical skills that you will

need to master if you are serious about doing theoretical physics. Many of them will involve signif-

icant algebraic manipulations and it is vital that you gain the ability to do these long calculations

without making careless mistakes! They come with helpful hints to guide you to their solution.

Problems that you may choose to skip on a first reading are indicated by †.

Books

While we have tried to make these notes as self-contained as possible, you are encouraged to

deepen your understanding by reading the relevant sections of the recommended texts listed below.

Merzbacher gives a very careful treatment of many of the main topics. Liboff is at about the

right level and it is particularly strong on applications. Sakurai is more demanding mathematically

although he makes a lot of effort to explain the concepts clearly. Jones covers most of the group

theory at the right level. Bender and Orszag is a mine of information on techniques that are

extremely useful to a practising theorist and hard to find elsewhere.

At about the level of the course:

E Merzbacher, Quantum Mechanics, 3rd edn., Wiley, 1998

RL Liboff, Introductory Quantum Mechanics, 3rd edn., Addison-Wesley, 1998

HF Jones, Groups, Representations and Physics, 2nd edn., IoP, 1998

At a more advanced level:

JJ Sakurai, Modern Quantum Mechanics, 2nd edn., Addison-Wesley, 1994

C Bender & SA Orszag, Adv. Mathematical Methods for Scientists and Engineers, Springer, 1999
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Chapter 1

Introduction/Revision

1.1 Postulates of quantum mechanics

The purpose of this chapter is twofold: first to review the mathematical formalism of elementary

non-relativistic quantum mechanics, especially the terminology, and second to present the basic

tools of operator methods, commutation relations, etc. Before we get down to the operator for-

malism, let’s remind ourselves of the fundamental postulates of quantum mechanics as covered in

earlier courses. They are:

• Postulate 1: The state of a quantum-mechanical system is completely specified by a function

Ψ(r, t) (which in general can be complex) that depends on the coordinates of the particles

(collectively denoted by r) and on the time. This function, called the wave function or the

state function, has the important property that Ψ∗(r, t)Ψ(r, t) dr is the probability that the

system will be found in the volume element dr, located at r, at the time t.

• Postulate 2: To every observable A in classical mechanics, there corresponds a linear Her-

mitian operator Â in quantum mechanics.

• Postulate 3: In any measurement of the observable A, the only values that can be obtained

are the eigenvalues {a} of the associated operator Â, which satisfy the eigenvalue equation

ÂΨa = aΨa

where Ψa is the eigenfunction of Â corresponding to the eigenvalue a.

• Postulate 4: If a system is in a state described by a normalised wavefunction Ψ, and the

eigenfunctions {Ψa} of Â are also normalised, then the probability of obtaining the value a

1
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in a measurement of the observable A is given by

P (a) =

∣

∣

∣

∣

∫

all space
Ψ∗

aΨ dr

∣

∣

∣

∣

2

(Recall that a function Φ(r) such that

∫

all space
Φ∗Φ dr = 1

is said to be normalised.)

• Postulate 5: As a result of a measurement of the observable A in which the value a is

obtained, the wave function of the system becomes the corresponding eigenfunction Ψa. (This

is sometimes called the collapse of the wave function.)

• Postulate 6: Between measurements, the wave function evolves in time according to the

time-dependent Schrödinger equation

∂Ψ

∂t
= − i

h̄
ĤΨ

where Ĥ is the Hamiltonian operator of the system.

The justification for the above postulates ultimately rests with experiment. Just as in geometry one

sets up axioms and then logically deduces the consequences, one does the same with the postulates

of QM. To date, there has been no contradiction between experimental results and the outcomes

predicted by applying the above postulates to a wide variety of systems.

We now explore the mathematical structure underpinning quantum mechanics.

1.2 Vector spaces

In the standard formulation of quantum theory, the state of a physical system is described by a

vector in a Hilbert space H over the complex numbers. The observables and dynamical variables

of the system are represented by linear operators which transform each state vector into another

(possibly the same) state vector. Throughout this course (unless stated otherwise) we will adopt

Dirac’s notation: thus a state vector is denoted by a ket |Ψ〉. This ket provides a complete de-

scription of the physical state. In the next section we will explore the mathematical properties of

the Hilbert space and learn why it plays such a central role in the mathematical formulation of

quantum mechanics.
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1.2.1 Hilbert space

A Hilbert space H,

H = {|a〉, |b〉, |c〉, . . .}, (1.1)

is a linear vector space over the field of complex number C i.e. it is an abstract set of elements

(called vectors) with the following properties

1. ∀ |a〉, |b〉 ∈ H we have

• |a〉+ |b〉 ∈ H (closure property)

• |a〉+ |b〉 = |b〉+ |a〉 (commutative law)

• (|a〉+ |b〉) + |c〉 = |a〉+ (|b〉) + |c〉) (associative law)

• ∃ a null vector, |null〉 ∈ H with the property

|a〉+ |null〉 = |a〉 (1.2)

• ∀ |a〉 ∈ H ∃ | − a〉 ∈ H such that

|a〉+ | − a〉 = |null〉 (1.3)

• ∀ α, β ∈ C

α(|a〉 + |b〉) = α|a〉+ α|b〉 (1.4)

(α+ β)|a〉 = α|a〉+ β|a〉 (1.5)

(αβ)|a〉 = α(β|a〉) (1.6)

1|a〉 = |a〉 (1.7)

2. A scalar product (or inner product) is defined in H. It is denoted by (|a〉, |b〉) or 〈a|b〉, yielding

a complex number. The scalar product has the following properties

(|a〉, λ|b〉) = λ(|a〉, |b〉) (1.8)

(|a〉, |b〉+ |c〉) = (|a〉, |b〉) + (|a〉, |c〉) (1.9)

(|a〉, |b〉) = (|b〉, |a〉)∗ (1.10)
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The last equation can also be written as

〈a|b〉 = 〈b|a〉∗ (1.11)

From the above, we can deduce that

(λ|a〉, |b〉) = λ∗(|a〉, |b〉) (1.12)

= λ∗〈a|b〉 (1.13)

and

(|a1〉+ |a2〉, |b〉) = (|a1〉, |b〉) + (|a2〉, |b〉) (1.14)

= 〈a1|b〉+ 〈a2|b〉 (1.15)

It follows from (1.11) that the scalar product of any vector with itself, 〈a|a〉, is a real number. To

qualify as a true scalar product, the following requirements must also be satisfied:

〈a|a〉 ≥ 0 (1.16)

〈a|a〉 = 0 iff |a〉 = |null〉 . (1.17)

The norm of a vector can then be defined by

‖a‖ =
√

〈a|a〉 (1.18)

which corresponds to the “length” of a vector. The norm of a vector is a real number ≥ 0, and

only the vector |null〉 has norm zero.

1.2.2 The Schwartz inequality

Given any |a〉, |b〉 ∈ H we have

‖a‖ ‖b‖ ≥ |〈a|b〉| (1.19)

with the equality only being valid for the case

|a〉 = λ|b〉 (1.20)

(with λ a complex number) i.e. when one vector is proportional to the other.

Proof: Define a |c〉 such that

|c〉 = |a〉+ λ|b〉 (1.21)
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where λ is an arbitrary complex number. Whatever λ may be:

〈c|c〉 = 〈a|a〉 + λ〈a|b〉+ λ∗〈b|a〉 + λλ∗〈b|b〉 (1.22)

≥ 0 (1.23)

Choose for λ the value

λ = −〈b|a〉〈b|b〉 (1.24)

and substitute into the above equation, which reduces to

〈a|a〉 − 〈a|b〉〈b|a〉
〈b|b〉 ≥ 0 (1.25)

Since 〈b|b〉 is positive, multiply the above inequality by 〈b|b〉 to get

〈a|a〉〈b|b〉 ≥ 〈a|b〉〈b|a〉 (1.26)

≥ |〈a|b〉|2 (1.27)

and finally taking square roots and using the definition of the norm we get the required result.

(This result will be used when we prove the generalised uncertainty principle).

1.2.3 Some properties of vectors in a Hilbert space

∀ |a〉 ∈ H, a sequence {|an〉} of vectors exists, with the property that for every ε > 0, there exists

at least one vector |an〉 of the sequence with

‖|a〉 − |an〉‖ ≤ ε (1.28)

A sequence with this property is called compact.

The Hilbert space is complete i.e. every |a〉 ∈ H can be arbitrarily closely approximated by a

sequence {|an〉}, in the sense that

lim
n→∞ ‖|a〉 − |an〉‖ = 0 (1.29)

Then the sequence {|an〉} has a unique limiting value |a〉.

The above properties are necessary for vector spaces of infinite dimension that occur in QM.
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1.2.4 Orthonormal systems

Orthogonality of vectors. |a〉, |b〉 ∈ H are said to be orthogonal if

〈a|b〉 = 0 (1.30)

Orthonormal system. The set {|an〉} of vectors is an orthonormal system if the vectors are

orthogonal and normalised, i.e.

〈an|am〉 = δn,m (1.31)

where

δn,m =







1 m = n

0 m 6= n

Complete orthonormal system. The orthonormal system {|an〉} is complete in H if an arbi-

trary vector |a〉 ∈ H can be expressed as

|a〉 =
∑

n

αn|an〉 (1.32)

where in general αn are complex numbers whose values are

αm = 〈am|a〉 (1.33)

Proof:

〈am|a〉 = 〈am|
(

∑

n

αn|an〉
)

=
∑

n

αn〈am|an〉

=
∑

n

αnδm,n

= αm (1.34)

Thus we can write

|a〉 =
∑

n

|an〉〈an|a〉 (1.35)

Note that this implies

Î =
∑

n

|an〉〈an| (1.36)

called the “resolution of the identity operator” or the closure relation. The complex

numbers αn are called the an−representation of |a〉, i.e. they are the components of the vector

|a〉 in the basis {|an〉}.
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1.3 Operators on Hilbert space

1.3.1 Definitions

A linear operator Â induces a mapping of H onto itself or onto a subspace of H. What this means

is that if Â acts on some arbitrary vector ∈ H the result is another vector ∈ H or in some subset

of H. Hence

Â(α|a〉 + β|b〉) = αÂ|a〉+ βÂ|b〉 (1.37)

The operator Â is bounded if

‖Â|a〉‖ ≤ C‖|a〉‖ (1.38)

∀ |a〉 ∈ H, and C is a real positive constant (<∞).

Bounded linear operators are continuous, i.e. if

|an〉 → |a〉 (1.39)

then it follows that

Â|an〉 → Â|a〉 (1.40)

Two operators Â and B̂ are equal (Â = B̂) if, ∀|a〉 ∈ H,

Â|a〉 = B̂|a〉 (1.41)

The following definitions are valid ∀ |a〉 ∈ H:

Unit operator, Î

Î|a〉 = |a〉 (1.42)

Zero operator, 0̂

0̂|a〉 = |null〉 (1.43)

Sum operator, Â+ B̂

(Â+ B̂)|a〉 = Â|a〉+ B̂|a〉 (1.44)

Product operator, ÂB̂

(ÂB̂)|a〉 = Â(B̂|a〉) (1.45)
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Adjoint operator, Â† : Given Â, an adjoint operator, Â†, exists if ∀ |a〉, |b〉 ∈ H

(|b〉, Â|a〉) = (Â†|b〉, |a〉) (1.46)

or

〈b|Â|a〉 = 〈a|Â†|b〉∗ (1.47)

The adjoint of an operator has the following properties:

(αÂ)† = α∗Â† (1.48)

(Â+ B̂)† = Â† + B̂† (1.49)

(ÂB̂)† = B̂†Â† (1.50)

(Â†)† = Â (1.51)

Hermitian operator : If Â is self-adjoint it is said to be Hermitian. Then

Â = Â†

〈b|Â|b〉 = 〈b|Â†|b〉

= 〈b|Â†|b〉∗

= 〈b|Â|b〉∗

= real (1.52)

Unitary operator, U : The operator Û is called unitary if

Û Û † = Û †Û = Î (1.53)

Projection operator, |a〉〈a| : Given any normalised vector |a〉, a projection operator P̂ can be

defined as the operator that projects any vector into its component along |a〉

P̂ |b〉 = 〈a|b〉|a〉 = |a〉〈a|b〉 (1.54)

We write this symbolically as

P̂ = |a〉〈a| (1.55)

Note that a projection operator is idempotent: its square (or any power) is equal to itself

P̂ 2 = |a〉〈a|a〉〈a| = |a〉〈a| (1.56)
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since |a〉 is normalised. Note that the resolution of the identity (1.36) is a sum of projection

operators.

Commutator, [Â, B̂] :

[Â, B̂] = ÂB̂ − B̂Â (1.57)

Note that in general

ÂB̂ 6= B̂Â (1.58)

Properties of commutators:

[Â, B̂] = −[B̂, Â] (1.59)

[Â, (B̂ + Ĉ)] = [Â, B̂] + [Â, Ĉ] (1.60)

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] (1.61)

[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0̂ (1.62)

[Â, B̂]
†

= [B̂†, Â†] (1.63)

EXAMPLE

Suppose the operators P̂ and Q̂ satisfy the commutation relation

[P̂ , Q̂] = aÎ

where a is a constant (real) number.

• Reduce the commutator [P̂ , Q̂n] to its simplest possible form.

Answer: Let

R̂n = [P̂ , Q̂n] n = 1, 2, · · ·

Then R̂1 = [P̂ , Q̂] = aÎ and

R̂n+1 = [P̂ , Q̂n+1] = [P̂ , Q̂nQ̂] = [P̂ , Q̂n]Q̂+ Q̂n[P̂ , Q̂]

(We have used [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ). Therefore,

R̂n+1 = R̂nQ̂+ Q̂n(aÎ) = R̂nQ̂+ aQ̂n

which gives R̂2 = 2aQ̂, R̂3 = 3aQ̂2 etc. This implies that

R̂n = [P̂ , Q̂n] = naQ̂n−1

Note that in general,

[P̂ , f(Q̂)] = a
∂f

∂Q̂



10 CHAPTER 1. INTRODUCTION/REVISION

• Reduce the commutator

[P̂ , eiQ̂]

to its simplest form.

Answer: Use results above to get

[P̂ , eiQ̂] = iaeiQ̂

1.3.2 Eigenvectors and eigenvalues

If

Â|a〉 = a|a〉 (1.64)

then |a〉 is an eigenvector of the operator Â with eigenvalue a (which in general is a complex

number). The set of all eigenvalues of a operator is called its spectrum, which can take discrete

or continuous values (or both). For the case of Hermitian operators the following are true:

• The eigenvalues are real

• The eigenvectors corresponding to different eigenvalues are orthogonal i.e

Â|a〉 = a|a〉 (1.65)

Â|a′〉 = a′|a′〉 (1.66)

and if a 6= a′, then

〈a|a′〉 = 0 (1.67)

• In addition, the normalised eigenvectors of a bounded Hermitian operator give rise to a

countable, complete orthonormal system. The eigenvalues form a discrete spectrum.

From above, we deduce that an arbitrary |ψ〉 ∈ H can be expanded in terms of the complete,

orthonormal eigenstates {|a〉} of a Hermitian operator Â:

|ψ〉 =
∑

a

|a〉〈a|ψ〉 (1.68)

where the infinite set of complex numbers {〈a|ψ〉} are called the A representation of |ψ〉.
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Problem 1: The operator Q̂ satisfies the equations

Q̂†Q̂† = 0

Q̂Q̂† + Q̂†Q̂ = Î (1.69)

The Hamiltonian for the system is given by

Ĥ = αQ̂Q̂†

where α is a real constant.

• Find an expression for Ĥ2 in terms of Ĥ

Answer: Use the anti-commutator property of Q̂ to get Ĥ2 = αĤ.

• Deduce the eigenvalues of Ĥ using the results obtained above.

Answer: The eigenvalues are 0 and α.

Problem 2 : Manipulating Operators

• Show that if |a〉 is an eigenvector of Â with eigenvalue a, then it is an eigenvector of f(Â)

with eigenvalue f(a).

• Show that

(ÂB̂)† = B̂†Â† (1.70)

and in general

(ÂB̂Ĉ . . .)† = . . . Ĉ†B̂†Â† (1.71)

• Show that ÂÂ† is Hermitian even if Â is not.

• Show that if Â is Hermitian, then the expectation value of Â2 is non-negative, and the

eigenvalues of Â2 are non-negative.

• Suppose there exists a linear operator Â that has an eigenvector |ψ〉 with eigenvalue a. If

there also exists an operator B̂ such that

[Â, B̂] = B̂ + 2B̂Â2 (1.72)

then show that B̂|ψ〉 is an eigenvector of Â and find the eigenvalue.

Answer: Eigenvalue is 1 + a+ 2a2.
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EXAMPLE

• (a) Suppose the operators Â and B̂ commute with their commutator, i.e. [B̂, [Â, B̂]] =

[Â, [Â, B̂]] = 0. Show that [Â, B̂n] = nB̂n−1[Â, B̂] and [Ân, B̂] = nÂn−1[Â, B̂].

Answer: To show this, consider the following steps:

[Â, B̂n] = ÂB̂n − B̂nÂ (1.73)

= ÂB̂B̂n−1 − B̂ÂB̂n−1 + B̂(ÂB̂)B̂n−2 − B̂(B̂Â)B̂n−3 + · · · B̂n−1ÂB̂ − B̂n−1B̂Â

= [Â, B̂]B̂n−1 + B̂[Â, B̂]B̂n−2 + · · · + B̂n−1[Â, B̂]

Since B̂ commutes with [Â, B̂], we obtain

[Â, B̂n] = B̂n−1[Â, B̂] + B̂n−1[Â, B̂] + · · ·+ B̂n−1[Â, B̂] = nB̂n−1[Â, B̂]

as required. In the same way, since [Ân, B] = −[B̂, Ân] and using the above steps, we obtain

[Ân, B̂] = nÂn−1[Â, B̂]

as required.

• (b) Just as in (a), show that for any analytic function, f(x), we have [Â, f(B̂)] = [Â, B̂]f
′
(B̂),

where f ′(x) denotes the derivative of f(x).

Answer: We use the results from (a). Since f(x) is analytic, we can expand it in a power

series
∑

n anx
n. Then

[Â, f(B̂)] = [Â,
∑

n

anB̂
n] (1.74)

=
∑

n

an[Â, B̂n]

= [Â, B̂]
∑

n

n an B̂
n−1

= [Â, B̂]f
′

(B̂)

• (c) Just as in (a), show that eÂeB̂ = eÂ+B̂ e
1

2
[Â,B̂].
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Answer: Consider an operator F̂ (s) which depends on a real parameter s:

F̂ (s) = esÂ esB̂

Its derivative with respect to s is:

dF̂

ds
=

(

d

ds
esÂ

)

esB̂ + esÂ
(

d

ds
esB̂

)

(1.75)

= ÂesÂesB̂ + esÂB̂esB̂

= ÂesÂesB̂ + esÂB̂e−sÂesÂesB̂

=

[

Â+ esÂB̂e−sÂ

]

F̂ (s)

Using part (a), we can write

[esÂ, B̂] = −[B̂, esÂ] = −s[B̂, Â]esÂ = s[Â, B̂]esÂ

This means that esÂB̂ = B̂e−sÂ + s[Â, B̂]esÂ and esÂB̂e−sÂ = B̂+ s[Â, B̂]. Substituting this

into the equation above, we get

dF̂

ds
=

[

Â+ B̂ + s[Â, B̂]

]

F̂ (s)

Since Â+ B̂ and [Â, B̂] commute, we can integrate this differential equation. This yields

F̂ (s) = F̂ (0) e(Â+B̂)s+ 1

2
[Â,B̂]s2

Setting s = 0, we obtain F̂ (0) = Î. Finally substituting F̂ (0) and s = 1, we obtain the

required result.

• (d) Prove the following identity for any two operators Â and B̂:

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] + · · · (1.76)

Answer: To show this, define

f(λ) = eλÂB̂e−λÂ

where λ is a real parameter. Then,

f(0) = B̂ (1.77)

f(1) = eÂB̂e−Â
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f ′(λ) = eλÂ[Â, B̂]e−λÂ

f ′(0) = [Â, B̂]

f ′′(λ) = eλÂ[Â, [Â, B̂]]e−λÂ

f ′′(0) = [Â, [Â, B̂]]

The Taylor expansion of f(λ) is given by

f(λ) = f(0) + λf ′(0) +
1

2!
λ2f ′′(0) + · · ·

This implies

eλÂB̂e−λÂ = B̂ + λ[Â, B̂] +
1

2!
λ2[Â, [Â, B̂]] + · · ·

Now setting λ = 1, we get the required result.

1.3.3 Observables

A Hermitian operator Â is an observable if its eigenvectors |ψn〉 are a basis in the Hilbert space:

that is, if an arbitrary state vector can be written as

|ψ〉 =
D
∑

n=1

|ψn〉〈ψn|ψ〉 (1.78)

(If D, the dimensionality of the Hilbert space is finite, then all Hermitian operators are observables;

if D is infinite, this is not necessarily so.)

In quantum mechanics, it is a postulate that every measurable physical quantity is described by

an observable and that the only possible result of the measurement of a physical quantity is one

of the eigenvalues of the corresponding observable. Immediately after an observation of Â which

yields the eigenvalue an, the system is in the corresponding state |ψn〉. It is also a postulate that

the probability of obtaining the result an when observing Â on a system in the normalised state

|ψ〉, is

P (an) = |〈ψn|ψ〉|2 (1.79)

(The probability is determined empirically by making a large number of separate observations of

Â, each observation being made on a copy of the system in the state |ψ〉.) The normalisation of

|ψ〉 and the closure relation ensure that

D
∑

n=1

P (an) = 1 (1.80)
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For an observable, by using the closure relation, one can deduce that

Â =
∑

n

an|ψn〉〈ψn| (1.81)

which is the spectral decomposition of Â.

The expectation value 〈Â〉 of an observable Â, when the state vector is |ψ〉, is defined as the

average value obtained in the limit of a large number of separate observations of Â, each made on

a copy of the system in the state |ψ〉. From equations (1.79) and (1.81), we have

〈Â〉 =
∑

n

anP (an) =
∑

n

an|〈ψn|ψ〉|2

=
∑

n

an〈ψ|ψn〉〈ψn|ψ〉 = 〈ψ|Â|ψ〉 (1.82)

Let Â and B̂ be two observables and suppose that rapid successive measurements yield the results

an and bn respectively. If immediate repetition of the observations always yields the same results

for all possible values of an and bn, then Â and B̂ are compatible (or non-interfering) observables.

Problem 3: A system described by the Hamiltonian Ĥ0 has just two orthogonal energy eigenstates,

|1〉 and |2〉 with

〈1|1〉 = 1

〈1|2〉 = 0

〈2|2〉 = 1 (1.83)

The two eigenstates have the same eigenvalues E0:

Ĥ0|i〉 = E0|i〉

for i = 1, 2. Suppose the Hamiltonian for the system is changed by the addition of the term V̂ ,

giving

Ĥ = Ĥ0 + V̂

The matrix elements of V̂ are

〈1|V̂ |1〉 = 0

〈1|V̂ |2〉 = 〈2|V̂ |1〉 = V

〈2|V̂ |2〉 = 0 (1.84)
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• Find the eigenvalues of Ĥ

• Find the normalised eigenstates of Ĥ in terms of |1〉 and |2〉.

Answer: Eigenvalues are E0 ± V , with corresponding eigenvectors (|1〉 ± |2〉)/
√

2.

1.3.4 Generalised uncertainty principle

Suppose Â and B̂ are any two non-commuting operators i.e.

[Â, B̂] = iĈ (1.85)

(where Ĉ is Hermitian). It can be shown that

∆A∆B ≥ 1

2

∣

∣

∣〈Ĉ〉
∣

∣

∣ (1.86)

where

∆A =
[

〈(Â− 〈Â〉)2〉
] 1

2 (1.87)

and similarly for ∆B. The expectation value is over some arbitrary state vector. This is the

generalised uncertainty principle, which implies that it is not possible for two non-commuting

observables to possess a complete set of simultaneous eigenstates. In particular if Ĉ is a non-zero

real number (times the unit operator), then Â and B̂ cannot possess any simultaneous eigenstates.

Problem 4: Prove (1.86).

If the eigenvalues of Â are non-degenerate, the normalised eigenvectors |ψn〉 are unique to within

a phase factor i.e. the kets |ψn〉 and eiθ|ψn〉, where θ is any real number yield the same physical

results. Hence a well defined physical state can be obtained by measuring Â. If the eigenvalues

of Â are degenerate we can in principle identify additional observables B̂, Ĉ, . . . which commute

with Â and each other (but not functions of Â or each other), until we have a set of commuting

observables for which there is no degeneracy. Then the simultaneous eigenvectors |an, bp, cq, . . .〉
are unique to within a phase factor; they are a basis for which the orthonormality relations are

〈an′ , bp′ , cq′ , . . . |an, bp, cq, . . .〉 = δn′nδp′pδq′q . . . (1.88)

The observables Â, B̂, Ĉ, . . . constitute a complete set of commuting observables (CSCO).

A well defined initial state can be obtained by an observation of a CSCO.
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Given a set of observables Â, B̂, . . ., any one of the following conditions implies the other two:

• Â, B̂, . . . commute with each other,

• Â, B̂, . . . are compatible,

• Â, B̂, . . . possess a complete orthonormal set of simultaneous eigenvectors (assuming no de-

generacy).

1.3.5 Basis transformations

Suppose {|ψn〉} and {|φn〉} respectively are the eigenvectors of the non-commuting observables Â

and B̂ of a system. This means that we can use either {|ψn〉} or {|φn〉} as basis kets for the Hilbert

space. The two bases are related by the transformation

|φn〉 = Û |ψn〉 (1.89)

where

Û =
∑

i

|φi〉〈ψi| (1.90)

Orthonormality of {|φn〉} and the closure relation for {|ψn〉} ensure that Û is a unitary operator

(i.e. Û †Û = Î).

Problem 5:

• Prove that Û as defined above is unitary.

• Starting from the eigenvalue equation:

Â|ψn〉 = an|ψn〉 (1.91)

show that the operator

Â′ = Û ÂÛ † (1.92)

has Û |ψn〉 as its eigenvector with eigenvalue an.

• Show also that the inner product, 〈Ψ|Φ〉 is preserved under a unitary transformation.

• If Û is unitary and Â is Hermitian, then show that Û ÂÛ † is also Hermitian.
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• Show that the form of the operator equation Ĝ = ÂB̂ is preserved under a unitary transfor-

mation.

The problem above shows that a unitary transformation preserves the form of the eigenvalue equa-

tion. In addition, since the eigenvalues of an operator corresponding to an observable are physically

measurable quantities, these values should not be affected by a transformation of basis in Hilbert

space. It therefore follows that the eigenvalues and the Hermiticity of an observable are preserved

in a unitary transformation.

1.3.6 Matrix representation of operators

From the closure relation (or resolution of the identity) it is possible to express any operator as

Â = ÎÂÎ =
∑

n

∑

n′

|n′〉〈n′|Â|n〉〈n| (1.93)

where the set {|n〉} are a set of basis vectors in the Hilbert space and the complex numbers 〈n ′|Â|n〉
are a matrix representation of Â. (Note that the matrix representation of Â† is obtained by

transposing the matrix representation of Â and taking the complex conjugate of each element.)

The table below lists various matrix properties:

Matrix Definition Matrix Elements

Symmetric A = AT Apq = Aqp

Antisymmetric A = −AT Apq = −Aqp

Orthogonal A = (AT )−1 (ATA)pq = δpq

Real A = A∗ Apq = A∗pq

Pure Imaginary A = −A∗ Apq = −A∗pq

Hermitian A = A† Apq = A∗qp

Anti-Hermitian A = −A† Apq = −A∗qp

Unitary A = (A†)−1 (A†A)pq = δpq

Singular |A| = 0

where T denotes the transpose of a matrix and |A| denotes the determinant of matrix A.
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Problem 6:

• If A,B,C are 3 n×n square matrices, show that Tr(ABC) = Tr(CAB) = Tr(BCA), where

Tr denotes the trace of a matrix, i.e. the sum of its diagonal elements.

• Show that the trace of a matrix remains the same (i.e. invariant) under a unitary transfor-

mation.

• Let A be an n× n square matrix with eigenvalues a1, a2, . . . , an. Show that |A| = a1a2 . . . an

and hence that the determinant of A is another invariant property.

• Show that if A is Hermitian, then U = (A + iI)(A − iI)−1 is unitary. (I here is the identity

matrix.)

• Show that |I + εA| = I + ε T rA+O(ε2) where A is an n× n square matrix.

• Show that |eA| = eTrA where A is a n× n square matrix.

1.3.7 Dirac delta function

Definition

The Dirac delta function δ(x) is defined as follows

δ(x) =







0 x 6= 0

∞ x = 0

Its integral properties are
∫ ∞

−∞
f(x)δ(x)dx = f(0)

∫ ∞

−∞
δ(x)dx = 1

∫ ∞

−∞
f(x′)δ(x− x′)dx′ = f(x)

∫ ∞

−∞
δ(x− x′)dx′ = 1 (1.94)

Note that
∫ b

a
f(x)δ(x)dx =







f(0) 0 ∈ [a, b]

0 otherwise
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In mathematics, an object such as δ(x), which is defined in terms of its integral properties, is called

a distribution.

In three dimensions, the above definition is generalised as follows

∫

all space
f(r)δ(r − a) dr = f(a) (1.95)

An important property is the Fourier representation

δ(x) =
1

2π

∫ ∞

−∞
eikx dk (1.96)

or in three dimensions

δ(r) =
1

(2π)3

∫

all k−space
eik·r dk (1.97)

Some useful properties

δ(x) = δ(−x)

δ
′

(x) = −δ′(−x)

x δ(x) = 0

δ(a x) =
1

|a| δ(x)

δ(x2 − a2) =
1

|2a|

[

δ(x − a)− δ(x+ a)

]

∫ ∞

−∞
δ(a− x) δ(x− b)dx = δ(a − b)

f(x) δ(x− a) = f(a) δ(x− a)

x δ
′

(x) = −δ(x)
∫

g(x) δ

[

f(x)− a

]

dx =
∑

x0

g(x)

|df/dx|

∣

∣

∣

∣

x=x0, f(x0)=a
(1.98)

These relations can easily be verified by using some arbitrary function. For example, to prove

x δ
′

(x) = −δ(x)
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we proceed as follows
∫ ∞

−∞
f(x)x δ

′

(x)dx =

∫ ∞

−∞

d

dx

(

f x δ

)

dx−
∫ ∞

−∞
δ
d

dx

(

f x

)

dx

= −
∫ ∞

−∞
δ(x)

(

x
df

dx
+ f

)

dx

= −
∫ ∞

−∞
δ(x)f(x)dx (1.99)

where we have used integration by parts.

1.3.8 Operators with continuous or mixed (discrete-continuous) spectra

There exist operators which do not have a purely discrete spectra, but either have a continuous or

mixed (discrete-continuous) spectrum. An example is the Hamiltonian for the hydrogen atom. In

general, all Hamiltonians for atoms and nuclei have both discrete and continuous spectral ranges.

Usually the discrete spectrum is connected with bound states while the continuous spectrum is

connected with free (unbound) states. The representation related to such operators cause difficulties

because eigenstates with continuous spectra are not normalizable to unity. (A rigorous discussion

is too difficult so we will just state the results.)

An observable Â has a continuous spectrum if its eigenvalues {a}

Â|a〉 = a|a〉

are a continuous set of real numbers. The eigenstates {|a〉} can no longer be normalised to unity

but must be normalised to Dirac delta functions:

〈a|a′〉 = δ(a− a′) (1.100)

The resolution of the identity (or closure relation) becomes
∫

da |a〉〈a| = Î (1.101)

and an arbitrary state can |ψ〉 be expanded in terms of the complete set {|a〉} via

|ψ〉 =

∫

da′|a′〉〈a′|ψ〉 (1.102)

with 〈a′|ψ〉 denoting |ψ〉 in the A representation. The inner product for two state vectors |ψ〉 and

|φ〉 is defined as

〈ψ|φ〉 =

∫

da′〈ψ|a′〉〈a′|φ〉

=

∫

ψ∗(a′)φ(a′)da′ (1.103)
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If the spectrum is mixed, then the expansion of |ψ〉 is

|ψ〉 =
∑

a′

|a′〉〈a′|ψ〉+

∫

|a′〉〈a′|ψ〉da′ (1.104)

where the sum is over the discrete eigenvectors and the integral is over the continuous eigenvectors

|a〉.

1.3.9 Example: delta-function potential well

As an example of a system with a mixed (discrete-continuous) spectrum, consider a finite potential

well of width a and depth V0:

V (x) = −V0 for |x| < 1
2a

V (x) = 0 elsewhere (1.105)

In the limit that the well becomes very deep and narrow, such that V0 → ∞ and a → 0 while

aV0 ≡ V remains fixed, we may approximate the potential by a Dirac delta function:

V (x) = −V δ(x) (1.106)

(This will also give us some practice at handling the delta function.)

Negative-energy eigenstates of this system correspond to bound states, which will be normalisable

and have a discrete spectrum. The wave function must fall off exponentially outside the well and

hence must take the form

ψ(x) = Ae−κ|x| (1.107)

where

κ =

√
−2mE

h̄
(1.108)

and (for normalisation) A =
√
κ. Integrating the Schrödinger equation

Eψ = − h̄2

2m

∂2ψ

∂x2
−V δ(x)ψ (1.109)

between the limits x = −ε and x = +ε gives

E

∫ +ε

−ε
ψ dx = − h̄2

2m

[

(

∂ψ

∂x

)

x=+ε
−
(

∂ψ

∂x

)

x=−ε

]

− Vψ(0) (1.110)

Now taking the limit ε → 0 will make the integral on the left-hand side vanish, since ψ must be

finite and continuous at x = 0. Therefore ψ must have a discontinuity in its derivative at the origin,

such that

lim
ε→0

[

(

∂ψ

∂x

)

x=+ε
−
(

∂ψ

∂x

)

x=−ε

]

= −2mV
h̄2 ψ(0) (1.111)
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Inserting the form (1.107) for the solution, we find that

κ =
mV
h̄2 (1.112)

and hence

E = −1

2
m

(V
h̄

)2

(1.113)

Thus for E < 0 there is a unique solution for E, and hence a single bound state.

For E > 0, on the other hand, we can obtain plane-wave solutions with wave number k =
√

2mE/h̄

for any value of E. Since the potential is an even function of x, we can classify the eigenstates

according to parity. Those with odd parity must vanish at the origin and then equation (1.111)

tells us there is no change in the derivative at the origin, just as if the potential well were not there.

Thus the odd-parity eigenfunctions are simply of the form

ψ(x) = C sin kx (1.114)

and any odd-parity wave function of the system can be Fourier decomposed into sine waves, just

as for a free particle. For the usual delta function normalisation 〈k|k ′〉 = δ(k − k′), we require

C = 1/
√
π.

The even-parity eigenstates, on the other hand, need not vanish at the origin, and hence they feel

the presence of the potential well. For E > 0 we can write them in the general form

ψ(x) = C cos(k|x|+ φ) (1.115)

where, from equation (1.111), the phase shift φ satisfies the equation

tanφ =
mV
h̄2k

=
κ

k
(1.116)

The presence of the phase shift guarantees that the positive-energy even-parity eigenstates (1.115)

are orthogonal to the bound state (1.107). To see this, consider the overlap integral
∫ ∞

−∞
cos(k|x| + φ)e−κ|x|dx = 2

∫ ∞

0
cos(kx+ φ)e−κxdx

=

∫ ∞

0

(

eikx+iφ−κx + e−ikx−iφ−κx
)

dx

=
eiφ

κ− ik
+

e−iφ

κ+ ik

=
2

κ2 + k2
(κ cos φ− k sinφ)

= 0 (1.117)
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on account of equation (1.116). Hence any unbound state of the system can be Fourier decomposed

into sine waves and the “kinked cosine” waves (1.115). Conversely, the square modulus of the

overlap between any normalised state and the bound state (1.107) gives the probability that the

particle is bound in the potential well.

Problem 7: Find the probability Pb that a particle with wave function

ψ(x) =
√
c e−c|x| (1.118)

will be found in the bound state of the delta-function potential well. Confirm that Pb ≤ 1. Find also

the probability P (k)dk that the particle will be found to be unbound, with wave number between

k and k + dk.

Answer:

Pb =
4cκ

(c+ κ)2
, P (k) =

4ck2(c− κ)2

π(κ2 + k2)(c2 + k2)2

Problem 8†1: Confirm that
∫ ∞

0
P (k) dk = 1− Pb (1.119)

1Problems that you may choose to skip on a first reading are indicated by †.



Chapter 2

Quantum Dynamics

2.1 Time development operator

So far, we have presented state vectors as fixed objects in a Hilbert space, but in general we expect

them to change with time, in accordance with Postulate 6 of quantum mechanics. Suppose that

the state vector at some initial time t0 is |Ψ(t0)〉 and that some other time t it is |Ψ(t)〉. Then we

may define the time development operator T̂ (t, t0) which relates the two:

|Ψ(t)〉 = T̂ (t, t0)|Ψ(t0)〉 (2.1)

The principle of superposition means that any linear superposition of initial states α|Ψa(t0)〉 +

β|Ψb(t0)〉 will evolve into the corresponding linear superposition α|Ψa(t)〉+β|Ψb(t)〉, in other words

that T̂ (t, t0) is a linear operator. Clearly, it has the property

T̂ (t0, t0) = Î (2.2)

Furthermore, if the system evolves from t0 to t1 and then from t1 to t2, we have

|Ψ(t2)〉 = T̂ (t2, t1)|Ψ(t1)〉 = T̂ (t2, t1)T̂ (t1, t0)|Ψ(t0)〉 (2.3)

and therefore, since this is true for any initial state,

T̂ (t2, t0) = T̂ (t2, t1)T̂ (t1, t0) (2.4)

In particular, we have

T̂ (t0, t0) = Î = T̂ (t0, t)T̂ (t, t0) (2.5)

from which it follows that

T̂ (t0, t) =
[

T̂ (t, t0)
]−1

(2.6)

25
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To find the explicit form of the time development operator, we note from Postulate 6 that

∂

∂t
|Ψ(t)〉 =

[

∂

∂t
T̂ (t, t0)

]

|Ψ(t0)〉

= − i

h̄
Ĥ|Ψ(t)〉

= − i

h̄
ĤT̂ (t, t0)|Ψ(t0)〉 (2.7)

Again, this must be true for any |Ψ(t0)〉 and therefore the operator equation

∂

∂t
T̂ (t, t0) = − i

h̄
ĤT̂ (t, t0) (2.8)

must hold for all t and t0. Taking into account the initial condition (2.2), and assuming the

Hamiltonian operator does not depend explicitly on time, the solution of this differential equation

is

T̂ (t, t0) = exp

[

− i

h̄
Ĥ(t− t0)

]

(2.9)

Since the Hamiltonian operator is Hermitian, the time development operator is unitary:

T̂ †(t, t0) = exp

[

+
i

h̄
Ĥ†(t− t0)

]

= exp

[

+
i

h̄
Ĥ(t− t0)

]

=
[

T̂ (t, t0)
]−1

(2.10)

It follows that the norm of states is preserved under time development:

‖Ψ(t)‖2 = 〈Ψ(t)|Ψ(t)〉 = 〈Ψ(t0)|T̂ †(t, t0)T̂ (t, t0)|Ψ(t0)〉 = 〈Ψ(t0)|Ψ(t0)〉 = ‖Ψ(t0)‖2 (2.11)

The time-dependence of observables is controlled by the same time development operator. Denoting

the expectation value of observable Â at time t by 〈Â〉t, we have

〈Â〉t = 〈Ψ(t)|Â(t)|Ψ(t)〉

= 〈Ψ(t0)|T̂ †(t, t0)Â(t)T̂ (t, t0)|Ψ(t0)〉

= 〈T̂ †(t, t0)Â(t)T̂ (t, t0)〉t0 (2.12)

Here we have allowed for the possibility that the operator Â depends explicitly on time. If it

does not, and if it commutes with the Hamiltonian operator, then it also commutes with the time
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development operator and we have

〈Â〉t = 〈T̂ †(t, t0)ÂT̂ (t, t0)〉t0 = 〈T̂ †(t, t0)T̂ (t, t0)Â〉t0 = 〈Â〉t0 (2.13)

so that the observable Â is a constant of the motion.

Problem 1: Derive the differential equation

d

dt
〈Â〉 =

i

h̄
〈[Ĥ, Â]〉+ 〈 ∂

∂t
Â〉 , (2.14)

which again shows that 〈Â〉 is constant if Â does not depend explicitly on time and commutes with

Ĥ.

2.2 Schrödinger, Heisenberg and interaction pictures

The formulation of quantum dynamics that we have used so far, in the above discussion and in

lecture courses, treats the time evolution of a system as a property of the state vectors; operators

representing observables that do not depend explicitly on time, such as position and momentum,

are regarded as time-independent. This is called the Schrödinger picture of quantum dynamics. It

seems very far from the classical picture, in which for example the position and momentum of a

particle are continuously changing under the influence of forces.

The Schrödinger picture is in fact only one of an infinite range of equivalent formulations of quantum

dynamics, related by unitary transformations of the Hilbert space as discussed in Section 1.3.5. We

saw there that all the fundamental properties of the system are unaffected by a transformation of

the state vectors of the form

|Ψ〉 → |Ψ′〉 = Û |Ψ〉 (2.15)

where Û is unitary, provided the observables of the system are also transformed according to

Â→ Â′ = Û ÂÛ † (2.16)

If the unitary operator Û is time-dependent, the transformation (2.16) will introduce time-dependence

into the operator Â′ representing the same observable in the new formulation as was originally rep-

resented by the time-independent operator Â in the Schrödinger picture.

Consider in particular the effect of choosing the transformation Û to be the adjoint (that is, the

inverse) of the time development operator. The transformation of the state vectors is

|Ψ(t)〉 → T̂ †(t, t0)|Ψ(t)〉 = T (t0, t)T (t, t0)|Ψ(t0)〉 = |Ψ(t0)〉 (2.17)
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Thus, in this picture, all the time dependence of the state vectors has been removed: they re-

main static in the Hilbert space. The observables, on the other hand, have absorbed all the time

dependence: they are represented by operators of the form

Â′(t) = T̂ †(t, t0)ÂT̂ (t, t0) = T̂ (t0, t)ÂT̂ (t, t0) (2.18)

This formulation is called the Heisenberg picture. In many respects it looks closer to classical

mechanics, because the operators representing observables obey equations of motion similar to

those of the corresponding classical observables. Differentiating eq. (2.18) and using eq. (2.8), we

find
d

dt
Â′ =

i

h̄

[

Ĥ ′, Â′
]

+
∂

∂t
Â′ (2.19)

When the Schrödinger operator Â is time-independent and commutes with the Hamiltonian, then

so also is the Heisenberg operator Â′, in fact Â′ = Â, since it represents a constant of the motion. In

particular, the Hamiltonian itself (when not explicitly time-dependent) is constant and represents

the energy of the system.

On the other hand, when Â′ does not commute with the Hamiltonian then eq. (2.19) is the analogue

of the classical equation of motion. Consider for example the motion of a particle in a potential

V (r). The Heisenberg momentum operator p̂′ satifies the equation

d

dt
p̂′ =

i

h̄

[

Ĥ ′, p̂′
]

(2.20)

where the Hamiltonian is

Ĥ ′ =
1

2m
p̂′2 + V (r̂′) (2.21)

The Schrödinger and Heisenberg position and momentum operators satisfy the same commutation

relations:
[

r̂′j , p̂
′
k

]

= [r̂j , p̂k] = ih̄ δjk (2.22)

and hence
[

Ĥ ′, p̂′
]

= ih̄∇V (r̂′) (2.23)

so that
d

dt
p̂′ = −∇V (r̂′) = F̂(r̂′) (2.24)

where F̂ is the force operator. This is just Newton’s second law, but now it involves quantum

mechanical operators in the Heisenberg picture.

Problem 2: Prove the results (2.22) and (2.23).
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A third formulation of quantum dynamics that is often useful is the interaction picture. Here we

partition the Hamiltonian into an interaction-free part Ĥ0 (p̂2/2m for a single particle) and an

interaction term V̂ . Then we make a unitary transformation that involves only the interaction-free

part of the Hamiltonian:

|Ψ(t)〉 → |Ψi(t)〉 = Û(t, t0)|Ψ(t)〉 (2.25)

and correspondingly

Â→ Âi = Û(t, t0)ÂÛ
†(t, t0) (2.26)

where

Û(t, t0) = exp

[

i

h̄
(t− t0)Ĥ0

]

(2.27)

The advantage of the interaction picture is that the only time dependence remaining in the state

vectors is that associated with the interaction:

∂

∂t
|Ψi(t)〉 = − i

h̄
V̂i|Ψi(t)〉 (2.28)

where V̂i is the transformed interaction term,

V̂i = Û(t, t0)V̂ Û
†(t, t0) . (2.29)

On the other hand, the time dependence of the transformed operators is given entirely by the

interaction-free part of the Hamiltonian:

d

dt
Âi =

i

h̄

[

Ĥ0, Âi

]

+
∂

∂t
Âi (2.30)

Notice that by setting Ĥ0 = 0 or Ĥ0 = Ĥ in the interaction picture we recover the Schrödinger or

Heisenberg picture, respectively.

Problem 3: Prove the results (2.28) and (2.30).

2.3 Canonical quantisation and constants of motion

We can generalize the relation between the classical equations of motion and the Heisenberg picture

of quantum dynamics, and this leads to a general rule for quantising a classical system. We recall
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first1 that if q is a classical generalized coordinate and p is its conjugate momentum, then Hamilton’s

equations of motion in classical mechanics are

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
(2.31)

Therefore for any classical observable A(q, p, t) we have

dA

dt
=

∂A

∂q

dq

dt
+
∂A

∂p

dp

dt
+
∂A

∂t

=
∂A

∂q

∂H

∂p
− ∂A

∂p

∂H

∂q
+
∂A

∂t
(2.32)

= [A,H]PB +
∂A

∂t

where [· · ·]PB denotes the classical Poisson bracket

[A,B]PB ≡ ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
(2.33)

Comparing with the quantum mechanical equation of motion in the Heisenberg picture, eq. (2.19),

we can formulate the following rules for the canonical quantisation of a classical system:

1. Replace the classical observables by quantum mechanical observables in the Heisenberg pic-

ture, A→ Â′;

2. Replace the classical Poisson brackets by quantum mechanical commutators according to the

prescription

[A,B]PB → 1

ih̄
[Â′, B̂′] (2.34)

Then we see immediately that [q, p]PB = 1 implies [q̂′, p̂′] = ih̄.

In defining the quantum Hamiltonian Ĥ, care must be taken in ordering of operators, so as to obtain

a Hermitian Hamiltonian operator. For example, if the term pq appears in the classical Hamiltonian,

it becomes 1
2(p̂′q̂′ + q̂′p̂′). Where there are ambiguities in this procedure, they represent genuinely

different quantum systems with the same classical limit, since the differences vanish in the limit

h̄→ 0.

Problem 4: Suppose the classical Hamiltonian involves p2q2, which can be written as 1
2(p2q2 +

q2p2), pq2p or qp2q, for example. Show that canonical quantisation of these three expressions yields

Hermitian operators, and evaluate the differences between them.

1Those not familiar with the Hamiltonian formulation of classical mechanics (covered in the TP1 course) can find

a good concise exposition in Kibble and Berkshire, Classical Mechanics, Ch. 12.



2.4. POSITION AND MOMENTUM REPRESENTATIONS 31

2.4 Position and momentum representations

For a system consisting of a single particle, we can use the eigenstates of the position operator or

the momentum operator as a basis. The states of the system, and operators acting on them, are

then said to be represented in the position or momentum representation, respectively. We can find

the relationship between them as follows.

In one dimension, the eigenvalue equations for x̂ and p̂ read

x̂|x′〉 = x′|x′〉

p̂|p′〉 = p′|p′〉

〈x|x′〉 = δ(x− x′)

〈p|p′〉 = δ(p− p′) (2.35)

These definitions, the fundamental commutator

[x̂, p̂] = ih̄ (2.36)

and the properties of the Dirac delta function in Section 1.3.7 can be used to determine the following

matrix elements:

〈x′|p̂|x′′〉 =
h̄

i

∂

∂x′
δ(x′ − x′′)

〈p′|x̂|p′′〉 = − h̄
i

∂

∂p′
δ(p′ − p′′)

〈x′|p̂2|x′′〉 =

(

− ih̄
∂

∂x′

)2

δ(x′ − x′′)

〈p′|x̂2|p′′〉 =

(

ih̄
∂

∂p′

)2

δ(p′ − p′′) (2.37)

Problem 5: Verify the formulae (2.37)
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Now consider the eigenvalue problem for the momentum operator in the position representation. If

p̂|p′〉 = p′|p′〉

then we have

〈x′|p̂|p′〉 =

∫

dx′′〈x′|p̂|x′′〉〈x′′|p′〉

=

∫

dx′′
(

− ih̄
∂

∂x′
δ(x′ − x′′)

)

〈x′′|p′〉

= −ih̄ ∂

∂x′

∫

dx′′δ(x′ − x′′)〈x′′|p′〉

= −ih̄ ∂

∂x′
〈x′|p′〉 (2.38)

On the other hand, we also have

〈x′|p̂|p′〉 = p′〈x′|p′〉

Therefore

−ih̄ ∂

∂x′
〈x′|p′〉 = p′〈x′|p′〉 (2.39)

which implies

〈x′|p′〉 =
1√
2πh̄

exp

(

ip′x′

h̄

)

(2.40)

where we have chosen the normalisation such that

〈p′′|p′〉 =

∫

dx′〈p′′|x′〉〈x′|p′〉

=

∫

dx′〈x′|p′′〉∗〈x′|p′〉

=
1

(2πh̄)

∫

dx′ exp

(

i(p′ − p′′)x′

h̄

)

= δ(p′′ − p′) (2.41)

These results can be generalised to three-dimensions. We have

|r〉 = |x, y, z〉

r̂|r〉 = r|r〉

〈r′|r′′〉 = δ(r′ − r′′)
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|p〉 = |px, py, pz〉

p̂|p〉 = p|p〉

〈p′|p′′〉 = δ(p′ − p′′)

〈r′|p̂|r′′〉 = −ih̄∇r′δ(r
′ − r′′)

〈p′|r̂|p′′〉 = ih̄∇p′δ(p
′ − p′′)

〈r|p〉 =
1

(2πh̄)3/2
exp (ir · p/h̄) (2.42)

The wave function of a state |ψ〉 in the position representation is defined as

ψ(r) = 〈r|ψ〉 (2.43)

and similarly in the momentum representation

φ(p) = 〈p|ψ〉 (2.44)

Using the above results we obtain the familiar Fourier relation

φ(p) =

∫

dr 〈p|r〉 〈r|ψ〉

=
1

(2πh̄)3/2

∫

dr exp (−ir · p/h̄)ψ(r) (2.45)

and similarly for the inverse relation

ψ(r) =
1

(2πh̄)3/2

∫

dp exp (ir · p/h̄)φ(p) (2.46)

2.5 The propagator in the position representation

A very useful concept in quantum dynamics is the propagator, which is defined in the position

representation as the amplitude for a transition to position r at time t from an initial position r ′

at time t′. In terms of the time development operator introduced in Section 2.1, we have

K(r, r′; t, t′) = 〈r|T̂ (t, t′)|r′〉 (2.47)

and since T̂ (t, t) = Î the initial condition is

K(r, r′; t, t) = 〈r|r′〉 = δ(r− r′) (2.48)
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Using the definition (2.43) of the position-space wave function and the resolution of the identity

operator

Î =

∫

dr′ |r′〉〈r′| (2.49)

we can write

ψ(r, t) = 〈r|ψ(t)〉 = 〈r|T̂ (t, t′)|ψ(t′)〉

=

∫

dr′ 〈r|T̂ (t, t′)|r′〉〈r′|ψ(t′)〉 =

∫

dr′K(r, r′; t, t′)ψ(r′, t′) (2.50)

In other words, the propagator is a Green function for the time-dependent Schrödinger equation,

enabling us to express the wave function at time t in terms of its form at some initial time t ′.

Problem 6: Derive the following properties of the propagator from those of the time development

operator

K(r′, r; t′, t) = K∗(r, r′; t, t′)

K(r, r′; t, t′) =

∫

dr′′K(r, r′′; t, t′′)K(r′′, r′; t′′, t′) (2.51)

In the case that the Hamiltonian does not depend explicitly on time, the time development operator

is given by eq. (2.9) and so

K(r, r′; t, t′) = 〈r| exp

[

− i

h̄
Ĥ(t− t′)

]

|r′〉 (2.52)

Now suppose that we know the energy eigenstates of the system, |ψn〉, with energies En. Inserting

the resolution of the identity operator

Î =
∑

n

|ψn〉〈ψn| (2.53)

we have

K(r, r′; t, t′) =
∑

n

ψn(r)ψ∗n(r′) exp

[

− i

h̄
En(t− t′)

]

(2.54)

2.5.1 Free particle propagator

For a free particle the Hamiltonian is simply

Ĥ = p̂2/2m (2.55)
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and momentum eigenstates are also energy eigenstates. Therefore the sum in eq. (2.54) becomes

an integral over momenta and we can write

K(r, r′; t, t′) =

∫

dp 〈r|p〉〈p|r′〉 exp

[

− ip2

2mh̄
(t− t′)

]

=
1

(2πh̄)3

∫

dp exp

{

i

h̄

[

p · (r− r′)− p2

2m
(t− t′)

]}

(2.56)

This can be reduced to a standard integral by completing the square in the exponent. Defining

p′ = p−m
r− r′

t− t′
(2.57)

we have

K(r, r′; t, t′) =
1

(2πh̄)3

∫

dp′ exp

{

i

h̄

[

m(r− r′)2

2(t− t′)
− p′2

2m
(t− t′)

]}

=

[ −im
2πh̄(t− t′)

]3/2

exp

[

im(r− r′)2

2h̄(t− t′)

]

(2.58)

This expression has a number of important properties that carry over to more general cases. First

we note that it is a function of r−r′ and t−t′, because the Hamiltonian is invariant under translation

of the origin in space and time. Since the Hamiltonian is also invariant under time reversal, the

propagator also has the property

K(r, r′; t, t′) = K∗(r, r′; t′, t) (2.59)

It follows from this and the fundamental property

K(r′, r; t′, t) = K∗(r, r′; t, t′) (2.60)

derived earlier, that the propagator is symmetric under the interchange of r and r ′:

K(r, r′; t, t′) = K(r′, r; t, t′) (2.61)

Problem 7: Show that the propagator (2.58) is indeed a Green function for the time-dependent

Schrödinger equation, i.e. it satisfies that equation and the boundary condition (2.48). Show further

that it gives the expected wave function at t 6= 0 when the wave function at t = 0 is a plane wave

ψ(r, 0) = exp(ik · r).
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2.5.2 Simple harmonic oscillator propagator

A more complicated case is that of a particle moving in a potential V (r). For simplicity we consider

motion in one dimension, for which the Hamiltonian is

Ĥ =
p̂2

2m
+ V (x̂) (2.62)

Noting that this expression is invariant under time translation (but not under spatial translation,

unless V is constant), we expect the propagator to be a function of t− t′,

K(x, x′; t, t′) = K(x, x′; t− t′, 0) (2.63)

Therefore, without loss of generality, we can set t′ = 0. Let us try a solution of the form

K(x, x′; t, 0) = exp

[

i

h̄
S(x, x′; t)

]

(2.64)

Since the propagator satisfies the time-dependent Schrödinger equation

ih̄
∂K

∂t
= − h̄2

2m

∂2K

∂x2
+ V (x)K (2.65)

the function S satisfies the non-linear differential equation

∂S

∂t
+

1

2m

(

∂S

∂x

)2

− ih̄

2m

∂2S

∂x2
+ V (x) = 0 (2.66)

Eq. (2.66) is difficult to solve in general. In the case of a free particle, V (x) = 0, we see from

eq. (2.58) that S(x, x′; t) is a quadratic function of x and x′. In the simple harmonic oscillator

potential

V (x) =
1

2
mω2x2 (2.67)

the extra term in the Hamiltonian is quadratic, and therefore we guess that S(x, x ′; t) remains

quadratic. Furthermore the Hamiltonian is time-reversal invariant and so S(x, x ′; t) must be sym-

metric in x and x′. We therefore try a solution of the form

S(x, x′; t) = a(t)(x2 + x′2) + b(t)xx′ + c(t) (2.68)

which gives

ȧ(x2 + x′2) + ḃxx′ + ċ+
1

2m
(2ax+ bx′)2 − ih̄a

m
+

1

2
mω2x2 = 0 (2.69)

Since this equation must be true everywhere, the coefficient of each power of x and x ′ must be zero,

giving the following coupled ordinary differential equations

ȧ = − 2

m
a2 − 1

2
mω2 = − b2

2m
, ḃ = − 2

m
ab , ċ =

ih̄

m
a (2.70)
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It is not difficult to see that the solution of these equations, satisfying the appropriate initial

condition, is

a(t) =
1

2
mω cotωt , b(t) = − mω

sinωt
, c(t) =

1

2
ih̄ log sinωt+ constant (2.71)

so that

K(x, x′; t, 0) =
C√

sinωt
exp

{

imω

2h̄ sinωt

[

(x2 + x′2) cosωt− 2xx′
]

}

(2.72)

where C is a constant. Notice that in the limit ω → 0 the potential vanishes and we must recover

the free-particle propagator. This fixes the constant as

C =

√

mω

2πih̄
(2.73)

Problem 8: Recall that the ground-state wave function of the harmonic oscillator has the form

ψ0(x) = N exp

[

−mω
2h̄

x2
]

(2.74)

where N is a normalization constant. Suppose that the initial state is represented by a displaced

ground-state

ψ(x, t = 0) = ψ0(x− x0) (2.75)

Show that |ψ(x, t)|2 oscillates without any change of shape, i.e.

|ψ(x, t)|2 = |ψ0(x− x0 cosωt)|2 (2.76)

2.6 Introduction to path integral formulation

Up to now, everything that you have learnt in quantum mechanics has been formulated in terms of

vector spaces and operators acting on those spaces. Even simple wave mechanics has been presented

in the framework of a vector space of wave functions. In this approach, the Hamiltonian operator

plays a central rôle as the generator of time development, culminating in expressions like eq. (2.52)

for the propagator.

Surprisingly, there is a completely different but equivalent formulation of quantum mechanics,

which does not involve vector spaces or operators and is based on the Lagrangian rather than

the Hamiltonian version of of classical mechanics. This is the path integral formulation invented by
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Feynman. In many ways it is more intuitive, but it involves the mathematics of functional integrals,

which is less familiar.

We shall illustrate the path integral formulation in the simple case of a particle moving in a one-

dimensional potential V (x). Consider the propagator K(xT , x0;T ), which gives the probability

amplitude for propagation of the particle from position x0 at time t = 0 to position xT at time T .

In the operator formulation we write this as

K(xT , x0;T ) = 〈xT |e−iĤ(p̂,x̂)T/h̄|x0〉 (2.77)

where Ĥ(p̂, x̂) is the Hamiltonian operator, given in this case by

Ĥ =
p̂2

2m
+ V̂ (x̂) (2.78)

In classical mechanics, the propagation of the particle from x0 to xT takes place along the unique

trajectory x(t) which is the path of least action between these two points. Recall that the action S

is defined as the time integral of the Lagrangian,

S[x(t)] =

∫ T

0
L(x, ẋ) dt (2.79)

where in this case

L(x, ẋ) =
1

2
mẋ2 − V (x) (2.80)

We write S[x(t)] with square brackets to indicate that S is a functional of the path x(t). Technically,

a functional is a mapping from functions to numbers. Thus any definite integral is a functional

of its integrand. The Dirac delta function is also, strictly speaking, a functional, since it only has

meaning as a mapping from a function f(x) to its value at a particular point:

f(x) →
∫

f(x) δ(x− a) dx = f(a) (2.81)

As should be familiar by now, minimizing (or maximizing) the action functional leads to the

Lagrange equation of motion,
d

dt

∂L

∂ẋ
=
∂L

∂x
(2.82)

which in this case is just Newton’s second law:

mẍ = −dV
dx

(2.83)

In quantum mechanics, particles have wave-like properties and therefore they do not propagate

along a unique trajectory. Instead, waves propagate in all directions from the source at x0, and can
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interfere constructively or destructively at the detection point xT . To find the amplitude at xT we

have to sum the complex amplitudes associated with all possible paths from x0 to xT . The path

integral formulation asserts that the amplitude for the path x(t) is simply

A[x(t)] = eiS[x(t)]/h̄ (2.84)

We can see that classical mechanics will follow from this formula in the limit h̄ → 0. For in that

case the phases of neighbouring paths will be so rapidly varying that their contributions to the

sum will cancel, except for the paths around the trajectory where S[x(t)] is an extremum. In that

region of stationary phase the contributions will all combine in phase and, in the limit h̄→ 0, the

particle will certainly be found there. Thus we recover the result that the classical trajectory is an

extremum of the action.

In the quantum-mechanical case we have to sum over all possible paths, and in general there will

be an infinite number of them. The expression for the propagator therefore becomes a functional

integral

K(xT , x0;T ) =

∫

Dx(t) eiS[x(t)]/h̄ (2.85)

The notation
∫

Dx(t) indicates that we have to sum over all paths starting at x0 and ending at

xT . We shall do this by discretizing the problem: divide the time T into N intervals of duration

ε = T/N and specify the path x(t) by the points xk = x(kε), k = 1, . . . , N , with xN = xT . Then

we have to integrate over all possible values of x1, . . . , xN−1, and take the limit ε → 0, N → ∞
with εN = T fixed, at the end. Thus we define

∫

Dx(t) = Lim [C(ε)]N dx1 . . . dxN−1 (2.86)

where C(ε) is a constant factor in the contribution from each segment of the path, to be determined.

To justify eq. (2.85), and to determine C(ε), we go back to the expression (2.77) for the propagator

in the operator formulation and write

e−iĤT/h̄ = Lim

(

1− iĤT

h̄N

)N

(2.87)

Now we insert the resolution of the identity

Î =

∫

dxk |xk〉〈xk| (2.88)

between every factor, so that

K(xT , x0;T ) = Lim

∫

(

N−1
∏

k=1

dxk

)

N−1
∏

k=0

〈xk+1|(1 − iĤε/h̄)|xk〉 (2.89)
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Each factor in the product is now easy to evaluate. Introducing

Î =

∫

dpk |pk〉〈pk| (2.90)

we have

〈xk+1|p̂2|xk〉 =

∫

dpk p
2
k〈xk+1|pk〉〈pk|xk〉 =

∫

dpk

2πh̄
p2

k exp [ipk(xk+1 − xk)] (2.91)

and

〈xk+1|V̂ (x̂)|xk〉 = V (xk) δ(xk+1 − xk) (2.92)

We choose to write the delta function as a Fourier integral,

δ(xk+1 − xk) =

∫

dpk

2πh̄
exp [ipk(xk+1 − xk)/h̄] (2.93)

so that, collecting all the terms,

〈xk+1|(1− iĤε/h̄)|xk〉 =

∫

dpk

2πh̄
[1− iH(pk, xk)ε/h̄] exp [ipk(xk+1 − xk)] (2.94)

Notice that the operator Ĥ(p̂, x̂) on the left-hand side has been replaced on the right-hand side

by the function H(pk, xk). Furthermore, since we shall take the limit ε → 0, we can equally well

write [1− iHε/h̄] as exp[−iHε/h̄]. Putting everything together, we have the following non-operator

expression for the propagator:

K(xT , x0;T ) = Lim

∫

(

N−1
∏

k=1

dxk

)

N−1
∏

k=0

dpk

2πh̄
exp

{

iε

h̄
[pk(xk+1 − xk)/ε−H(pk, xk)]

}

(2.95)

Taking the limit, we finally obtain

K(xT , x0;T ) =

∫

DpDx exp

{

i

h̄

∫ T

0
dt [pẋ−H(p, x)]

}

(2.96)

where the functional integration here is defined by

∫

DpDx = Lim

∫

(

N−1
∏

k=1

dxk

)

N−1
∏

k=0

∫

dpk

2πh̄
(2.97)

Noting that the Hamiltonian is defined as

H(p, x) = pẋ− L(x, ẋ) (2.98)

where p = ∂L/∂ẋ, we see that eq. (2.96) is now very close to the required form (2.85). The

difference lies in the integration over all intermediate positions and momenta rather than just the
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positions. However, the integration over momenta can be performed explicitly, since the exponent

is a quadratic function of the relevant variables:

∫

dpk exp

{

iε

h̄

[

pk(xk+1 − xk)/ε−
p2

k

2m

]}

=

∫

dp′k exp

{

iεm

2h̄
(xk+1 − xk)

2/ε2 − iε

2mh̄
(p′k)

2
}

=

√

2πmh̄

iε
exp

{

iεm

2h̄
(xk+1 − xk)

2/ε2
}

(2.99)

where we have used the change of variable p′k = pk − m(xk+1 − xk)/ε to perform a Gaussian

integration. Consequently an expression equivalent to (2.95) is

K(xT , x0;T ) = Lim

(−im
2πh̄ε

)N
2

∫

(

N−1
∏

k=1

dxk

)

N−1
∏

k=0

exp

{

iε

h̄

[

1

2
m(xk+1 − xk)

2/ε2 − V (xk)

]}

(2.100)

Taking the limit, we now obtain

K(xT , x0;T ) =

∫

Dx(t) exp

{

i

h̄

∫ T

0

[

1

2
mẋ2 − V (x)

]

dt

}

(2.101)

which is exactly eq. (2.85), with the functional integration defined as in eq. (2.86) with

C(ε) =

√

−im
2πh̄ε

(2.102)

In summary, the path integral formulation allows us to proceed directly from classical to quantum

mechanics, without having to introduce the machinery of vector spaces and operators. It is easily

extended to any system that can be represented by a classical Lagrangian L({qi}, {q̇i}), where

{qi} are generalized coordinates, no matter how many. This makes it particularly convenient for

quantum field theory, where the field strength at every point in space-time has to be treated as a

separate generalized coordinate. The price to be paid for the compact formalism is the introduction

of functional integration, which in practice can only be carried out in closed form for Gaussian

integrands like those encountered above.

Problem 9: Show that the exponential factor in the propagator for the simple harmonic oscillator,

eq. (2.72), is just exp(iScl/h̄) where Scl is the action of the classical trajectory. (The non-exponential

factor, which depends only on the elapsed time and not on the initial or final position, is the

contribution of deviations from the classical path, i.e. quantum fluctuations.)
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Chapter 3

Approximate Methods

3.1 Introduction

There are very few problems in QM that can be solved exactly. To use QM either to verify or

predict the results of experiments, one needs to resort to approximation techniques such as

• Variational methods

• Perturbative methods

• The JWKB method

We assume here that perturbative methods are familiar from the Advanced Quantum Physics

course, and so we concentrate on the other two approaches. Variational methods should also be

somewhat familiar, but we develop them further here. The JWKB method will be completely new.

At the end of the chapter we compare and contrast these methods with perturbation theory, using

as an example the anharmonic oscillator.

3.2 Variational methods

Variational methods (as applied to determine the ground state) involve using a parameterised

trial wave function to represent the ground state wave function. The parameters are optimised

to minimise the ground state energy. Consider a physical system whose Hamiltonian Ĥ is time

43
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independent. Assume that the entire spectrum of Ĥ is discrete and non-degenerate.

Ĥ|ψn〉 = En|ψn〉 (n = 0, 1, 2, . . .) (3.1)

The energy spectrum is ordered as follows:

E0 < E1 < E2 < . . . (3.2)

3.2.1 Variational theorem

If |Ψ〉 represents an arbitrary state of the system, then:

〈Ĥ〉 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≥ E0 (3.3)

with the equality occurring if and only if |Ψ〉 is the ground state eigenvector of Ĥ with eigenvalue

E0 (the ground state energy).

Proof: Expand |Ψ〉 in the basis of the normalised eigenstates of Ĥ:

|Ψ〉 =
∑

n

cn|ψn〉 (3.4)

This implies:

〈Ψ|Ĥ |Ψ〉 =
∑

n

∑

m

〈ψm|Ĥ|ψn〉 c∗m cn (3.5)

=
∑

n

|cn|2En

and

〈Ψ|Ψ〉 =
∑

n

∑

m

〈ψm|ψn〉c∗m cn (3.6)

=
∑

n

|cn|2

Therefore

〈Ĥ〉 =

∑

n |cn|2En
∑

n |cn|2
(3.7)

Since E0 < E1 < E2 < . . .,
∑

n

|cn|2En ≥ E0

∑

n

|cn|2 (3.8)

so that

〈Ĥ〉 ≥ E0
∑

n |cn|2
∑

n |cn|2
= E0 (3.9)
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The equality sign holds when c0 = 1 and cn = 0 ∀ n 6= 0, i.e. when |Ψ〉 = |ψ0〉.

In actual applications to determine the ground state properties of bound systems, one first chooses

a trial wave function ψtrial(r, {α, β, . . .}) which depends on the parameters α, β, . . . etc. We then

calculate the expectation value

E(α, β, . . .) =
〈ψtrial|Ĥ|ψtrial〉
〈ψtrial|ψtrial〉

(3.10)

which (from the variational theorem) is an upper bound to the ground state energy of the system.

(The only restriction on ψtrial(r, {α, β, . . .}) is that it obeys the same boundary conditions as the

eigenstates of the Hamiltonian, Ĥ. Otherwise, Eq. (3.4) is not valid.) We of course choose trial

wave functions that are appropriate for the problem at hand.

We then optimise the parameters α, β, . . . by determining those values of α, β, . . . which minimise

E(α, β, . . .) for that particular trial wave function. This means that we have to solve the following

set of equations (linear or non-linear, depending on the functional form of ψtrial(r, {α, β, . . .}) )

∂

∂α
E(α, β, . . .) = 0

∂

∂β
E(α, β, . . .) = 0 (3.11)

etc. Suppose we denote the values of the parameters that minimise E(α, β, . . .) by (ᾱ, β̄, . . .). Then

the minimum value, E(ᾱ, β̄, . . .) constitutes an upper bound to the exact ground state energy,

while the trial wave function for the optimal values, ψ(r, {ᾱ, β̄, . . .}), is an approximation to the

exact ground state wave function.

Problem 1: Consider

E = 〈ψtrial|Ĥ|ψtrial〉

with an arbitrary normalised trial wave function, ψtrial. Show that if ψtrial differs from the correct

ground state wave function, ψ0, by terms of order ε, then E as defined above differs from the ground

state energy by order ε2.

Problem 2: Use the variational method to show that a one-dimensional attractive potential will

always have a bound state. (Hint: Consider a square well that will fit inside the potential.)

Problem 3: Use the variational method to estimate the ground state energy for the anharmonic

oscillator

Ĥ =
P̂ 2

2m
+ λx̂4



46 CHAPTER 3. APPROXIMATE METHODS

Compare your result with the exact result

E0 = 1.060λ1/3
(

h̄2

2m

)2/3

(Hint: Use a Gaussian trial wave function.)

Answer: Using

ψtrial(x) =

√

β√
π
e−

1

2
β2x2

the optimal value of β = (6mλ/h̄2)
1

6 giving Emin = 1.083( h̄2

2m )
2

3λ
1

3 .

Problem 4†: A particle of mass m (moving in three dimensions) is bound in the ground state of

the exponential potential

V (r) = − 4h̄2

3ma2
e−r/a

Using

ψtrial(r) = A e(−βr/2a)

as a trial function with β as the variational parameter (A is determined by normalisation), obtain

an upper bound for the ground state energy.

Answer: Optimal value is β = 1 and the upper bound for the ground state energy is − h̄2

24ma2 .

Problem 5†: Let E1 and E2 be the ground state energies of a particle of mass m moving in the

attractive potentials V1(r) and V2(r) respectively. If V1(r) ≤ V2(r) for all r one intuitively expects

E1 ≤ E2. Use a variational argument to derive this result.

3.2.2 Generalisation: Ritz theorem

The variational theorem is generalised as follows:

Theorem: The expectation value of the Hamiltonian is stationary in the neighbourhood of the

discrete eigenvalues.

Proof: By stationary, we mean that the change in the value of 〈Ĥ〉 when the state vector is changed

by an infinitesimal amount is zero (to first order in the change in the state vector). We need to

show that each stationary expectation value is an eigenvalue of Ĥ. Let

〈Ĥ〉 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (3.12)
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Note that this is a “functional” of the state vector |Ψ〉. Consider an infinitesimally small change

to |Ψ〉:
|Ψ〉 → |Ψ〉+ |δΨ〉 (3.13)

We need to determine the corresponding change to 〈Ĥ〉. From (3.12) we have

〈Ψ|Ψ〉〈Ĥ〉 = 〈Ψ|Ĥ |Ψ〉 (3.14)

Inserting (3.13) into the above equation we have:

(〈Ψ|+ 〈δΨ|)(|Ψ〉+ |δΨ〉)[〈Ĥ〉+ δ〈Ĥ〉] = (〈Ψ|+ 〈δΨ|)Ĥ(|Ψ〉+ |δΨ〉) (3.15)

which when expanded out gives:

(〈Ψ|δΨ〉 + 〈Ψ|Ψ〉+ 〈δΨ|Ψ〉 + 〈δΨ|δΨ〉)[〈Ĥ〉+ δ〈Ĥ〉]

= 〈Ψ|Ĥ|δΨ〉 + 〈Ψ|Ĥ|Ψ〉+ 〈δΨ|Ĥ |δΨ〉 + 〈δΨ|Ĥ |Ψ〉 (3.16)

Using (3.13), dropping all terms of second order, after some algebra we finally get:

δ〈Ĥ〉〈Ψ|Ψ〉 = 〈Ψ|(Ĥ − 〈Ĥ〉)|δΨ〉 + 〈δΨ|(Ĥ − 〈Ĥ〉)|Ψ〉 (3.17)

Thus 〈Ĥ〉 is stationary, i.e. δ〈Ĥ〉 = 0, provided the right hand side of (3.17) is zero:

〈Ψ|(Ĥ − 〈Ĥ〉)|δΨ〉+ 〈δΨ|(Ĥ − 〈Ĥ〉)|Ψ〉 = 0 (3.18)

Suppose we define |Φ〉 = (Ĥ − 〈Ĥ〉)|Ψ〉. Then (3.18) becomes:

〈Φ|δΨ〉+ 〈δΨ|Φ〉 = 0 (3.19)

This must be satisfied for any |δΨ〉. Let us choose a |δΨ〉 such that:

|δΨ〉 = δλ|Φ〉 (3.20)

where δλ is a number of first order in small quantities. This implies that (3.19) becomes:

2δλ〈Φ|Φ〉 = 0 (3.21)

i.e. that the norm of |Φ〉 equals zero. Therefore, |Φ〉 must be zero, i.e.

(Ĥ − 〈Ĥ〉)|Ψ〉 = 0 (3.22)

This implies that:

Ĥ|Ψ〉 = 〈Ĥ〉|Ψ〉 (3.23)

Therefore the right hand side of (3.12) is stationary if and only if the state vector |Ψ〉 corresponds

to an eigenvector of Ĥ, and the stationary values correspond to the eigenvalues of Ĥ.
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3.2.3 Linear variation functions

Representations of eigenstates for all except the simplest systems are complicated functions. In

practice, we expand the arbitrary eigenstate |Ψ〉 as a sum of a finite number (N) of functions

(whose functional form are chosen depending on the type of system under study) so that:

|Ψ〉 =
N
∑

i=1

ci |i〉 (3.24)

and these functions are assumed linearly independent (but not necessarily mutually orthogonal).

For example |i〉 can be plane waves, or Gaussian functions or a mixture of both, etc. Here ci are

complex numbers that are to be determined. The optimal choice for these linear coefficients, from

the variational theorem, are those that make Ĥ stationary. We have

〈Ψ|Ĥ |Ψ〉 −E〈Ψ|Ψ〉 = 0 (3.25)

(We set E = 〈Ĥ〉). Substituting (3.24) into (3.25) yields:

N
∑

i=1

N
∑

j=1

c∗j ci Hji −E
N
∑

i=1

N
∑

j=1

c∗j ci Sji = 0 (3.26)

where

Hji = 〈j|Ĥ |i〉

Sji = 〈j|i〉 (3.27)

Differentiating (3.26) with respect to c∗l gives:

N
∑

i=1

(Hli −E Sli) ci = 0 (3.28)

Cramer’s rule tells us that all the ci’s are zero unless the determinant of the coefficients vanishes:

|H−E S| = 0 (3.29)

Here H is the N × N matrix whose coefficients are Hji defined above, i.e. it is the matrix repre-

sentation of the Hamiltonian in the basis {|i〉}. The N × N matrix S whose coefficients are Sji

is called the overlap matrix. Equation (3.29) is called the secular equation for the energy E

and is an N th order polynomial in E. This yields N real roots, some of which may be degenerate.

Arranging these roots in order of increasing value as

Ẽ0 ≤ Ẽ1 ≤ . . . ẼN−1
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we can compare them with the exact spectrum of the system (in order of increasing energy)

E0 ≤ E1 ≤ . . . ≤ EN−1 ≤ EN ≤ . . .

From the variation theorem, we know that

E0 ≤ Ẽ0 (3.30)

Moreover, it can be proved1 that

E1 ≤ Ẽ1, E2 ≤ Ẽ2, . . . , EN−1 ≤ ẼN−1 (3.31)

Thus the linear variation method provides upper bounds to the energies of the lowest N eigenstates

of the system. The roots of Eq. (3.29) are used as approximations to the energies of the lowest

eigenstates. Increasing the value of N in (3.24) (which corresponds to increasing the number of

functions to represent the eigenstates) can be shown to increase (or at worst cause no change in)

the accuracy of the previously calculated energies. If the set of functions {|i〉} form a complete set,

then we will obtain the exact wave functions of the system. Unfortunately, to have a complete set,

we usually need an infinite number of expansion functions!

To obtain an approximation to the ground state wave function, we take the lowest root Ẽ0 of the

secular equation and substitute it into the set of equations (3.28); we then solve this set of equations

for the coefficients c01, c
0
2, . . . , c

0
N , where the superscript is added to indicate that these coefficients

correspond to Ẽ0. (As Eq. (3.28) constitutes a set of linear, homogeneous equations, we can only

determine ratios of coefficients; we solve the c01, c
0
2, . . . , c

0
N in terms of c01, and then determine c01

by normalisation).

Having found the c0i ’s, we take

|Ψ〉 =
N
∑

i=1

c0i |i〉

as an approximate ground state wave function. Use of the higher roots of Eq. (3.24) in Eq. (3.28)

gives approximations to the excited-state wave functions (which can be shown to be mutually

orthogonal.) This approach forms the basis for most electronic structure calculations in physics

and chemistry to determine the electronic structure of atoms, molecules, solids, surfaces, etc.

Problem 6†: Let V (x) = 0 for −1 ≤ x ≤ +1 and ∞ otherwise (the “particle in a box” problem).

Use

f1(x) = (1− x2)

f2(x) = (1− x4)

1J.K. MacDonald, Phys. Rev. 43, p.830 (1933); R.H. Young, Int. J. Quantum Chem. 6, p.596 (1972).
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to construct the trial function

|Ψ〉 =
2
∑

i=1

ci fi(x)

Find the approximate energies and wave functions for the lowest two states and compare your

results with the exact solutions to the problem.

Solution: First construct the overlap (S) and Hamiltonian matrix (H), in the above f1, f2 basis.

The overlap matrix elements are:

S11 =
16

15
, S22 =

64

45
, S12 = S21 =

128

105

and the Hamiltonian matrix elements are:

H11 =
4h̄2

3m
, H22 =

16h̄2

7m
, H12 = H21 =

8h̄2

5m

Now solve the generalised eigenvalue problem to get the eigenvalues 1.23 h̄2

m and 12.77 h̄2

m .

When we compare this with the exact eigenvalues for the first three states, ≈ 1.23 h̄2

m , 4.93 h̄2

m and

11.10 h̄2

m , we find that our calculation gives the upper bounds to the first and third state. (Note

that the estimate for the ground state is very close but NOT equal to the exact value.) Since the

basis functions are even functions it is not suprising that we do not get an estimate for the second

state as this is a odd function!

Problem 7: Consider the one-dimensional infinite well of length L. The Hamiltonian for the system

is Ĥ = − h̄2

2m
d2

dx2 + V (x) where V (x) = 0 for x ∈ [0, L] and ∞ otherwise. Find the approximate

energies and wave functions for the lowest four states and compare your results with the exact

solutions to the problem. The linear variation function is given by

Ψ(x) =
4
∑

i=1

ci fi(x)

with

f1(x) = x (L− x)

f2(x) = x2 (L− x)2

f3(x) = x (L− x) (
1

2
L− x)

f4(x) = x2 (L− x)2 (
1

2
L− x)
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Answer: You must first note that f1, f2 are even functions while f3, f4 are odd. This simplifies

evaulation of integrals when we determine the overlap and Hamiltonian matrix elements. We get:

S13 = S31 = S14 = S41 = S23 = S32 = S24 = S42 = 0

and the same for the corresponding Hamiltonian matrix elements. The other non-zero matrix

elements are given by:

S11 =
L5

30
, S22 =

L9

630
, S12 = S21 =

L7

140
, S33 =

L7

840
, S44 =

L11

27720
, S34 = S43 =

L9

5040

and

H11 =
L3

6
H22 =

L7

105
, H12 = H21 =

L5

30
, H33 =

L5

40
, H44 =

L9

1260
, H34 = H43 =

L7

280

where the Hamiltonian matrix elements are in units of h̄2

m .

The secular determinant reduces to a block diagonal form so that instead of having to evaluate

a 4 × 4 determinant, we have two 2 × 2 determinants to work out, which is much easier! The

eigenvalues (in units of h̄2

mL2 ) are ≈ 0.125, 0.500, 1.293 and 2.539. The exact eigenvalues are

0.125, 0.500, 1.125, and 2.000, for the first four states. Note that now we have estimates of all four

states as we have included even and odd functions in our basis set.

3.3 JWKB method

The JWKB (Jeffreys, Wentzel, Kramers, Brillouin) method is a semi-classical technique for ob-

taining approximate solutions to the one-dimensional Schrödinger equation. It is mainly used in

calculating bound-state energies and tunnelling rates through potential barriers, and is valid in the

limit λ = h
p = h

mv → 0 or h̄ → 0 or m → ∞ where m is the mass of the particle, p its momentum

etc.

The key idea is as follows. Imagine a particle of energy E moving through a region where the

potential V (x) is constant. If E > V , the wave function is of the form

ψ(x) = A e±ikx

k =

√

2m(E − V )

h̄

The plus sign indicates particles travelling to the right etc. The wave function is oscillatory, with

constant wavelength λ = 2π/k, and has constant amplitude, A. Consider now the case where

V (x) is not a constant but varies rather slowly in comparison to λ (so that in a region containing
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many wavelengths the potentially is essentially constant). Then it is reasonable to suppose that

ψ remains practically sinusoidal except that the wavelength and the amplitude change slowly with

x. This is the central theme of the JWKB method: rapid oscillations are modulated by gradual

variation in amplitude and wavelength.

Similarly, if E < V (with V a constant), then ψ is exponential:

ψ(x) = A e±Kx

K =

√

2m(V −E)

h̄

Now, if V (x) is not constant but again varies slowly in comparison to 1/K, the solution remains

practically exponential except that A and K are now slowly varying functions of x.

There are of course places where this idea breaks down, e.g. in the vicinity of a classical turning

point where E ≈ V . Here, λ (or 1/K) goes to infinity and V (x) can hardly be said to vary “slowly”!

Proper handling of this is the most difficult aspect of the JWKB approximation but the final results

are simple and easy to implement.

3.3.1 Derivation

We seek to solve

d2ψ

dx2
+ k2(x)ψ(x) = 0

k2(x) =
2m

h̄2 (E − V (x)) (3.32)

The semi-classical limit corresponds to k large. If k were constant, then of course the solutions

would just be e±ikx. This suggests that we try ψ(x) = eiS(x), where in general S(x) is a complex

function. Then,

dψ

dx
= iS′eiS

d2ψ

dx2
= (iS′′ − S′2)eiS (3.33)

and the Schrödinger equation reduces to (iS ′′ − S′2 + k2)eiS = 0, or

S′ = ±
√

k2(x) + iS′′(x)

= ±k(x)
√

1 + iS′′(x)/k2 (3.34)
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(Note that if k were a constant, S ′′ = 0 and S′ = ±k.)

We now attempt to solve the above equation by iteration, using S ′ = ±k as the first guess, and as

a second guess we use:

S′ = ±k
√

1± ik′(x)/k2

≈ ±k
(

1± i

2

k′(x)
k2

)

≈ ±k +
i

2

k′(x)
k

(3.35)

where we have assumed that the corrections are small. Then, we have

dS

dx
= ±k +

i

2

k′

k

S(x) ∼ ±
∫ x

k(x)dx+
i

2

∫ x k′

k
dx+ c (3.36)

The second integral is a perfect differential (d ln k), so

S(x) = ±
∫ x

k(x)dx +
i

2
ln k + c

ψ = eiS

= C e±i
∫ x

k(x)dxe−
1

2
ln k

=
C

√

k(x)
e±i

∫ x
k(x)dx (3.37)

Note that in making the expansion, we have assumed that k′

k2 � 1 or λ
2π

dk
dx � k, i.e. that the change

in k in one wavelength is much smaller than k. Alternatively, one has λ dV
dx � h̄2k2

m so that the

change in V in one wavelength is much smaller than the local kinetic energy.

Note that in the classically forbidden regions, k2 < 0, one puts k = iK(x) and carries through the

above derivation to get

ψ(x) =
C

√

K(x)
e±
∫ x

K(x)dx

K2 =
2m

h̄2 (V −E) > 0 (3.38)
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3.3.2 Connection formulae

In our discussion above, it was emphasised that the JWKB method works when the “short wave-

length approximation” holds. This of course breaks down when we hit the classical turning points

where k2(x) = 0 (which happens when E = V ). To overcome this problem, we will derive below

equations relating the forms of the solution to both sides of the turning point.

If the potential can be approximated by an increasing linear potential near the turning point x = a

(the region x > a being classically forbidden), we can write in the vicinity of the turning point

k2(x) =
2m

h̄2

(

− ∂V

∂x

)

x=a
(x− a) (3.39)

(If we have a potential which cannot be approximated linearly, we must resort to approximations

with a quadratic term and find a solution in terms of parabolic cylinder functions. We will not go

into the details of this case but you can look it up if you are interested.) The Schrödinger equation

near the turning point becomes

ψ′′ −
(

∂V

∂x

)

x=a

2m

h̄2 (x− a)ψ = 0 (3.40)

This is a linear potential problem which is solved in terms of Airy functions. If we let

y = α(a− x) ≥ 0

α3 =
2m

h̄2

∂V

∂x
≥ 0 (3.41)

then the above differential equation becomes

ψ′′(y) + y ψ(y) = 0 (3.42)

whose solutions are:

ψ = A
√
yJ− 1

3

(z) +B
√
yJ+ 1

3

(z)

z =
2

3
y

3

2

=

∫ a

x
k(x) dx (3.43)

The procedure is now to make asymptotic expansions for the Bessel functions, match them onto the

JWKB solutions in the classically allowed and forbidden regions and thus obtain formulae relating

the solutions in the two regions.
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For the case y →∞, i.e. x� a, deep inside the allowed region, we have

Jν →
√

2

πz
cos

(

z − νπ

2
− π

4

)

ψ →
√

2

πz

[

A
√
y cos

(

z +
π

6
− π

4

)

+B
√
y cos

(

z − π

6
− π

4

)]

(3.44)

i.e. it oscillates as does the JWKB solution in the left region.

If y → 0, i.e. when x→ a, near the turning point, we have

Jν ∼

(

z
2

)ν

Γ(ν + 1)

ψ → A
√
y(1

2z)
−1/3

Γ(2
3)

+
B
√
y(1

2z)
1/3

Γ(4
3)

(3.45)

Since we know that y = k2

α and z =
∫ a
x k(x) dx = 2

3
k3

α3/2
, these can be written as

ψleft(y →∞;x� a) →
√

3

π

α1/4

√

k(x)

[

A cos

(∫ a

x
k(x) dx− π

12

)

+ B cos

(∫ a

x
k(x) dx− 5π

12

)]

ψleft(near x = a) → A 31/3

Γ(2
3)

+
By

Γ(4
3) 31/3

(3.46)

We now follow a similar procedure in the classically forbidden region, x > a. Let y = α(x−a) > 0.

The Schrödinger equation now becomes ψ ′′ − yψ = 0, which has solutions:

ψ = C
√
y I 1

3

(z) +D
√
y I− 1

3

(z)

z =

∫ x

a
K(x) dx

K2(x) =
2m

h̄2

(

V (x)−E

)

(3.47)

The I ′s are Bessel functions of imaginary argument.

When the same steps described in detail above are followed, we find

ψright(x� a) →
√

3

4π

C α1/4

√

K(x)

[

e
∫ x

a
K(x) dx −

√
3

2
e−
∫ x

a
K(x) dx

]
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+

√

3

4π

D α1/4

√

K(x)

[

e
∫ x

a
K(x) dx +

√
3

2
e−
∫ x

a
K(x) dx

]

ψright(near x = a) → D 31/3

Γ(2
3 )

+
Cy

Γ(4
3) 31/3

(3.48)

We now match these two sets of solutions near x = a. Matching the functions at y = 0 gives us

D = A; matching derivatives gives us B = −C. If we let A = 1, B = 0, we find that the cosine

solutions to the left correspond to dying exponentials to the right. If we manipulate the constant

factors in the above asymptotic solutions, we finally find the connection formulae:

2
√

k(x)
cos

[ ∫ a

x
k(x) dx− π

4

]

⇐⇒ 1
√

K(x)
e−
∫ x

a
K(x) dx

1
√

k(x)
sin

[ ∫ a

x
k(x) dx− π

4

]

⇐⇒ − 1
√

K(x)
e
∫ x

a
K(x) dx (3.49)

This allow a continuation of solutions. A sine solution on the left matches into a −e+
∫ x

a
K(x) dx

solution on the right. Similar formulae for the reverse situation with the turning point on the left

(x < b classically forbidden) give

1
√

K(x)
e−
∫ b

x
K(x) dx ⇐⇒ 2

√

k(x)
cos

[ ∫ x

b
k(x) dx− π

4

]

1
√

K(x)
e
∫ b

x
K(x) dx ⇐⇒ − 1

√

k(x)
sin

[
∫ x

b
k(x) dx− π

4

]

(3.50)

Problem 8: Verify Eq. (3.49).

3.3.3 JWKB treatment of the bound state problem

Given an arbitrary potential V (x), we wish to find the approximate eigenstates. Effectively, this

means that we must find energies such that the JWKB solutions in the potential well match onto

dying exponentials in the classically forbidden regions (i.e. ψ → 0 as x → ± ∞). Consider a

potential as shown in the figure below:
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b a

V

E

Far to the left, we will have (as x→ −∞):

ψleft =
const
√

K(x)
e
∫ x

b
K(x) dx → 0 (3.51)

Inside the potential well, this matches to:

ψinside =
2 · const
√

k(x)
cos

(∫ x

b
k(x) dx− π

4

)

(3.52)

We now move along to the next turning point x = a. Rewriting ψ inside (for easy matching) as:

ψinside =
2 · const
√

k(x)
cos

(∫ a

b
k(x) dx−

∫ a

x
k(x) dx− π

4

)

(3.53)

We define

φ =

∫ a

b
k(x) dx (3.54)

and applying the connection formulae developed in the previous section, we get

ψinside =
2 · const
√

k(x)
cos

[

−
∫ a

x
k(x) dx+ φ− π

2
+
π

4

]

=
2 · const
√

k(x)

[

cos

(

φ− π

2

)

cos

(∫ a

x
k(x) dx− π

4

)

− sin

(

π

2
− φ

)

sin

(∫ a

x
k(x) dx− π

4

)]

(3.55)

The cos solution matches onto the dying exponential, but the sine matches onto a growing expo-

nential. Thus, its coefficient must be zero; i.e. sin( π
2 − φ) = 0 or π

2 − φ = −nπ or

∫ a

b
k(x) dx = (n+

1

2
)π (3.56)
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This is similar to the Bohr-Sommerfeld Quantization Rule, but with n shifted by 1
2 . This

matching may need to be done many times if we have a complicated potential such as:

Problem 9: Show that Eq. (3.56) gives the exact energy levels of a simple harmonic oscillator.

3.3.4 Barrier penetration

Given a potential like that shown below:

a b

we know that classically there is no probability of getting through the barrier. However, from

quantum mechanics we find that an incoming wave function of magnitude A will give rise to a

reflected wave function of magnitude B, and a transmitted wave function of magnitude F such

that

ψleft =
A√
k
ei
∫ x

a
k(x) dx +

B√
k
e−i

∫ x

a
k(x) dx

ψmiddle =
C√
K

e−
∫ x

a
K(x) dx +

D√
K

e
∫ x

a
K(x) dx
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ψright =
F√
k
ei
∫ x

b
k(x) dx +

G√
k
e−i

∫ x

b
k(x) dx (3.57)

Obviously we will set G = 0 at the end (there is no wave coming in from the right). First match

at the turning point x = a. We do this by rewriting ψleft in such a form as to use the connection

formulae:

ψleft = (A e−i π
4 +B ei

π
4 )

1√
k

cos

(∫ a

x
k(x) dx− π

4

)

+ i (−A e−i π
4 +B ei

π
4 )

1√
k

sin

(∫ a

x
k(x) dx− π

4

)

(3.58)

On applying the connection formula, we find:

A e−i π
4 +B ei

π
4 = 2 C

−i B ei
π
4 + i A e−i π

4 = D (3.59)

We do the same at the next turning point (x = b). Rewrite ψmiddle as

ψmiddle =
C√
K

Θ−1 e
∫ b

x
K(x) dx +

D√
K

Θ e−
∫ b

x
K(x) dx

Θ = e
∫ b

a
K(x) dx (3.60)

which on matching yields:

F ei
π
4 +G e−i π

4 = 2 D Θ

i (F ei
π
4 −G e−i π

4 ) = −C
Θ

(3.61)

These relations can be written in a simple matrix notation as:




C

D



 =
1

2

(

e−i π
4 ei

π
4

i 2 e−i π
4 −i 2 ei

π
4

)





A

B









C

D



 =

(

−i Θ ei
π
4 i Θ e−i π

4

1
2Θ ei

π
4

1
2Θ e−i π

4

)





F

G



 (3.62)

After some matrix algebra we get




A

B



 = T





F

G





T =
1

2

(

2 Θ + 1
2Θ i (2 Θ− 1

2Θ )

−i (2 Θ− 1
2Θ) 2 Θ + 1

2Θ

)

(3.63)
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where the matrix T is called the Transfer matrix. If we let G = 0, then we findA = 1
2 (2 Θ+ 1

2Θ) F

or

∣

∣

∣

∣

F

A

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

Θ + 1
4Θ

∣

∣

∣

∣

2

(3.64)

∼ Θ−2 for large Θ.

Therefore for large Θ the transmission coefficient will be

T ≡
∣

∣

∣

∣

F

A

∣

∣

∣

∣

2

∼ Θ−2 = e−2
∫ b

a
K(x) dx (3.65)

Problem 10: Verify Eq. (3.64).

Problem 11: Consider a particle with total energy E = 0 moving in the anharmonic oscillator

potential

V (x) =
1

2
mω2(x2 − εx4)

Show that, for small ε, the transmission coefficient of the potential barrier between x = 0 and

x = 1/
√
ε is

T ∼ e−2mω/3h̄ε .

(Notice that this result cannot be obtained using perturbation theory, since the function on the

r.h.s. does not have a power series expansion in ε.)

3.3.5 Alpha decay of nuclei

The potential that the alpha particle sees is shown below:
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E

rR

We assume that Z is the atomic number of the final nucleus, R is the nuclear radius and the

potential is given by:

V (r) =
2Ze2

r
r > R (3.66)

i.e. the potential is Coulombic outside the nucleus. Let the energy of the alpha particle be E and

define r0 = 2Ze2

E . We need to evaluate

I =
1√
E

∫ r0

R

(

2Ze2

r
−E

) 1

2

dr

=

∫ γR

R

(

γR

r
− 1

) 1

2

dr

γ =
2Ze2

ER
(3.67)

Substitute

r

γR
= sin2 θ

dr = 2γR sin θ cos θ dθ

θ0 = sin−1 1√
γ

(3.68)
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into the above integral to get

I = 2γR

∫ π
2

θ0

cos2 θ dθ

= γR

[

π

2
− sin−1 1√

γ
− (γ − 1)2

γ

]

(3.69)

Since the transmission coefficient is given by T ∼ e−2
∫ b

a
K(x) dx where K2(x) = 2m

h̄2 (V (r) − E) we

get

lnT = −2

√
2m

h̄
I
√
E (3.70)

For the case that E � 2Ze2

R , γ � 1 and I ∼ γR[π
2 − 1√

γ ], so we get

T = A e−β

β = π

√
2m

h̄

(

2Ze2√
E

)

A = e−
4

h̄

√
Ze2mR (3.71)

Every time the alpha particle is incident on the barrier, it has a probability T to escape. To find

the probability per unit time (Γ) to escape, we multiply by ω, the frequency of oscillation of an

alpha particle in the well of radius R, i.e.

Γ = ω A e−β (3.72)

We estimate ω as follows:

ω ' v

R

∼= ∆p

mR

∼= h̄

2mR2
(3.73)

For R = 10 fm, one finds ω = 1020 sec, taking Z = 90, then A = 6 × 10−19 and β = 182√
E

for E in

MeV. So we have

Γ ∼ 0.6 e−182/
√

E × 1040 sec−1 (E in MeV) (3.74)

Note that although our approximation is crude (since it is not really true that γ � 1), from the

above equation, one finds a very strong variation in Γ as a function of E. For example, doubling

E from 4 to 8 MeV increases the value of Γ by eleven orders of magnitude!
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3.4 Example: the anharmonic oscillator

A good place to study the strengths and weaknesses of the various approximate methods is the

anharmonic oscillator, by which we mean a simple harmonic oscillator with an additional quartic

term in the potential:

Eψ = − h̄2

2m

d2ψ

dx2
+

1

2
mω2x2ψ + λx4ψ (3.75)

(You will see shortly why we do not allow a cubic term.) It will be convenient to recast the

Schrödinger equation in dimensionless form by defining

y =

√

2mω

h̄
x , E =

E

h̄ω
, g =

λh̄

m2ω3
(3.76)

so that

Eψ = −d
2ψ

dy2
+

1

4
y2(1 + gy2)ψ (3.77)

3.4.1 Perturbation theory

The obvious approximation scheme to try first is perturbation theory. Recall that if |n〉 denotes

the nth excited state of the SHO, the perturbation series for the energy of that state will be

En = n+
1

2
+

1

4
g〈n|y4|n〉+

1

16
g2
∑

n′ 6=n

〈n|y4|n′〉〈n′|y4|n〉
n− n′

+ · · · (3.78)

The simplest way to evaluate the matrix elements is by means of the ladder operators for the SHO,

which in our rescaled notation are

â =
1

2
y +

d

dy
, â† =

1

2
y − d

dy
(3.79)

so that [â, â†] = 1 and the unperturbed (g = 0) Schrödinger equation becomes

En|n〉 =

(

â†â+
1

2

)

|n〉 =

(

ââ† − 1

2

)

|n〉 (3.80)

The properties of the ladder operators should be familiar to you. They change the level of excitation

of the SHO by one unit:

â|n〉 =
√
n|n− 1〉 , â†|n〉 =

√
n+ 1|n+ 1〉 . (3.81)

Therefore, starting from the ground state |0〉 and using y = â+ â†, we find

y|0〉 = |1〉 , y2|0〉 = |0〉+
√

2|2〉 , y3|0〉 = 3|1〉+
√

6|3〉 , y4|0〉 = 3|0〉+ 6
√

2|2〉+ 2
√

6|4〉 (3.82)
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Thus

E0 ≡ E(g) =
1

2
+

3

4
g − 1

16
g2
(

72

2
+

24

4
= 42

)

+ · · · (3.83)

Including the next term, one finds

E(g) =
1

2
+

3

4
g − 21

8
g2 +

333

16
g3 − · · · (3.84)

Notice that the coefficients in this series seem to be getting rather large; the fourth term is already

equal to the first when g = 0.024. So we start to worry about the radius of convergence – and in

fact it is zero! The series does not converge for any finite value of g.

3.4.2 JWKB method

The reason for the non-convergence of the perturbation series becomes obvious when we consider

E(g) for negative values of g. In that case the potential is as shown below:

No matter how small the value of g, eventually the negative x4 term wins at large |x|, and the

potential goes down to −∞. This means that the system has no stable bound states for g < 0.

What will happen if g < 0 and we put a particle in the potential well at small x is that it

will eventually tunnel through the potential barrier and escape to x = ±∞. In fact, we already

computed the transmission coefficient for this potential barrier using the JWKB approximation in

Problem 11. In the notation used there, ε = −2mωg/h̄ and therefore

T ∼ exp

(

1

3g

)

(g < 0) (3.85)

It follows that the probability density |Ψ|2, for any of the states that would be bound states when

g = 0, acquires a time dependence when g < 0, of the form

|Ψ(x, t)|2 = |Ψ(x, 0)|2e−Γt (3.86)
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where Γ is the decay rate due to tunnelling. As in the case of alpha decay, we estimate

Γ ∼ ωT ∼ ω exp

(

1

3g

)

(3.87)

A more careful evaluation2 gives for the ground state

Γ ≈ ω

√

−2

πg
exp

(

1

3g

)

(3.88)

Correspondingly, the energy of the state acquires an imaginary part −ih̄Γ/2:

Ψ(x, t) = ψ(x)e−iEt/h̄ → ψ(x)e−iEt/h̄−Γt/2 = ψ(x)e−i(E−ih̄Γ/2)t/h̄ (3.89)

and hence for the ground state

ImE(g) ≈ −1√−2πg
exp

(

1

3g

)

(g < 0) (3.90)

Thus E(g), considered as a function of the complex variable g, has a branch cut running from the

origin along the negative real axis. The existence of this branch cut means that there is no region

around the origin within which E(g) is an analytic function of g, and hence it has no convergent

Taylor expansion about the origin, i.e. no convergent perturbation series.

3.4.3 Dispersion theory

We can see precisely how the perturbation series diverges, and find a better way to evaluate E(g),

by using dispersion theory. This is a way of reconstructing an analytic function from its imaginary

part, given that the function has no singularities other than branch cuts on the real axis. In the

case at hand, consider the function

f(g) =
E(g)

(g − g0)(g − g1)
(3.91)

where g0,1 are real and 0 < g0 < g1. This function has poles at g = g0 and g1 in addition to the

branch cut of E(g), as depicted below.

C1

2C.M. Bender and T.T. Wu, Phys. Rev. D7 (1973) 1620.
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Integrating around the contour C1 enclosing the two poles, we have by the residue theorem
∫

C1

f(g) dg = 2πi
E(g1)− E(g0)

g1 − g0
(3.92)

Now let us open up the contour into the form C2 shown below.

C2

We have
∫

C2

f(g) dg =

∫

C∞
f(g) dg + lim

ε→0

∫ 0

−∞
dg
E(g + iε)− E(g − iε)

(g − g0)(g − g1)
(3.93)

where C∞ is the circular portion of the contour. To compute its contribution we must know how

E(g) behaves at large values of g. This is easily done using a scaling argument. Let’s make a change

of variable y = gpz, where p is to be determined. The Schrödinger equation becomes

E(g)ψ = −g−2pd
2ψ

dz2
+

1

4
g2pz2ψ +

1

4
g4p+1z4ψ (3.94)

If we choose −2p = 4p+ 1, i.e. p = −1/6, the equation can be rearranged as

g−1/3E(g)ψ = −d
2ψ

dz2
+

1

4
g−2/3z2ψ +

1

4
z4ψ (3.95)

Therefore at large g we can drop the term involving z2 and it follows that E(g) ∼ Ag1/3 where A

is an eigenvalue of the operator

Â = − d2

dz2
+

1

4
z4 (3.96)

Since E(g) behaves like g1/3 at large g, the contribution from C∞ in eq. (3.93) is negligible. For if

the circle has radius |g| = R then the integrand behaves like R−5/3 and the length of the contour is

2πR, so its contribution vanishes like R−2/3 as R→∞. Equating the integrals on C1 and C2 and

rearranging terms, we have

E(g1) = E(g0) +
g1 − g0

2πi
lim
ε→0

∫ 0

−∞
dg
E(g + iε)− E(g − iε)

(g − g0)(g − g1)
(3.97)
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Now from the fact that the Schrödinger equation has real coefficients we can deduce that

E(g − iε) = E∗(g + iε) (3.98)

and the correct definition of E(g) at negative g is

E(g) = lim
ε→0

E(g − iε) (g < 0) (3.99)

Thus

E(g1) = E(g0)−
g1 − g0
π

∫ 0

−∞
dg

Im E(g)

(g − g0)(g − g1)
(3.100)

Finally, it is convenient to take the limit g0 → 0+ and to relabel g as −g′ and g1 as g, to obtain

the dispersion relation

E(g) =
1

2
− g

π

∫ ∞

0
dg′

ImE(−g′)
g′(g′ + g)

(3.101)

Now we can see what goes wrong with the perturbation series. To get a power series in g from

eq. (3.101) we must expand the factor of (g ′ + g)−1 in the integrand,

(g′ + g)−1 =
∞
∑

n=0

(−g)n(g′)−n−1 (3.102)

to obtain

E(g) =
1

2
+

∞
∑

n=1

ang
n (3.103)

where

an =
(−1)n

π

∫ ∞

0
dg′ (g′)−n−1 ImE(−g′) (3.104)

However, this procedure does not make much sense, because the region of convergence of the series

(3.102) is |g| < g′ and we are going to integrate over g′ from zero to infinity. So there is always a

part of the integration region, g′ < g, that is outside the region of convergence of the series. That

is the fundamental reason why the perturbation series for E(g) cannot converge.

Let us nevertheless press ahead with evaluating the coefficients an, which remain perfectly well

defined even though the series (3.103) does not converge. At large values of n the integral (3.104)

will be dominated by small values of g ′, where the approximation (3.90) is most valid. Therefore

we expect at large n

an ∼ (−1)n+1

√
2π3

∫ ∞

0
dg′ (g′)−n− 3

2 exp

(

− 1

3g′

)

= −(−3)n

√

3

2π3

∫ ∞

0
duun− 1

2 e−u

= −(−3)n

√

3

2π3
Γ

(

n+
1

2

)

(3.105)



68 CHAPTER 3. APPROXIMATE METHODS

Recalling that Γ(z) grows factorially for large positive z, we see that in high orders the terms of

the perturbation series will grow like n! (−3g)n, a truly horrible rate of divergence.

Even at small n the approximation (3.105) for the perturbative coefficients is not too bad: we have

E(g) ≈ 1

2
+

√
6

π

(

3

4
g − 27

8
g2 +

405

16
g3 − · · ·

)

≈ 0.500 + 0.585g − 2.631g2 + 19.736g3 − · · · (3.106)

to be compared with the true series

E(g) = 0.500 + 0.750g − 2.625g2 + 20.812g3 − · · · (3.107)

This suggests a better way of estimating E(g) at positive g. We know exactly what the sum of the

divergent series (3.106) should be: the dispersion relation (3.101) with the approximation (3.90)

substituted for Im E . Let us call this Ed(g):

Ed(g) =
1

2
+
g

π

∫ ∞

0

dg′√
2πg′

1

g′(g′ + g)
exp

(

− 1

3g′

)

=
1

2
+

3g

π

√

3

2π

∫ 1

0
du

√
− lnu

1− 3g lnu
(3.108)

where we have made the change of variable u = exp(−1/3g ′) to facilitate numerical evaluation

of the integral. This integral is perfectly well-defined and convergent, as long as we do not try

to expand it as a power series in g. Now we can subtract the divergent series (3.106) from the

perturbation series and replace it by its integral representation (3.108), to obtain a much better

approximation:

E(g) ≈ Ed(g) + 0.165g + 0.006g2 + · · · (3.109)

3.4.4 Variational method

A simple variational approach to the anharmonic oscillator is to use a trial function of the same

form as the SHO ground-state wave function but with a variable width:

Ψ = N e−αy2

(3.110)

This is similar to Problem 3, but here we have a quadratic as well as a quartic term in the potential:

〈Ĥ〉 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 =

∫∞
−∞ dy e−2αy2

[

2α− 4α2y2 + 1
4y

2(1 + gy2)
]

∫∞
−∞ dy e−2αy2

= α+
1

16α
+

3g

64α2
(3.111)
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This is minimized when

∂

∂α
〈Ĥ〉 = 1− 1

16α2
− 3g

32α3
= 0 (3.112)

i.e. when

g =
2

3
α(16α2 − 1) (3.113)

For any α > 1
4 , we can find g from eq. (3.113) and, substituting in (3.111), an approximation to

the ground state energy E for that value of g.

3.4.5 Linear variation functions

A more laborious but potentially more accurate approach is to apply the linear variation method

using the lowest N SHO eigenstates {|n〉, n = 0, . . . , N − 1} as a basis. The necessary matrix

elements Ynn′ = 〈n|y4|n′〉 can be evaluated as follows. Using the SHO ladder operators we have

y2|n〉 =
√

n(n− 1)|n− 2〉+ (2n+ 1)|n〉 +
√

(n+ 1)(n+ 2)|n+ 2〉 (3.114)

Taking the inner product of y2|n〉 and y2|n′〉 and using 〈n|n′〉 = δn,n′ then gives

Ynn′ = 3[1 + 2n(n+ 1)]δn,n′ +
[

2(2n− 1)
√

n(n− 1)δn,n′+2

+
√

n(n− 1)(n− 2)(n− 3)δn,n′+4 + (n↔ n′)
]

(3.115)

The N ×N secular equation to be solved is then

|H(0) +
1

4
gY − EI| = 0 (3.116)

where H(0) represents the SHO Hamiltonian matrix

H
(0)
nn′ =

(

n+
1

2

)

δn,n′ (3.117)

We know that the smallest root of this equation will be an upper bound on the ground-state energy

E(g), the bound improving as N increases.
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3.4.6 Numerical results

The plot below shows the results of the various approaches discussed above.

The solid curve shows the result for E − 1
2 from linear variation, using the n = 0, . . . , 20 SHO

eigenstates as a basis. This method gives essentially the exact result (within the width of the

line) over the range shown, 0 < g < 1. The short-dashed curves show second-order (below) and

third-order (above) perturbation theory. The long-dashed curve is eq. (3.109), while the nearby

dot-dashed curve is the simple variational approximation obtained from eqs. (3.111) and (3.113).

We see that the integral representation used in eq. (3.109) gives a very good approximation up to g ∼
0.4. The simple variational approximation is less good in this range, but somewhat better at higher

values of g. Perturbation theory fails badly above g = 0.1, due to the factorial divergence identified

above. Nevertheless, the truncated perturbation series still provides a useful approximation over a

limited range. This is because the perturbation series is in fact an asymptotic expansion.

3.5 Asymptotic expansions

As we have seen, the perturbation series is certainly not guaranteed to converge. However, in many

cases it is an asymptotic expansion, i.e. the first few terms nevertheless give reliable results.
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An asymptotic expansion of a function f(g),

f(g) =
m
∑

k=0

ak g
k +Rm(g) (3.118)

is characterised by the following behaviour of the remainder:

lim
g→0

Rm(g)

gm
= 0

lim
m→∞Rm(g) = ∞ (3.119)

It follows that there exists a range of g for which the remainder Rm(g) is smaller than the last term

in the truncated series, am gm. It therefore makes sense always to truncate the series at its smallest

term. Because of the second property above, there is a limit to the accuracy we can achieve, which

is of the order of the smallest term.

In the case of the anharmonic oscillator, for example, this procedure yields the estimates of the

ground-state energy shown below.

The points show the partial sum of the perturbation series, up to and including the smallest term,

and the error bars show the magnitude of the smallest term. We see that the true value, shown by

the curve, does indeed always lie within the error bars, although the estimate is not of much use

above g ∼ 0.1.

Problem 12: Derive the perturbation series for the energy of the first excited state of the anhar-

monic oscillator, up to second order in g. What is the largest value of g for which you would expect
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this expression to provide an estimate of the true energy? At that value of g, what is the estimate

and its uncertainty?

Answer: E1 = 3
2 + 15

4 g − 165
8 g2 ; g = 2

11 ; E1 = 3
2 ± 15

22 .



Chapter 4

Scattering Theory

4.1 Introduction

The path of a moving (incident) particle is altered when it interacts with another (target) particle,

such as an atom or a molecule. Phenomena of this sort are generally called scattering. Scattering

is called elastic when the identities and internal properties of the incident particle and the target

remain unchanged after the collision, and inelastic when the identities or internal properties change

or when other particles are emitted or the two particles form a bound state. Analyses of scattering

give information on the structure and interactions of atoms, molecules, and elementary particles.

We first review the solution to the time independent Schrödinger equation for the spherically

symmetric square well to develop the concepts for the general case of scattering from an arbitrary

potential.

4.2 Spherically symmetric square well

The potential is defined by:

V (r) =

{

−V0 r ≤ a;

0, r > a.
(4.1)

where V0 > 0. An incident particle will feel an attractive potential when it is within the spherical

region of radius r ≤ a. Note that this potential is spherically symmetric i.e. it depends only on the

distance from the origin. The time independent Schrödinger equation is:

[

− h̄2

2m
∇2 + V (r)

]

Ψ(r) = EΨ(r) (4.2)

73
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Since we have spherical symmetry, we use the method of separation of variables to write Ψ(r) as:

Ψ(r) = Rl(r) Ylm(θ, ϕ) (4.3)

where the Ylm(θ, ϕ) are the Spherical Harmonics and the Rl(r) are the solutions to:

[

− h̄2

2m

(

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

)

+ V (r)

]

Rl(r) = E Rl(r) (4.4)

Suppose the energy of the incident particles E are such that (E > V ∀r). Define

k =
√

2m(E − V )/h̄

Then (4.4) becomes:
[

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ k2

]

Rl(r) = 0 (4.5)

Substituting ρ = kr into (4.5) gives

[

d2

dρ2
+

2

ρ

d

dρ
− l(l + 1)

ρ2
+ 1

]

Rl(ρ) = 0 (4.6)

The general solution to (4.6) are the spherical Bessel functions, jl(ρ) and the spherical Neu-

mann functions nl(ρ):

Rl(ρ) = Ajl(ρ) +Bnl(ρ) (4.7)

(The mathematical properties of these functions are discussed in the next section).

When there is no potential (free particle case), the solution to (4.6) which is regular at the origin,

involves only the spherical Bessel function:

Rl(r) = Ajl(kr) (4.8)

where now, k =
√

2mE/h̄. The asymptotic behaviour of this solution far from the origin is:

Rl(r) −→
r →∞

A
sin(kr − lπ/2)

kr
(4.9)

If we now have the potential (4.1) acting, with E > 0 then the solution to (4.6) takes the form:

Rl(r) =

{

Ajl(k
′r) r < a;

Bjl(kr) + Cnl(kr), r > a.

where A, B and C are constants to be determined from the boundary conditions and

k =
√

2mE/h̄

k′ =
√

2m(E + V0)/h̄ (4.10)
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From the continuity conditions (i.e. both Rl(r) and its first derivative must be continuous at r = a),

we have

k′
j′l(k

′r)
jl(k′r)

∣

∣

∣

∣

r=a
= k

[

Bj′l(kr) + Cn′l(kr)
Bjl(kr) + Cnl(kr)

]

r=a
(4.11)

from which we can get the ratio C/B. The asymptotic form (see next section) of the solution for

the symmetric spherical well (for r� a) is

Rl(r) −→
r →∞

B

kr

[

sin

(

kr − lπ

2

)

− C

B
cos

(

kr − lπ

2

)]

(4.12)

Introducing
C

B
= − tan δl(k) (4.13)

the above asymptotic form reduces to:

Rl(r) −→
r →∞

B

cos δl(k)

1

kr

[

sin

(

kr − lπ

2
+ δl(k)

)]

(4.14)

Comparing this with the solution to the free particle case (4.9), we find that the presence of the

potential induces a phase shift δl(k), which depends of the value of l, the energy of the incident

particle (through k) and the strength of the potential (since C/B and therefore δl(k) depends on

k′).

Problem 1: Show that for l = 0 i.e. s-wave scattering, the value of the phase shift, δ0(k) is

determined by:

k′ cot k′a = k cot(ka+ δ0(k)) (4.15)

and hence

δ0(k) = arctan

(

k

k′
tan k′a

)

− ka (4.16)

4.3 Mathematical preliminaries

In this section we will review some mathematical tools needed in our study of the quantum mechan-

ical scattering problem. For a more detailed account of the topics discussed here, refer to Arfken’s

book, “Mathematical Methods for Physicists”, Third Edition, which is in the Rayleigh Library.

4.3.1 Brief review of complex analysis

• Analytic functions: A function f of the complex variable z = x + iy, defined in some

region D of the complex plane, is said to be analytic if it satisfies the Cauchy-Riemann
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conditions. Specifically,

f(z) = u(x, y) + i v(x, y)

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x
(4.17)

Analytic functions have some very important properties among which is that their derivatives

to all orders exist and are also analytic.

• Cauchy theorem: If f(z) is analytic in a simply connected domain D, and if C is a simply

closed curve in D, then
∮

C
f(z) dz = 0

which can be proved by applying the Cauchy-Riemann conditions. Note that this result is

independent of the contour C.

• Cauchy integral formula: If f(z) is analytic in a simply connected domain D, and if C is

a simply closed curve in D, then

∮

C

f(z)

z − z0
dz =







2πif(z0) if z0 ∈ D
0 otherwise

• Residue theorem: Let f(z) be analytic in some neighbourhood of z = z0, and let C be a

simple closed contour lying in this neighbourhood and surrounding z = z0. The quantity

1

2πi

∮

C
f(z)dz = Resf(z0)

is independent of the choice of C and is called the residue of f(z) at the point z = z0.

Evaluating many line integrals can therefore be reduced to simply finding the residue.

• Isolated singularity: A function f(z), analytic in the neighbourhood of z = z0 with the

exception of the point z = z0 itself, is said to have an isolated singularity at z = z0. If there

are a finite number of isolated singularities at z = zi within C, then the integral is given by

the sum of residues,
∮

C
f(z)dz = 2πi

∑

i

Resf(zi)

• Laurent series: If f(z) is analytic over a region r1 < |z − z0| < r2, it may be represented

there by a generalisation of Taylor’s series called a Laurent series:

f(z) =
∞
∑

n=−∞
An(z − z0)

n
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where the expansion coefficients are given by

An =
1

2πi

∮

C

f(z)

(z − z0)n+1
dz

Then Resf(z0) is equal to the coefficient A−1.

Example: The function f(z) = exp(z) + exp(1/z) − 1 is analytic for |z| > 0 and has Laurent

expansion

f(z) =
∞
∑

n=−∞

1

|n|!z
n

Therefore in this case Resf(0) = 1.

4.3.2 Properties of spherical Bessel/Neumann functions

The spherical Bessel/Neumann functions are the solutions to the 2nd−order linear differential

equation (4.6):

jl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l(sin ρ

ρ

)

nl(ρ) = −(−ρ)l
(

1

ρ

d

dρ

)l(cos ρ

ρ

)

(4.18)

where l = 0, 1, 2, . . .. They can be expressed by the ascending power series

jl(ρ) =
ρl

(2l + 1)!!

[

1−
1
2ρ

2

1!(2l + 3)
+

(1
2ρ

2)2

2!(2l + 3)(2l + 5)
− · · ·

]

nl(ρ) = −(2l − 1)!!

ρl+1

[

1−
1
2ρ

2

1!(1 − 2l)
+

(1
2ρ

2)2

2!(1− 2l)(3 − 2l)
− · · ·

]

(4.19)

where (2l + 1)!! = 1 · 3 · 5 · · · (2l + 1).

The spherical Hankel functions h
(1)
l (ρ) and h

(2)
l (ρ) are defined in terms of jl and nl:

h
(1)
l (ρ) = jl(ρ) + inl(ρ)

h
(2)
l (ρ) = [h

(1)
l (ρ)]∗ (4.20)

The explicit forms for the first few values of l are:

j0(ρ) =
sin ρ

ρ
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n0(ρ) = −cos ρ

ρ

h
(1)
0 (ρ) =

eiρ

iρ

j1(ρ) =
sin ρ

ρ2
− cos ρ

ρ

n1(ρ) = −cos ρ

ρ2
− sin ρ

ρ

h
(1)
1 (ρ) = −e

iρ

ρ

(

1 +
i

ρ

)

(4.21)

Note that in general, nl(ρ) is singular (i.e. diverges) at the origin (while jl(ρ) is regular). This

means that if the interval over which the solution to (4.6) is sought includes the origin, then we

have to drop the nl(ρ) part. All the functions and their first derivatives defined above satisfy the

following recursion formulae:

2l + 1

ρ
zl(ρ) = zl−1(ρ) + zl+1(ρ)

z
′

l(ρ) =
1

(2l + 1)

[

lzl−1(ρ)− (l + 1)zl+1(ρ)

]

(4.22)

where the zl(ρ) are any of the functions jl(ρ), nl(ρ), h
(1)
l (ρ), h

(2)
l (ρ). The spherical Bessel functions

have the integral representation:

jl(ρ) =
(−i)l

2

∫ 1

−1
dzPl(z)e

iρz (4.23)

where the Pl(z) are the Legendre polynomials. (You can easily verify this for l = 0, 1 etc. This

formula will be used later when we derive the expansion of plane-waves in terms of spherical waves).

The functions have the following asymptotic behaviour:

For small arguments (ρ� 1, l):

jl(ρ) → ρl

(2l + 1)!!

nl(ρ) → −(2l − 1)!!

ρl+1
(4.24)

For large arguments (ρ� l):

jl(ρ) → 1

ρ
sin

(

ρ− lπ

2

)
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nl(ρ) → −1

ρ
cos

(

ρ− lπ

2

)

h
(1)
l (ρ) → − i

ρ
ei(ρ−lπ/2) (4.25)

This means that, for large r, h
(1)
l (kr) represents a purely outgoing spherical wave, whereas

h
(2)
l (kr) = [h

(1)
l (kr)]∗ represents a purely incoming wave.

4.3.3 Expansion of plane waves in spherical harmonics

In this section, we derive a formula relating a plane wave to an expansion involving the spherical

Bessel functions and the spherical harmonics. This will be used later in the partial-wave analysis

of spherically symmetric potentials.

The set of spherical wave solutions to the free particle Schrödinger equation, {j l(kr)} is complete.

We can therefore expand a plane wave, given by eik·r in terms of these solutions:

eik·r =
∞
∑

l=0

l
∑

m=−l

clm(k) jl(kr) Ylm(θ, ϕ) (4.26)

where the expansion coefficients clm(k) are to be determined.

First let k point along the z-axis and let θ be the angle between r and the z-axis. Then we have

k · r = kr cos θ

Note that there is no ϕ dependence as we have azimuthal symmetry about the z-axis. This implies

that

clm(k) → Al

Ylm(θ, ϕ) →
[

2l + 1

4π

] 1

2

Pl(cos θ) (4.27)

and

eikr cos θ =
∞
∑

l=0

Al

[

2l + 1

4π

] 1

2

jl(kr) Pl(cos θ) (4.28)

Using the orthonormality of the Legendre polynomials:

∫ 1

−1
d cos θ Pl(cos θ)Pl′(cos θ) =

2

2l + 1
δll′ (4.29)

we have

Al jl(kr) =
1

2
[4π(2l + 1)]

1

2

∫ 1

−1
dzPl(z)e

ikrz (4.30)
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where z = cos θ. Using the integral representation of the spherical Bessel function, (4.30) reduces

to

Al = il [4π(2l + 1)]
1

2 (4.31)

Therefore (4.26) becomes:

eikr cos θ =
∞
∑

l=0

il (2l + 1) jl(kr) Pl(cos θ) (4.32)

For an arbitrary k, all we need to do to generalise (4.32) is use the addition theorem of spherical

harmonics. If θ is the angle between the vectors k and r then this theorem tells us that:

Pl(cos θ) =
4π

2l + 1

l
∑

m=−l

Y ∗
lm(Ωk) Ylm(Ωr) (4.33)

where Ωk ≡ (θk, ϕk) and Ωr ≡ (θr, ϕr). Substituting (4.33) into (4.32) gives the general expansion:

eik·r = 4π
∞
∑

l=0

l
∑

m=−l

il jl(kr) Y
∗
lm(Ωk) Ylm(Ωr) (4.34)

4.4 The quantum mechanical scattering problem

In a typical scattering experiment, one might measure the number of particles that are scattered

by an angle (θ, ϕ) into the element dΩ of the solid angle. The differential cross section dσ
dΩ is

defined by:

dσ

dΩ
dΩ =

number of particles scattered into dΩ per unit time

number of incident particles crossing unit area per unit time

In terms of the incident and scattered fluxes of particles we have:

dσ

dΩ
dΩ =

r2dΩ|jscatt|2
|jincid|2

(4.35)

where jincid and jscatt are the incident and scattered flux densities respectively. The total cross

section σtot is given by

σtot =

∫

unit sphere

dσ

dΩ
dΩ

=

∫ 2π

0
dϕ

∫ 1

−1
d cos θ

dσ

dΩ
(4.36)

The experimental setup is such that we have a beam of particles incident from z = −∞ travelling in

the +z direction (characterised by a plane-wave eikz) scattered by the target particles (represented
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mathematically by a potential V (r)), so that we have a spherical wave that emanates from the target

that describes the scattered particles. We therefore seek a solution to the Schrödinger equation

that has the asymptotic form:

ψ(r) −→
r →∞

eikz + f(θ, ϕ)
eikr

r
(4.37)

The function f(θ, ϕ) is called the scattering amplitude and is related to the differential cross

section by:
dσ

dΩ
= |f(θ, ϕ)|2 (4.38)

4.5 Partial wave analysis

We now apply the tools developed in the previous sections to study scattering from a spherically

symmetric potential V (r). We assume that V (r) is short ranged in the sense that:

∣

∣

∣

∣

∫ ∞

0
r2V (r) dr

∣

∣

∣

∣

<∞ (4.39)

(This ensures that we not only have a well defined scattering problem but also ensures the con-

vergence of the various expressions we shall encounter below.) The time independent Schrödinger

equation (4.2) for a particle in such a spherically symmetric potential is given by:

[∇2 + k2 − U(r)]ψ(r) = 0

U(r) =
2mV (r)

h̄2

k2 =
2mE

h̄2 (4.40)

4.5.1 Partial wave expansion

We now decompose the ψ(r) into spherical partial waves:

ψ(r) =
∞
∑

l=0

il (2l + 1) Rl(r) Pl(cos θ) (4.41)

where we have taken advantage of the spherical symmetry of V (r). Substituting (4.41) into (4.40)

gives the radial equation for Rl(r)

[

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
+ k2 − U(r)

]

Rl(r) = 0 (4.42)
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The boundary condition for Rl(r) is that for r → 0, we want Rl(r) to be finite. Equation (4.42)

reduces for r → 0 to
[

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2

]

Rl(r) = 0 (4.43)

and the solution that is finite at the origin is

Rl(r) −→
r → 0

Arl (4.44)

The remaining boundary condition is determined by the physics of the situation. For an incoming

beam eik·r (where it is understood that k points along the +z-axis), we have

eik·r =
∞
∑

l=0

il (2l + 1)jl(kr) Pl(cos θ)

=
1

2

∞
∑

l=0

il(2l + 1)

[

h
(2)
l (kr) + h

(1)
l (kr)

]

Pl(cos θ) (4.45)

Not surprisingly, the expansion of the plane wave representing the beam consists of equal amounts of

incoming (h
(2)
l ) and outgoing (h

(1)
l ) spherical waves. The effect of the potential is to cause scattering

and hence to modify the amplitude of each of the outgoing spherical waves only. Therefore,

asymptotically, the full solution must be of the form

ψ(r) −→
r →∞

∞
∑

l=0

il (2l + 1)
1

2

[

h
(2)
l (kr) + Sl(k)h

(1)
l (kr)

]

Pl(cos θ) (4.46)

where Sl contains the total effect of the scattering. We have incorporated into (4.46) the fact that,

for r →∞, ψ(r) must satisfy the free particle Schrödinger equation due to the short-range nature

of the scattering potential as well as the fact that the scattering affects only the outgoing spherical

waves. Equation (4.46) can now be rewritten as:

ψ(r) −→
r →∞

1

2

∞
∑

l=0

il (2l + 1)

[

h
(1)
l (kr) + h

(2)
l (kr) + [Sl(k)− 1]h

(1)
l (kr)

]

Pl(cos θ)

=
∞
∑

l=0

il(2l + 1)

{

jl(kr) +
1

2
[Sl(k)− 1]h

(1)
l (kr)

}

Pl(cos θ)

= eik·r +
∞
∑

l=0

il (2l + 1)
1

2
[Sl(k)− 1] h

(1)
l (kr) Pl(cos θ) (4.47)

Since this is the solution for large r, we replace h
(1)
l (kr) by its asymptotic form to get the final

asymptotic form for ψ(r)

ψ(r) −→
r →∞

eik·r + f(θ)
eikr

r
(4.48)
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where

f(θ) =
1

2ik

∞
∑

l=0

(2l + 1) [Sl(k)− 1] Pl(cos θ) (4.49)

(Note that f(θ) also depends on the energy of the incident particle). Since from (4.38), the differ-

ential cross section dσ
dΩ depends only on the scattering amplitude f(θ), our scattering problem will

be solved if we find the f(θ) or alternatively the Sl(k).

As we discussed at the beginning of this chapter, in general the identities of the scattered particles

(and the target) may change in a scattering process – this is called inelastic scattering. In some

circumstances, however, only elastic scattering is possible. In that case, by conservation of the

number of particles, the flux of outgoing particles cannot be changed by the scattering process.

Furthermore, by angular momentum conservation, this must be true for each partial wave separately.

Consequently the only thing that can be changed is the phase of each partial wave. Therefore, for

purely elastic scattering, the complex numbers Sl(k) can be expressed in terms of real numbers

δl(k) called phase shifts which are defined by

Sl(k) = e2iδl(k) (4.50)

(The factor of 2 is conventional). Using this definition of the phase shifts, the scattering amplitude

(4.49) reduces to

f(θ) =
1

k

∞
∑

l=0

(2l + 1) eiδl(k) sin δl(k) Pl(cos θ) (4.51)

and the differential cross section is

dσ

dΩ
= |f(θ)|2

=
1

k2

∞
∑

l=0

∞
∑

l′=0

(2l + 1) (2l′ + 1) sin δl sin δl′ cos(δl − δl′) Pl(cos θ) Pl′(cos θ) (4.52)

The total cross section, σtot is given by

σtot =

∫

unit sphere

dσ

dΩ
dΩ

=
4π

k2

∞
∑

l=0

(2l + 1) sin2 δl (4.53)

Problem 2: Verify equation (4.53).

The total cross section can also be written as

σtot =
∞
∑

l=0

σl (4.54)
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where the lth partial cross section σl is given by

σl =
4π

k2
(2l + 1) sin2 δl (4.55)

It follows that for elastic scattering

σl ≤
4π

k2
(2l + 1) (4.56)

The value 4π(2l + 1)/k2 is known as the unitarity bound and is reached only for

δl =

(

n+
1

2

)

π , (n = 0, 1, . . .) (4.57)

This is the condition for resonance which shows up as a local maximum in the cross section for

the corresponding partial wave.

4.5.2 The optical theorem

From eqs. (4.49) and (4.51), the imaginary part of the scattering amplitude is given by

Imf(θ) =
1

2k

∞
∑

l=0

(2l + 1)Re[1− Sl] Pl(cos θ)

=
1

2k

∞
∑

l=0

(2l + 1) [2 sin2 δl] Pl(cos θ) (4.58)

Setting θ = 0 and making use of Pl(1) = 1, we get

Imf(θ = 0) =
1

k

∞
∑

l=0

(2l + 1) sin2 δl (4.59)

Comparing this with (4.53), we obtain the optical theorem:

σtot =
4π

k
Imf(θ = 0) (4.60)

Problem 3: Consider the elastic scattering of a low energy particle from a “hard sphere” potential

(V (r) = ∞ for r ≤ a, 0 otherwise.) Derive an expression for tan δl and show that for l = 0,

tan δ0 = − tan(ka) where k2 = 2mE/h̄2. Show that as k → 0 the total cross section approaches

4πa2. Hence obtain an expression for the s-wave contribution to the forward scattering amplitude

f(θ = 0) and verify the optical theorem for ka� 1.

In general, both elastic and inelastic scattering may occur, and then the outgoing flux of particles

of the same type as the incoming beam may be reduced by scattering. In that case the amplitudes
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Sl(k) of the outgoing elastically-scattered waves are reduced and the corresponding phase shifts

become complex. However, it can be shown that the optical theorem (4.60) remains valid, with

σtot being to the total cross section summed over all types of scattering (elastic plus inelastic) and

f(θ = 0) the purely elastic forward scattering amplitude.

4.6 Born approximation

Another technique for determining the scattering amplitude, valid for scattering potentials that

are weak (and so may be regarded as a perturbation), is by means of the Born approximation. To

derive the expression for the scattering amplitude in this case, we first express the time-independent

Schrödinger equation in integral form.

4.6.1 Integral form of the Schrödinger equation

The time-independent Schrödinger equation

[

− h̄2

2m
∇2 + V (r)

]

ψ(r) = Eψ(r) (4.61)

can be written as

[∇2 + k2]ψ(r) = Q(r) (4.62)

where

k =
√

2mE/h̄

Q(r) =
2m

h̄2 V (r) ψ(r) (4.63)

Note that

• V (r) in (4.61) need not be spherically symmetric,

• Q(r), the “inhomogeneous source term”, itself depends on ψ(r)

• (4.62) is the inhomogeneous Helmholtz equation.

Suppose there exists a function, G(r− r′), that is the solution to the following differential equation

[∇2 + k2]G(r − r′) = δ(r− r′) (4.64)
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where the Dirac delta function δ(r − r′) may be written as

δ(r − r′) =
1

(2π)3

∫

all space
eis·(r−r′)ds (4.65)

In what follows, it is understood that the Laplacian ∇2 acts on the argument r. We can then

express ψ(r) as an integral

ψ(r) =

∫

all space
G(r− r′)Q(r′)dr′ (4.66)

Note that (4.66) is a integral equation since the unknown function ψ(r) appears under the integral

sign. To show that (4.66) satisfies (4.62) consider

[∇2 + k2]ψ(r) = [∇2 + k2]

∫

all space
G(r− r′)Q(r′)dr′

=

∫

all space
[(∇2 + k2)G(r− r′)]Q(r′)dr′

=

∫

all space
δ(r− r′)Q(r′)dr′

= Q(r) (4.67)

The function G(r − r′) is the Green function for the equation (4.62). In general, the Green

function for a given differential equation represents the “response” to a delta-function source. The

easiest way to determine the G(r − r′) here is by taking the Fourier transform (which turns the

differential equation into a algebraic equation). Let

G(r) =
1

(2π)3/2

∫

all space
eis·rg(s)ds (4.68)

Then

(∇2 + k2)G(r) =
1

(2π)3/2

∫

all space
[(∇2 + k2)eis·r]g(s)ds

=
1

(2π)3/2

∫

all space
(k2 − s2)eis·rg(s)ds (4.69)

Problem 4: Verify Eq. (4.69).

This means that

1

(2π)3/2

∫

all space
(k2 − s2)eis·rg(s)ds =

1

(2π)3

∫

all space
eis·rds (4.70)
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which implies

g(s) =
1

(2π)3/2

1

(k2 − s2)
(4.71)

so that

G(r) =
1

(2π)3

∫

all space
eis·r

1

(k2 − s2)
ds (4.72)

To evaluate the integral (4.72) we first note that r is fixed as far as the s integration is concerned.

It is advantageous to do the integration in spherical coordinates such that s = (s, θ, ϕ) and with

the polar axis pointing along r. Then since s ·r = sr cos θ and ds = s2 sin θ dθ dϕ ds, (4.72) becomes

G(r) =
1

(2π)3

∫ 2π

0
dϕ

∫ ∞

0

s2ds

(k2 − s2)

∫ 1

−1
d cos θ eisr cos θ (4.73)

The ϕ integration is trivial (= 2π) and the θ integration yields

∫ 1

−1
d cos θ eisr cos θ =

2 sin(sr)

sr
(4.74)

Thus

G(r) =
1

(2π)2
2

r

∫ ∞

0

s sin(sr)

(k2 − s2)
ds

=
1

4π2r

∫ ∞

−∞

s sin(sr)

(k2 − s2)
ds (4.75)

Writing sin(sr) = 1
2i (e

isr − e−isr) (4.75) becomes

G(r) =
i

8π2r
[I1 − I2]

I1 =

∫ ∞

−∞

seisr

(s− k)(s+ k)
ds

I2 =

∫ ∞

−∞

se−isr

(s− k)(s+ k)
ds

(4.76)

The integrals I1 and I2 can be evaluated using Cauchy’s integral formula.

Problem 5: In (4.76), the integration is along the real axis and passes right over the pole singu-

larities at ±k. How to deal with integration in the vicinity of these singularities is fixed by the

boundary conditions; the result is that the contour of integration should go over the singularity at

−k and under the singularity at +k. We must close the contour in such a way that the semicircle

at infinity contributes nothing.
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• Show that for I1, we must close the contour above the real axis. Hence, show that

I1 = iπeikr

• For I2 show that the contour must be closed below the real axis so that

I2 = −iπeikr

(Remember that when you go round the contour in the clockwise direction, you pick up a

minus sign).

Using the results of the above problem, we have

G(r) = −e
ikr

4πr
(4.77)

so that the general solution to (4.66) takes the form

ψ(r) = ψ0(r)−
m

2πh̄2

∫

all space

eik|r−r′|

|r− r′| V (r′)ψ(r′)dr′ (4.78)

where the ψ0(r) satisfies the free particle Schrödinger equation

[∇2 + k2]ψ0(r) = 0 (4.79)

Equation (4.78) is the integral form of the Schrödinger equation and is equivalent to the differential

form plus boundary conditions.

Problem 6: Check that (4.78) satisfies (4.62) by direct substitution.

Hint: The following identity will be useful:

∇2
(

1

|r− r′|

)

= −4πδ(r− r′)

The ∇ acts on the r argument.

4.6.2 First Born approximation

Suppose V (r′) is localised about r′ = 0. (This means that the potential drops to zero outside

some finite region). We want to determine ψ(r) at points far away (i.e. r � r ′) from the scattering

centre. For this case we have

|r− r′|2 ∼= r2
(

1− 2r · r′
r2

)

=⇒ |r− r′| ∼= r − r̂ · r′ (4.80)
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where r̂ denotes a unit vector pointing along r. Let

k′ ≡ kr̂

then

eik|r−r′| ∼= eikre−ik′·r′ (4.81)

and therefore
eik|r−r′|

|r− r′|
∼= eikr

r
e−ik′·r′ (4.82)

In the case of scattering where the incident beam is along the z−axis, we require

ψ0(r) = eikz (4.83)

In the asymptotic limit (large r), (4.78) reduces to

ψ(r) ∼= eikz − m

2πh̄2

eikr

r

∫

all space
e−ik′·r′V (r′)ψ(r′)dr′ (4.84)

from which we can read off the scattering amplitude

f(θ, ϕ) = − m

2πh̄2

∫

all space
e−ik′·r′V (r′)ψ(r′)dr′ (4.85)

This expression for f(θ, ϕ) is exact. We now invoke the Born approximation: Suppose the

incoming plane wave is not substantially altered by the potential (i.e. the scattering potential is

weak). Then it makes sense to substitute

ψ(r′) ≈ ψ0(r
′) = eikz′ = eik·r

′

(4.86)

where k = kẑ, into the integral (4.84). The scattering amplitude in the Born approximation then

reduces to

f(k′,k) = f(θ, ϕ) = − m

2πh̄2

∫

all space
e−i(k′−k)·r′V (r′)dr′ (4.87)

(Note: k and k′ both have magnitude k but the former points in the direction of the incident beam

while the latter points towards the detector). Equation (4.87) indicates that f(θ, ϕ) in the Born

approximation is proportional to the Fourier transform of the scattering potential.

For a spherically symmetric potential, V (r) = V (r), there is no ϕ dependence and the Born

approximation reduces to

f(θ) = − 2m

qh̄2

∫ ∞

0
r sin(qr)V (r)dr (4.88)

where q is the momentum transfer,

q = |k′ − k| = 2k sin(θ/2) (4.89)
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To see this we use spherical polar coordinates with the polar axis along k′ − k, so that

(k′ − k) · r′ = qr′ cos θ′ (4.90)

Then (4.87) becomes

f(θ) = − m

2πh̄2

∫ ∞

0
dr′
∫ 1

−1
d cos θ′

∫ 2π

0
dϕ′ r′2eiqr′ cos θ′V (r′) (4.91)

Now the cos θ′ and ϕ′ integrations can be performed simply and, writing the remaining variable of

integration as r instead of r′, we obtain (4.88).

Problem 7: A potential of considerable utility in both nuclear physics and chemistry is the Yukawa

or “screened Coulomb” potential:

V (r) = −Ae
−r/r0

r

where r0 > 0. Determine the scattering amplitude in the first Born approximation for this potential.

Hence, obtain the differential scattering cross section in the limit r0 →∞.

Answer: The scattering amplitude is given by

f(θ) =
2Am

h̄2

(

r20
1 + q2r20

)

The differential cross section in the limit r0 →∞ (i.e. for the Coulomb potential) is thus

dσ

dΩ
=

4A2m2

h̄4q4

Problem 8: Determine the scattering amplitude in the first Born approximation for the spherically

symmetric square well.

Answer: For an attractive square well, we have

f(θ) =
2mV0

h̄2q3
(sin qa− qa cos qa)

Problem 9: Determine the scattering amplitude in the first Born approximation for the Gaussian

potential well:

V (r) = −Ae−br2

where A, b > 0.

Answer: The scattering amplitude is given by

f(θ) =
Am

√
π

2h̄2b3/2
e−q2/4b
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4.6.3 Low-energy scattering

In general, the scattering amplitude in the Born approximation has a complicated angular depen-

dence, as seen in the above examples through their dependence on q = 2k sin(θ/2). This corresponds

to a large number of terms contributing significantly in the partial wave expansion. However, for

low-energy scattering, where the de Broglie wavelength of the scattered particle is much larger

than the extent of the scattering region, the Born approximation (4.87) simplifies to

f(θ, ϕ) ∼= − m

2πh̄2

∫

all space
V (r′)dr′ (4.92)

which is independent of θ and ϕ and thus represents pure s-wave scattering. Now from Eq. (4.51)

we see that the scattering amplitude for pure s-wave scattering is

f =
1

k
eiδ0(k) sin δ0(k) (4.93)

where δ0(k) is the s-wave phase shift. In the Born approximation we assume that the scattering

potential is weak and therefore the phase shift is also small, so we can write

f ∼= 1

k
δ0(k) (4.94)

Comparing with (4.92) we see that the s-wave phase shift is given to first order in V by

δ0(k) ∼= − km

2πh̄2

∫

all space
V (r′)dr′ (4.95)

Example: For the square well potential (4.1) we find from (4.95) that

δ0(k) ∼= − km

2πh̄2

(

−4

3
πa3V0

)

=
2km

3h̄2 a
3V0 (4.96)

We saw in Problem 1 that the exact s-wave phase shift is

δ0(k) = arctan

(

k

k′
tan k′a

)

− ka (4.97)

where k′ =
√

2m(E + V0)/h̄. At low energy, k is small and so

δ0(k) ∼=
k

k′
(tan k′a− k′a) (4.98)

where k′ ∼=
√

2mV0/h̄. If, in addition, the potential is weak, then k ′ is also small and tan k′a ∼=
k′a+ (k′a)3/3. Thus

δ0(k) ∼=
1

3
kk′2a3 ∼= 2kmV0

3h̄2 a3 (4.99)

in agreement with (4.96).
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4.7 Beyond the (first) Born approximation

To see how to extend the Born approximation to higher orders in the scattering potential, we

must develop the formal theory of scattering a little more. Assume that the Hamiltonian for the

scattering problem is

Ĥ = Ĥ0 + V̂ (4.100)

where Ĥ0 is the free-particle Hamiltonian,

Ĥ0 =
p̂2

2m
(4.101)

In the absence of a scatterer, V̂ would be zero and the energy eigenstate would be just a free particle

state |p〉 where

Ĥ0|p〉 =
p2

2m
|p〉 (4.102)

The presence of V̂ therefore causes the energy eigenstate to be different from the free-particle state.

For elastic scattering, where no change in energy is involved, we need to find solutions to Eq. (4.100)

with the same energy eigenvalue as Eq. (4.102).

Let |φ〉 be an energy eigenstate of Ĥ0

Ĥ0|φ〉 = E|φ〉 (4.103)

where we choose |φ〉 to be the incident plane wave state. We want to solve

Ĥ|ψ〉 =

(

Ĥ0 + V̂

)

|ψ〉 = E|ψ〉 (4.104)

with both Ĥ0 and Ĥ exhibiting continuous energy spectra. We look for solutions to Eq. (4.104)

such that

|ψ〉 → |φ〉 as V̂ → 0 (4.105)

where |φ〉 is the solution to the free particle Schrödinger equation Eq. (4.103) with the same energy

eigenvalue.

The desired solution (at least in a formal sense) is

|ψ〉 = |φ〉+

(

E − Ĥ0

)−1

V̂ |ψ〉 (4.106)

although there are complications arising from the singular nature of the operator (E − Ĥ0)
−1.

Problem 10: Verify that Eq. (4.106) is indeed a solution to Eq. (4.104)
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4.7.1 The Lippmann-Schwinger equation

The correct prescription for dealing with the singular nature of (E − Ĥ0)
−1 is to treat E as a

complex variable and to add an infinitesimal imaginary number to it, i.e.

|ψ〉 = |φ〉+
1

(E − Ĥ0 + iε)
V̂ |ψ〉 (4.107)

Equation (4.107) is called the Lippmann-Schwinger equation and is a relation between state

vectors, independent of any particular representation. However, it will be convenient here to write

it in the position representation, which enables us to obtain the scattering amplitude in the Born

approximation.

In the position representation (4.107) becomes

〈r|ψ〉 = 〈r|φ〉 +

∫

dr′〈r| 1

(E − Ĥ0 + iε)
|r′〉〈r′|V̂ |ψ〉 (4.108)

which is an integral equation for scattering because the unknown ket |ψ〉 appears under the

integral sign. The quantity

G(r, r′) =
h̄2

2m
〈r| 1

(E − Ĥ0 + iε)
|r′〉 (4.109)

is just the Green function (4.77) for the inhomogeneous Helmholtz equation derived earlier. It was

worked out to be

G(r, r′) = − 1

4π

eik|r−r′|

|r− r′|
where E = h̄2k2/2m. Equation (4.107) then just reduces to the integral equation (4.66). By

looking at the large distance behaviour of r, we again get the expression for the scattering amplitude

describing an incident beam of particles in the direction k being scattered in the direction k ′:

f(k′,k) = − m

2πh̄2 〈k
′|V̂ |ψ〉 (4.110)

which is exact.

4.7.2 The Born series

We now define the transition operator T̂ , such that

V̂ |ψ〉 = T̂ |φ〉 (4.111)

Multiplying the Lippmann-Schwinger equation (4.107) by V̂ , we obtain

T̂ |φ〉 = V̂ |φ〉+ V̂
1

(E − Ĥ0 + iε)
T̂ |φ〉 (4.112)
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which is supposed to hold for any |φ〉 (taken to be any plane-wave state for example, which we

know are complete). Therefore the following operator equation is satisfied:

T̂ = V̂ + V̂
1

(E − Ĥ0 + iε)
T̂ (4.113)

The scattering amplitude can now be written as

f(k′,k) = − m

2πh̄2 〈k
′|T̂ |k〉 (4.114)

which shows that to determine the scattering amplitude, it is sufficient to know the transition

operator T̂ .

An iterative solution for T̂ is obtained as follows:

T̂ = V̂ + V̂
1

(E − Ĥ0 + iε)
V̂ + V̂

1

(E − Ĥ0 + iε)
V̂

1

(E − Ĥ0 + iε)
V̂ + · · · (4.115)

Correspondingly, we can expand f(k′,k) as follows:

f(k′,k) =
∞
∑

n=1

f (n)(k′,k) (4.116)

where n is the number of times the V̂ operator enters. We have

f (1)(k′,k) = − m

2πh̄2 〈k
′|V̂ |k〉

f (2)(k′,k) = − m

2πh̄2 〈k
′|V̂ 1

(E − Ĥ0 + iε)
V̂ |k〉 (4.117)

etc., which are just the first, second etc. order Born approximations.

Equation (4.116) is called the Born series. A physical interpretation is that the scattering process

is viewed as a multi-step process with, for example, f (2)(k′,k) being viewed as the incident wave

(with wave vector k) undergoing two sequential interactions before being scattered into the direction

k′, and so on. In this context, the Green function is called the momentum-space propagator –

it tells us how a disturbance propagates between one interaction and the next.

The Born series was the inspiration for Feynman’s formulation of relativistic quantum mechanics,

which is expressed entirely in terms of vertex functions V̂ and momentum-space propagators

G, connected together in Feynman diagrams. It is this technique that forms the basis for the

treatment of the quantum theory of fields and its application to a wide range of phenomena including

elementary particle and condensed matter physics.



Chapter 5

Density Matrices

5.1 Introduction

A quantum-mechanical wave function (or state vector), when it exists, conveys the maximum

amount of information permitted by quantum mechanics concerning the properties of a physical

system in the state described by the wave function. Situations in which we have accurate wave

functions for a physical system are actually quite rare. More often, the complexity of the system

owing to its many degrees of freedom precludes the possibility of constructing a wave function.

It is then necessary to resort to statistical methods. When the state of an incompletely prepared

system is only partially known, we resort to assigning a probability to all possible state vectors that

the system could be in. The synthesis of this statistical nature with the probabilities arising from

the quantum mechanics of state vectors can be made using a mathematical entity, the density

operator. The density operator formalism was introduced independently by Landau and von

Neumann, and enables us to reformulate the laws of quantum mechanics more generally than with

the formalism using state vectors or wave functions alone. All predictions – of a statistical nature –

that one can make at a given time about a physical system can be found once we know its density

operator. Furthermore, the density operator formalism enables us to extend quantum mechanics to

the description of statistical mixtures representing systems which are not well known or to describe

the state of a part of a quantum system (i.e. a subsystem). Here we will examine the properties of

this operator and its application to quantum statistical mechanics.

95
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5.2 Pure and mixed states

In classical mechanics, the dynamical state of a system is completely determined once the values of

the positions and momenta of all the particles are known. The state of the system at any subsequent

time can be predicted with certainty (since all one needs to do is integrate the equations of motion).

In quantum mechanics however this is not the case. A precise simultaneous measurement of two

physical variables is only possible if the two operator corresponding to the two variables commute.

The largest set of mutually commuting independent observables, {Â, B̂, . . .} that can be found will

give the most complete characterisation possible. (This is just the complete set of commuting

observables (CSCO) discussed in Chapter 1.) The measurement of another variable whose

operator is not contained in the above set of operators necessarily introduces uncertainty into at

least one of those already measured. This means that it is not possible to give a more complete

specification of the system. In general, the maximum information which can be obtained on a system

consists of the eigenvalues of the CSCO. The system is then completely specified by assigning the

state vector |a, b, . . .〉 in a Hilbert space H to it. If the measurement of the observables {Â, B̂, . . .} on

the state |a, b, . . .〉 is immediately repeated, we get the same values a, b, . . . again. The existence of

such a set of experiments (for which the results can be predicted with certainty) gives a necessary

and sufficient characterisation for the state of “maximum knowledge”. The states of maximum

knowledge are called pure states. Pure states represent the ultimate limit of precise observation

as permitted by the uncertainty principle and are the quantum mechanical analog of classical states

where all positions and momenta of all particles are known.

In practice, the state of a system is not pure and cannot be represented by a single state vector.

However, it can be described by stating that the system has certain probabilities p1, p2, . . . of being

in the pure states |Ψ1〉, |Ψ2〉, . . ., respectively. Therefore in the case of incomplete knowledge about

the state of the system, it is necessary to use a statistical description in the same sense as classical

statistical mechanics. Systems which cannot be characterised by a single-state vector are said to

be in mixed states.

Consider an ensemble of particles in the pure state |Ψ〉. If this state is not one of the eigenstates of

the observable Â then measurements of the corresponding physical quantity will produce a variety

of results, each of which is an eigenvalue of Â. If similar measurements are made on a very large

number of particles, all of which were in the same state |Ψ〉, then, in general, all the possible

eigenvalues of Â would be obtained. The average of these values is given by the expectation value

〈Â〉 of the observable corresponding to Â which is defined by the matrix element

〈Â〉 = 〈Ψ|Â|Ψ〉 (5.1)



5.3. PROPERTIES OF THE DENSITY OPERATOR 97

where we have assumed that |Ψ〉 is normalised.

In order to obtain 〈Â〉 for a mixture of states, |Ψ1〉, |Ψ2〉, . . ., the expectation values 〈Ψi|Â|Ψi〉 of

each of the pure state components must be calculated and then averaged by summing over all pure

states multiplied by its corresponding statistical weight pi:

〈Â〉 =
∑

i

pi 〈Ψi|Â|Ψi〉 (5.2)

where we have again assumed that the |Ψn〉 are normalised. Note that statistics enter into Eq.

(5.2) in two ways: First of all in the quantum mechanical expectation value 〈Ψi|Â|Ψi〉 and secondly

in the ensemble average over these values with the weights pi. While the first type of averaging is

connected with the perturbation of the system during the measurement (and is therefore inherent in

the nature of quantisation), the second averaging is introduced because of the lack of information as

to which of the several pure states the system may be in. This latter averaging closely resembles that

of classical statistical mechanics and it can be conveniently performed by using density operator

techniques.

5.3 Properties of the Density Operator

The density operator is defined by

ρ̂ =
∑

i

pi|Ψi〉〈Ψi| (5.3)

where pi is the probability of the system being in the normalised state |Ψi〉 and the sum is over all

states that are accessible to the system. The probabilities pi satisfy

0 ≤ pi ≤ 1,
∑

i

pi = 1,
∑

i

p2
i ≤ 1 (5.4)

For a pure state there is just one pi (which is equal to unity) and all the rest are zero. In that case

ρ̂ = |Ψ〉〈Ψ| (pure state) (5.5)

Let {|ψi〉} be a complete orthonormal set which serves as a basis for the expansion of |Ψi〉 (and

from which we can construct the matrix representation of state vectors and operators). We have

|Ψi〉 =
∑

n

cni |ψn〉 (5.6)

and from the orthonormality of the {|ψi〉},

cni = 〈ψn|Ψi〉 (5.7)
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We now construct the density matrix which consists of the matrix elements of the density operator

in the {|ψi〉} basis:

〈ψn|ρ̂|ψm〉 =
∑

i

pi〈ψn|Ψi〉〈Ψi|ψm〉

=
∑

i

pi cni c
∗
mi (5.8)

which characterises ρ̂ as a Hermitian operator since

〈ψn|ρ̂|ψm〉 = 〈ψm|ρ̂|ψn〉∗ (5.9)

(given that the pi are real), i.e we have

ρ̂ = ρ̂† (5.10)

From Eq. (5.8), the probability of finding the system in the state |ψn〉 is given by the diagonal

element

〈ψn|ρ̂|ψn〉 =
∑

i

pi |cni|2 (5.11)

which gives a physical interpretation of the diagonal elements of the density operator. Because

probabilities are positive numbers, we have

〈ψn|ρ̂|ψn〉 ≥ 0 (5.12)

The trace of ρ̂ (i.e. the sum of the diagonal matrix elements) is

Tr ρ̂ =
∑

n

〈ψn|ρ̂|ψn〉

=
∑

i

∑

n

pi 〈ψn|Ψi〉 〈Ψi|ψn〉

=
∑

i

pi〈Ψi|Ψi〉

=
∑

i

pi

= 1 (5.13)

(Since the trace of an operator is an invariant quantity, the above result is independent of the basis.)

As ρ̂ is Hermitian, the diagonal elements 〈ψn|ρ̂|ψn〉 must be real and from Eq. (5.8) it follows that

0 ≤ 〈ψn|ρ̂|ψn〉 ≤ 1 (5.14)
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Note that for a pure state, 〈ψn|ρ̂|ψn〉 = |cn|2 , which is the probability of finding the system in the

state ψn.

Consider the matrix elements of ρ̂2:

〈ψn|ρ̂2|ψm〉 =
∑

k

〈ψn|ρ̂|ψk〉 〈ψk|ρ̂|ψm〉

=
∑

i

∑

j

∑

k

pi pj 〈ψn|Ψi〉〈Ψi|ψk〉 〈ψk|Ψj〉〈Ψj|ψm〉 (5.15)

where we have used Eq. (5.3).

Problem 1: Using (5.15), show that

Tr ρ̂2 ≤ 1 (5.16)

For a pure state, there is only one pi and it is equal to unity. Therefore

Tr ρ̂2 = 1 (pure state) (5.17)

and

ρ̂2 = |Ψ〉〈Ψ|Ψ〉〈Ψ|

= |Ψ〉〈Ψ|

= ρ̂ (pure state) (5.18)

i.e. ρ̂ is idempotent for a pure state. Thus whether a state is pure or not can be established by

testing whether (5.17) or (5.18) is satisfied or not.

We now derive the expectation value of an operator Â for pure as well as mixed states. Let

〈Â〉i = 〈Ψi|Â|Ψi〉 (5.19)

and

〈Â〉 =
∑

i

pi 〈Â〉i (5.20)

The distinction between 〈Â〉i and 〈Â〉 is that the former is a quantum-mechanical average or the

expectation value of an operator Â when the system is definitely in the state |Ψi〉. On the other

hand, 〈Â〉 is a statistical or ensemble average which from (5.20), is seen to be the weighted average

of 〈Â〉i taken over all states that the system may occupy. For pure states, we have

〈Â〉 = 〈Â〉i (pure state) (5.21)
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Now consider the operator ρ̂Â. From (5.3) we have

ρ̂Â =
∑

i

pi |Ψi〉〈Ψi| Â (5.22)

In the {|ψi〉} basis,

〈ψn|ρ̂Â|ψm〉 =
∑

i

pi 〈ψn|Ψi〉〈Ψi|Â|ψm〉 (5.23)

Taking the trace of ρ̂Â,

Tr ρ̂Â =
∑

n

〈ψn|ρ̂Â|ψn〉

=
∑

i

∑

n

pi 〈ψn|Ψi〉〈Ψi|Â|ψn〉

=
∑

i

pi 〈Ψi|Â|Ψi〉

= 〈Â〉 (5.24)

Thus the average value of an operator for a system in either a pure or mixed state, is known as soon

as the density operator is known. Therefore the density operator contains all physically

significant information on the system.

To summarise, the density operator ρ̂ has the following properties:

• ρ̂ is Hermitean: ρ̂ = ρ̂†. This follows from the fact that the pi are real. This property means

that the expectation value of any observable is real.

• ρ̂ has unit trace: Tr ρ̂ = 1.

• ρ̂ is non-negative: 〈Φ|ρ̂|Φ〉 ≥ 0 ∀ |Φ〉 ∈ H

• The expectation value of an operator Â is given by 〈Â〉 = Tr ρ̂Â.

5.3.1 Density operator for spin states

Suppose the spin state of an electron is given by

|Ψ〉 = | ↑〉 (5.25)

so that the density operator is

ρ̂ = | ↑〉〈↑ | (5.26)
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In the basis {| ↑〉, | ↓〉} (i.e. the eigenstates of Ŝz, the z-component of the spin angular momentum

of the electron), the density matrix is

ρ̂ =

(

1 0

0 0

)

(5.27)

Problem 2: Verify (5.27) and hence show that the expectation values of the operators Ŝx, Ŝy, Ŝz

are 0,0 and 1
2 h̄ respectively.

More generally, if the electron is in a state described by

|Ψ〉 = a1| ↑〉+ a2| ↓〉 (5.28)

with

|a1|2 + |a2|2 = 1

the density operator is

ρ̂ =

(

|a1|2 a1a
∗
2

a2a
∗
1 |a2|2

)

(5.29)

which indicates that the diagonal elements |a1|2 and |a2|2 are just the probabilities that the electron

is the state | ↑〉 and | ↓〉 respectively.

Another useful form for the density matrix for spin- 1
2 particles is obtained by writing

ρ̂ = c0 I + c1 Ŝx + c2 Ŝy + c3 Ŝz (5.30)

where I is the unit 2× 2 matrix and the ci’s are real numbers. The density matrix becomes

ρ̂ =

(

c0 + 1
2c3

1
2(c1 − ic2)

1
2(c1 + ic2) c0 − 1

2c3

)

(5.31)

(where we have set h̄ = 1).

Problem 3: Verify (5.31) using the definition of the spin operators in terms of the Pauli matrices.

Show that c0 = 1
2 and the expectation values of Ŝx, Ŝy, Ŝz are given by 1

2c1,
1
2c2,

1
2c3 respectively.

Hence show that the density operator can be written compactly as

ρ̂ =
1

2

[

I + 〈σ̂〉 · σ
]

where σ = (σx, σy, σz) is the vector whose components are the Pauli matrices.

Problem 4: By analogy with the polarisation of the spin- 1
2 case discussed in this section, the

polarisation of a light quantum can be described by a two-component wave function

(

a

b

)

, where
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|a|2 and |b|2 are the probabilities that the photon is polarised in one or the other of two mutually

perpendicular directions (or that the photon is right- or left-hand circularly polarised). If we want

to determine the polarisation of a photon, we could, for instance, use a filter, which we shall call a

detector (although strictly speaking it is not a detector but a device to prepare for a measurement).

Such a filter could correspond to a pure state, described by a wave function

Ψdet = cdet
1 Ψ1 + cdet

2 Ψ2

where

Ψ1 =

(

1

0

)

, Ψ2 =

(

0

1

)

(5.32)

are the wave functions corresponding to the two polarisation states. This pure state corresponds

to a 2× 2 detector density matrix ρ̂det given by its matrix elements

ρdet
ij = cdet

i · (cdet
j )∗

Find an expression for the probability of a response of a detector described by ρ̂det to a photon in

a state described by a density matrix ρ̂.

5.3.2 Density operator in the position representation

The density operator in the position representation is defined by

ρ(x′, x) = 〈x′|ρ̂|x〉

=
∑

i

pi Ψi(x
′)Ψ∗

i (x) (5.33)

which, for a pure state becomes

ρ(x′, x) = Ψ(x′)Ψ∗(x) (pure state) (5.34)

The expectation value for an operator Â is then given by

〈Â〉 = Tr ρ̂ Â

=

∫

dx 〈x|ρ̂Â|x〉

=

∫

dx 〈x|ρ̂
(∫

dx′|x′〉〈x′|
)

Â|x〉

=

∫ ∫

dx′ dx 〈x|ρ̂|x′〉 〈x′|Â|x〉

=

∫ ∫

dx′ dx ρ(x, x′)A(x′, x) (5.35)
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Problem 5: Show that

(a) When Â = x̂ , i.e. the position operator, then

〈x̂〉 =

∫

dxx ρ(x, x)

(b) When Â = p̂ , i.e. the momentum operator, then

〈p̂〉 =
h̄

i

∫

dx

[

∂

∂x
ρ(x, x′)

]

x′=x

Problem 6: Often one is dealing with a system which is part of a larger system. Let x and q

denote, respectively, the coordinates of the smaller system and the coordinates of the remainder of

the larger system. The larger system will be described by a normalised wave function Ψ(x, q) which

cannot necessarily be written as a product of functions depending on x and q only. Let Â be an

operator acting only on the x variables, let Ĥ be the Hamiltonian describing the smaller system,

and let the density operator ρ̂ be defined in the position representation by the equation

〈x|ρ̂|x′〉 =

∫

Ψ∗(q, x′)Ψ(q, x) dq (5.36)

where the integration is over all the degrees of freedom of the remainder of the larger system.

(a) Express the expectation value of Â in terms of ρ̂ for the case where the larger system is

described by the wave function Ψ(q, x).

(b) What is the normalisation condition for ρ̂?

(c) Find the equation of motion for ρ̂.

Problem 7: If the wave function Ψ(q, x) of the preceding problem can be written in the form

Ψ(q, x) = Φ(q)χ(x) (5.37)

we are dealing with a pure state. Prove that in this case ρ̂ is idempotent, i.e. that

ρ̂2 = ρ̂ (5.38)

in agreement with Eq. (5.18).



104 CHAPTER 5. DENSITY MATRICES

5.4 Density operator in statistical mechanics

A very important application of the density operator is to describe a system in thermal equilib-

rium. Let {Ψn} be the complete set of eigenstates of the Hamiltonian Ĥ for the system, which

satisfy

ĤΨn = EnΨn (5.39)

Then in thermal equilibrium at absolute temperature T the states are occupied according to the

Boltzmann distribution

pn = Ne−βEn (5.40)

where pn is the probability of finding the system in the eigenstate Ψn with energy En, β = 1/kT

with k the Boltzmann constant, and N is a normalisation constant chosen to ensure that

∑

n

pn = 1

The corresponding density operator ρ̂(β) is (from (5.3)):

ρ̂(β) = N
∑

n

e−βEn |Ψn〉〈Ψn| (5.41)

Since

e−βĤ |Ψn〉 = e−βEn |Ψn〉 (5.42)

this enables us to write

ρ̂(β) = N
∑

n

e−βEn |Ψn〉〈Ψn|

= N
∑

n

e−βĤ |Ψn〉〈Ψn|

= Ne−βĤ
∑

n

|Ψn〉〈Ψn|

= Ne−βĤ (5.43)

To determine N , we note that

Tr ρ̂(β) = N Tr e−βĤ

= 1 (5.44)

which implies

N =
1

Tr e−βĤ
(5.45)
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Hence the density operator under thermal equilibrium is

ρ̂(β) =
e−βĤ

Tr e−βĤ

=
1

Z
e−βĤ (5.46)

where

Z = Tr e−βĤ (5.47)

is known as the canonical partition function. (Note that the partition function is a function of

absolute temperature, T , the volume V , and the number of particles that make up the system, N .)

We see that from the knowledge of the density operator in any representation, one can determine

the partition function and therefore all thermodynamic properties of the system. For instance, the

average of an observable Â is given by

〈Â〉 = Tr ρ̂ Â

=
Tr

[

e−βĤ Â

]

Tr

[

e−βĤ

] (5.48)

The mean energy of the system (i.e. the internal energy) is given by U where

U = 〈Ĥ〉

=
Tr

[

e−βĤ Ĥ

]

Tr

[

e−βĤ

]

= − ∂

∂β
ln

(

Tr e−βĤ
)

= − ∂

∂β
ln Z(T, V,N) (5.49)

From the partition function, we obtain all thermodynamic observables:

S = −kTr (ρ̂ ln ρ̂) (entropy)

= k β 〈Ĥ〉+ k ln Z(T, V,N)

F = U − TS (Helmholtz free energy)
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= −kT ln Z(T, V,N)

= −kT ln

[

Tr

{

e−βĤ
}]

(5.50)

We now calculate the matrix elements of the density operator (in various representations) for some

concrete cases.

5.4.1 Density matrix for a free particle in the momentum representation

We determine the density matrix in the momentum representation for a free particle in thermal

equilibrium in a box of volume L3 with periodic boundary conditions. The Hamiltonian is given

by Ĥ = p̂2/2m and the energy eigenfunction are plane waves;

Ĥ|ψk〉 = E|ψk〉 (5.51)

with

E =
h̄2k2

2m
(5.52)

and |ψk〉 defined by

ψk(r) =
1√
V
eik·r

k =
2π

L
(nx, ny, nz)

ni = 0,±1,±2, . . . (5.53)

Note that the energy eigenvalues are discrete but their mutual separation for macroscopic volumes

is so small that one may treat them as essentially continuous. The advantage of the formulation

using a box and periodic boundary conditions is that one has automatically introduced into the

formalism a finite volume for the particles, which is not the case for free plane waves we have used

so far (in scattering theory for example). The functions ψk(r) are orthonormalized,

〈ψk′ |ψk〉 = δk,k′

= δnx′ ,nx δny′ ,ny δnz ,nz (5.54)

and complete,
∑

k

ψ∗k(r′)ψk(r) = δ(r′ − r) (5.55)
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The canonical partition function is

Z(T, V, 1) = Tr e−βĤ

=
∑

k

〈ψk|e−βĤ |ψk〉

=
∑

k

e−
βh̄2

2m
k2

(5.56)

Since the eigenvalues k are very close together in a large volume, we can replace the sum in (5.56)

by an integral.

Z(T, V, 1) =
V

(2π)3

∫

dk e−
βh̄2

2m
k2

=
V

(2π)3

(

2mπ

βh̄2

)3/2

=
V

λ3
(5.57)

where λ is called the thermal wavelength. The matrix elements of the density operator thus becomes

〈ψk′ |ρ̂|ψk〉 =
λ3

V
e−

βh̄2

2m
k2

δk,k′ (5.58)

which is a diagonal matrix.

5.4.2 Density matrix for a free particle in the position representation

We can make a change of basis to find the density matrix for the same system in the position

representation. We have

〈r′|ρ̂|r〉 =
∑

k,k′

〈r′|k′〉 〈k′|ρ̂|k〉 〈k|r〉

=
∑

k,k′

ψk′(r
′)
{

λ3

V
e−

βh̄2

2m
k2

δk,k′

}

ψ∗k(r)

=
λ3

V

1

(2π)3

∫

dk exp

{

− βh̄2

2m
k2 + ik · (r′ − r)

}

(5.59)
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Problem 8: Show that Eq. (5.59) reduces to

〈r′|ρ̂|r〉 =
λ3

V

1

(2π)3
exp

{

− m

2βh̄2 (r′ − r)2
}(

2mπ

βh̄2

)3/2

=
1

V
exp

{

− π

λ2
(r′ − r)2

}

(5.60)

Hence in the position representation, the density matrix is no longer a diagonal matrix, but a Gaus-

sian function in (r′−r). The diagonal elements of the density matrix in the position representation

can be interpreted as the density distribution in position space i.e.

〈r′|ρ̂|r〉 = ρ(r) =
1

V
(5.61)

The non-diagonal elements r 6= r′ can be interpreted as the transition probability of the particle

to move from a position r to a new position r′ (though these transitions are restricted to spatial

regions having the size of the thermal wavelengths.) For large temperatures (λ→ 0) this is hardly

observable, but for low temperatures λ may become very large, which implies that quantum effects

play an especially large role at low temperatures.

5.4.3 Density matrix for the harmonic oscillator

Here, we determine the density matrix for the one-dimensional quantum harmonic oscillator in the

position representation. This result is of great importance in quantum statistical mechanics and

the mathematical steps involved in deriving the final result carry over to other areas of theoretical

physics. We shall use the expression for the energy eigenfunction in the position representation

derived in the quantum physics course:

Ψn(q) =

(

Mω

πh̄

)1/4 Hn(x)√
2nn!

exp

{

− 1

2
x2
}

(5.62)

where q is the position and for brevity we have introduced the variable

x =

√

Mω

h̄
q (5.63)

The energy eigenvalues are En = h̄ω(n+ 1
2) and Hn are the Hermite polynomials, defined by

Hn(x) = (−1)nex
2

(

d

dx

)n

e−x2

=
ex

2

√
π

∫ +∞

−∞
(−2iu)n exp{−u2 + 2ixu} du (5.64)
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The density matrix in the energy representation is simple:

〈m|ρ̂|n〉 = ρnδmn

ρn =
1

Z
exp

{

− β h̄ω(n+
1

2
)

}

n = 0, 1, 2, . . . (5.65)

where

Z(T, V, 1) =

[

2 sinh

(

1

2
βh̄ω

)]−1

(5.66)

Problem 9: Verify Eqs. (5.65) and (5.66).

Problem 10: Show that in the position representation we have

〈q′|ρ̂|q〉 =
1

Z

(

Mω

πh̄

)1/2

exp

{

− 1

2
(x2 + x′2)

}

×
∞
∑

n=0

1

2nn!
exp

{

− β h̄ω(n+
1

2
)

}

Hn(x)Hn(x′) (5.67)

Hint: We have twice inserted the complete set of energy eigenfunctions.

Using the integral representation (5.64) for the Hermite polynomials in Eq. (5.67), we get:

〈q′|ρ̂|q〉 =
1

Zπ

(

Mω

πh̄

)1/2

exp

{

+
1

2
(x2 + x′2)

}

×
∫ +∞

−∞
du

∫ +∞

−∞
dv

∞
∑

n=0

(−2uv)n

n!
exp

{

− β h̄ω(n+
1

2
)

}

exp{−u2 + 2ixu}

× exp{−v2 + 2ix′v} (5.68)

The summation over n can be carried out as follows:

∞
∑

n=0

(−2uv)n

n!
exp

{

− β h̄ω(n+
1

2
)

}

= exp

{

− 1

2
βh̄ω

} ∞
∑

n=0

1

n!

[

− 2uv exp(−βh̄ω)

]n

= exp

{

− 1

2
βh̄ω

}

exp

{

− 2uv e−βh̄ω
}

(5.69)
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Then Eq. (5.68) becomes

〈q′|ρ̂|q〉 =
1

Zπ

(

Mω

πh̄

)1/2

exp

{

+
1

2
(x2 + x′2 − βh̄ω)

}

×
∫ +∞

−∞
du

∫ +∞

−∞
dv exp

{

− u2 + 2ixu− v2 + 2ix′v − 2uv e−βh̄ω
}

(5.70)

The argument in the exponent is a quadratic form, which can be rewritten in the general form

−u2 + 2ixu− v2 + 2ix′v − 2uv e−βh̄ω = −1

2
wT ·A ·w + ib ·w (5.71)

where

A = 2

(

1 e−βh̄ω

e−βh̄ω 1

)

b = 2

(

x

x′

)

w =

(

u

v

)

(5.72)

We now use the general formula

∫

dnw exp

{

− 1

2
wT ·A ·w + ib ·w

}

=
(2π)n/2

[detA]
1

2

exp

{

− 1

2
bT ·A−1 · b

}

(5.73)

which holds if A is an invertible symmetric n× n matrix.

Problem 11: Verify (5.73).

Using (5.73) we get

〈q′|ρ̂|q〉 =
1

Z

(

Mω

πh̄

)1/2 e−
1

2
βh̄ω

[1− e−2βh̄ω]
1

2

× exp

{

1

2
(x2 + x′2)− [1− e−2βh̄ω]−1 (x2 + x′2 − 2xx′e−βh̄ω)

}

=
1

Z

[

Mω

2πh̄ sinh(βh̄ω)

] 1

2

exp

{

− 1

2
(x2 + x′2) coth(βh̄ω) +

xx′

sinh(βh̄ω)

}

(5.74)

Using the identity

tanh

(

1

2
βh̄ω

)

=
cosh(βh̄ω)− 1

sinh(βh̄ω)
=

sinh(βh̄ω)

1 + cosh(βh̄ω)
(5.75)
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one finally gets

〈q′|ρ̂|q〉 =
1

Z

[

Mω

2πh̄ sinh(βh̄ω)

]
1

2

× exp

{

− Mω

4h̄

[

(q + q′)2 tanh

(

1

2
βh̄ω

)

+ (q − q′)2 coth

(

1

2
βh̄ω

)]}

(5.76)

The diagonal elements of the density matrix in the position representation yield directly the average

density distribution of a quantum mechanical oscillator at temperature T :

ρ(q) =

[

Mω

πh̄
tanh

(

1

2
βh̄ω

)] 1

2

exp

{

− Mω

h̄
tanh

(

1

2
βh̄ω

)

q2
}

(5.77)

which is a Gaussian distribution with width

σq =









h̄

2Mω tanh

(

1
2βh̄ω

)









1

2

(5.78)

Problem 12: Show that in the limit of high temperatures, βh̄ω � 1,

ρ(q) ≈
(

mω2

2πkT

) 1

2

exp

{

− Mω2q2

2kT

}

(5.79)

and at low temperature, βh̄ω � 1,

ρ(q) ≈
(

mω

πh̄

) 1

2

exp

{

− Mωq2

h̄

}

(5.80)

Therefore the density matrix thus contains, for high temperatures, the classical limit, and for very

low temperatures, the quantum mechanical ground state density.
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Chapter 6

Lie Groups

6.1 Introduction

We have already seen several examples of transformations of quantum mechanical state vectors, of

the form

|ψ〉 → |ψ′〉 = Û |ψ〉 (6.1)

To preserve the inner products of state vectors under this transformation, we require

〈φ′|ψ′〉 = 〈φ|Û †Û |ψ〉 = 〈φ|ψ〉 (6.2)

for all |φ〉 and |ψ〉, or in other words that the transformation operator Û is unitary, Û †Û = Î.

Examples are the basis transformations discussed in Sect. 1.3.5, and the time development operator

in Sect. 2.1. In the latter case, the transformation taking the state vector at time t = 0 to that at

time t (in the Schrödinger picture) was found to be

ÛT (t) = T̂ (t, 0) = exp

[

− i

h̄
Ĥt

]

(6.3)

The time development operators for different values of t are an example of a group of transformation

operators acting on the Hilbert space of state vectors. The general definition of a group G is a set of

elements {a, b, c, . . .} with a rule of multiplication, {a, b} → ab ∈ G having the following properties:

• Associativity: for all a, b, c ∈ G we have a(bc) = (ab)c

• Unit element: there exists e ∈ G such that ae = ea = a for all a ∈ G

• Inverse: for all a ∈ G there exists an element, denoted by a−1, such that aa−1 = a−1a = e

113
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If in addition the multiplication rule is commutative, ab = ba, then the group is said to be Abelian.

In the case of the time development operators (6.3) we clearly have an Abelian group, with

ÛT (t1)ÛT (t2) = ÛT (t2)ÛT (t1) = ÛT (t1 + t2)

ÛT (t)−1 = ÛT (−t)

Unit element ÛT (0) = Î (6.4)

This group has an infinite number of elements, corresponding to the different possible values of the

continuous real parameter t. The elements are differentiable with respect to t: in fact

d

dt
ÛT = − i

h̄
ĤÛT (6.5)

so that

ÛT (t+ dt) =

(

1− i

h̄
Ĥ dt

)

ÛT (t) (6.6)

Thus the operator −iĤ dt/h̄ has the effect of producing the infinitesimal development in time dt.

We say that the operator Ĥ/h̄ is the generator of the group of time development operators {ÛT }.

6.1.1 The translation group

A somewhat more complicated group is the group of spatial translations {ÛD}. In the position

representation, these operate on the wave function ψ(r, t) to produce displacements:

ψ(r, t) → ψ′(r, t) such that ψ′(r + a, t) = ψ(r, t) (6.7)

Thus we have

ψ′(r, t) = ψ(r− a, t) = ÛD(a)ψ(r, t) (6.8)

We see that this is again an Abelian group, since

ÛD(a)ÛD(b)ψ(r, t) = ÛD(a)ψ(r− b, t) = ψ(r− b− a, t)

= ψ(r − a− b, t) = ÛD(b)ÛD(a)ψ(r, t) (6.9)

For an infinitesimal change a → a + da we have

ψ(r− a− da, t) = (1− da · ∇)ψ(r− a, t) (6.10)
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so that

ÛD(a + da) = (1− da · ∇)ÛD(a) (6.11)

By analogy with the group of time development operators, we write this as

ÛD(a + da) =
(

1− ida · D̂
)

ÛD(a) (6.12)

where the three operators D̂j (j = x, y, z) are the generators of the translation group,

(

D̂x, D̂y, D̂z

)

= −i
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

(6.13)

In the case of a finite displacement ax in the x-direction, we can Taylor expand the transformed

wave function, to obtain

ψ′(x, y, z, t) = ψ(x− ax, y, z, t) = ψ − ax
∂ψ

∂x
+

1

2
a2

x

∂2ψ

∂x2
− . . .

=
∞
∑

n=0

1

n!

(

−ax
∂

∂x

)n

ψ

=
∞
∑

n=0

1

n!

(

−iaxD̂x

)n
ψ

= exp
(

−iaxD̂x

)

ψ (6.14)

Thus when a = (ax, 0, 0) we have ÛD(a) = exp(−iaxD̂x). Similarly, when a = (0, ay , 0) we have

ÛD(a) = exp(−iayD̂y), and when a = (0, 0, az), ÛD(a) = exp(−iazD̂z). Therefore, since the group

is Abelian, we can write

ÛD(a) = e−iaxD̂xe−iayD̂ye−iazD̂z

= e−i(axD̂x+ayD̂y+azD̂z) = e−ia·D̂ (6.15)

We recall from Chapter 1 that it is not true in general that

eÂeB̂ = eÂ+B̂ (6.16)

This follows only if the operators Â and B̂ commute, [Â, B̂] = 0. Thus the second line of Eq. (6.15)

follows from the first only because D̂x, D̂y and D̂z commute with each other.

Notice that the spatial translation operators, like the time development operators, are unitary,

since the generators are Hermitian:

Û †
D(a) = e+ia·D̂†

= e+ia·D̂ = UD(−a) = [UD(a)]−1 (6.17)
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We recall that this is because these operators preserve the inner products between state vectors,

Eq. (6.2).

In general, a continuous group of operators Ĝ(a1, a2, . . . , an) that can be written in the form

Ĝ(a1, a2, . . . , an) = exp



−i
n
∑

j=1

ajX̂j



 (6.18)

where a1, a2, . . . , an are real parameters, is called a Lie group of dimension n, with generators {X̂j}.
The number of generators that commute with each other, [X̂j , X̂k] = 0, is the rank of the group.

Thus the group of time development operators is a Lie group with dimension = rank = 1, while

the group of spatial displacements has dimension = rank = 3.

It should be clear that any Abelian Lie group has rank equal to its dimension. We shall see,

however, that many of the important Lie groups in physics are non-Abelian, i.e. some or all of their

generators do not commute with each other.

6.1.2 Symmetries and constants of the motion

We recognise the generators of the translation group, D̂j in Eq. (6.13), as the quantum mechanical

momentum operators, up to an overall factor of h̄:

(p̂x, p̂y, p̂z) = −ih̄
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

= h̄
(

D̂x, D̂y, D̂z

)

(6.19)

This is not a coincidence: the generators of Lie groups are often related to quantum mechanical

observables. In particular, if the group that they generate is a symmetry group of the system,

then the corresponding observables will be constants of the motion, i.e. conserved quantities whose

values are time-independent.

By a symmetry group we mean in general a group of transformations {Û} such that the transformed

system behaves in exactly the same way as the untransformed one. In particular, if we transform any

state of the system |ψ〉, allow it to evolve for a time, and then perform the inverse transformation,

we shall find exactly the same state as if the transformations had not been performed at all.

In mathematical terms, this means that if Û is a symmetry transformation and ÛT is the time

development operator, then

Û−1ÛT Û |ψ〉 = ÛT |ψ〉 (6.20)

for any |ψ〉, which implies the operator equation

Û−1ÛT Û = ÛT (6.21)
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or, acting on the left with Û ,

ÛT Û = Û ÛT (6.22)

In other words, the symmetry transformation operator and the time development operator com-

mute. Now if Û is an element of a Lie group,

Û = exp
(

−i
∑

ajX̂j

)

(6.23)

then, recalling Eq. (6.3) for ÛT , this can only be the case if the generators X̂j commute with the

Hamiltonian operator Ĥ.

Thus we have shown that if a Lie group is a symmetry group then its generators must commute

with the Hamiltonian. Furthermore, since the symmetry transformation operators must be unitary,

the generators must be Hermitian operators. They can therefore be associated with quantum

mechanical observables. And from Chapter 2 we know that observables that commute with the

Hamiltonian represent constants of the motion.

Consider for example the case of a single particle moving freely in the absence of any forces. The

position of the origin of coordinates is arbitrary, so if we make a translation r → r − a at time

t = 0, then allow the particle to move, then translate back, r → r + a at time t > 0, the result

will be equivalent to no translation. Thus the generators of displacements, D̂j, are associated with

constants of the motion. And indeed the form of the Hamiltonian for this system

Ĥ =
p̂2

2m
(6.24)

is such that the operators p̂j = h̄D̂j do commute with it.

In the presence of a potential that depends on x, V = V (x), a translation in the x-direction will

move the particle into a region of different potential and its time development will be changed, so

that px will no longer be a constant of the motion, while py and pz will remain so. The symmetry

group of the system has been reduced from the full translation group to the subgroup of translations

in the yz-plane, generated by D̂y and D̂z. Correspondingly, D̂x, and hence p̂x, does not commute

with the Hamiltonian: in fact

[p̂x, Ĥ ] = h̄[D̂x, V (x)] = −ih̄dV
dx

(6.25)

In the case of a single particle moving in a central potential, V = V (|r|), a displacement of the

centre of force will clearly alter the motion and therefore none of the components of the particle’s

momentum are conserved. However, if we consider the larger system of a pair of particles moving

under the influence of a mutual attraction (or repulsion), V = V (|r1 − r2|), we can see that a
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simultaneous displacement of them both by the same amount, r1,2 → r1,2 − a, will not affect the

motion. Denoting the generators of displacements of particles 1 and 2 by D̂
(1)
j and D̂

(2)
j respectively,

the corresponding symmetry transformation will be

ÛD(a) = Û
(1)
D (a) Û

(2)
D (a)

= exp
[

−ia · D̂(1)
]

exp
[

−ia · D̂(2)
]

= exp
[

−ia · (D̂(1) + D̂(2))
]

(6.26)

where the last line follows because displacements of particle 1 and particle 2 commute. Therefore

the sum of the generators of displacements of the two particles is associated with a constant of the

motion, which (multiplying by h̄) we recognise as the total momentum of the system.

6.2 The rotation group, SO(3)

Consider next the group of rotations in three dimensions. We can characterise any rotation by an

axis and an angle of rotation around that axis. The effect on the position vector r of a rotation by

angle ϕ about the z-axis is as follows:

x → x′ = x cosϕ− y sinϕ

y → y′ = x sinϕ+ y cosϕ

z → z′ = z (6.27)

which we can represent by a 3×3 matrix











x

y

z











→











x′

y′

z′











=











cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1





















x

y

z











(6.28)

That is,

r → r′ = R̂z(ϕ) r (6.29)

where

R̂z(ϕ) =











cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1











(6.30)
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To find the generator of rotations around the z-axis, we consider an infinitesimal rotation dϕ, for

which

R̂z(dϕ) =











1 −dϕ 0

dϕ 1 0

0 0 1











(6.31)

i.e.

R̂z(dϕ) = 1− idϕ X̂z (6.32)

where

X̂z =











0 −i 0

i 0 0

0 0 0











(6.33)

Problem 1: Show that

R̂z(ϕ) = exp
(

−iϕ X̂z

)

(6.34)

where R̂z(ϕ) is given by Eq. (6.30) and X̂z by Eq. (6.33).

Hint: Note that X̂3
z = X̂z.

Similarly, rotations about the x- and y-axes are represented by the matrices

R̂x(ϕ) =











1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ











, R̂y(ϕ) =











cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ











(6.35)

which can be written as

R̂x,y(ϕ) = exp
(

−iϕ X̂x,y

)

(6.36)

where

X̂x =











0 0 0

0 0 −i
0 i 0











, X̂y =











0 0 i

0 0 0

−i 0 0











(6.37)

Since our choice of coordinate axes is arbitrary, it must therefore be the case that a rotation through

angle ϕ about a general axis along the unit vector n = (nx, ny, nz) is represented by

R̂n(ϕ) = exp
[

−iϕ
(

nxX̂x + nyX̂y + nzX̂z

)]

= exp
(

−iϕn · X̂
)

(6.38)
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which shows that the rotation group is a Lie group of dimension 3. Furthermore, since the generator

matrices X̂x,y,z are Hermitian, the rotation matrices R̂n(ϕ) are unitary. In fact, since iX̂x,y,z

and nx,y,z are real, the rotation matrices are real unitary, i.e. orthogonal matrices. Finally, since

| exp Â| = exp(TrÂ) for any square matrix (see Problem 6 of Chapter 1) and X̂x,y,z are traceless

matrices, |R̂n(ϕ)| = 1. Thus the rotation group is denoted by SO(3), the special orthogonal group

of dimension 3, the S for special indicating that the determinant is 1.

The rotation group is non-Abelian: successive rotations about different axes do not commute.

Correspondingly, the generators X̂x,y,z do not commute amongst themselves. By explicit calculation

using the above matrices, we find

[X̂x, X̂y] = iX̂z , [X̂y, X̂z] = iX̂x , [X̂z, X̂x] = iX̂y (6.39)

that is,

[X̂j , X̂k] = iεjklX̂l (6.40)

Problem 2: Notice that the elements of the matrices representing the generators of the rotation

group are given by
(

X̂j

)

kl
= −iεjkl (6.41)

Use this fact to derive the commutation relations (6.40).

The maximal subgroup of commuting rotations that we can make are those about a single axis, for

example the z-axis:

R̂z(ϕ1)R̂z(ϕ2) = R̂z(ϕ2)R̂z(ϕ1) = R̂z(ϕ1 + ϕ2) (6.42)

Thus the rotation group has rank = 1.

The generators of a Lie group form a Lie algebra. An algebra is a set of objects with a rule for

multiplication and a rule for addition (whereas a group has only a rule for multiplication). The

elements of the Lie algebra are the set of linear combinations of the generators,

Â =
n
∑

j=1

ajX̂j (6.43)

with real coefficients aj .

The rule for multiplication in the Lie algebra is to form the commutator and divide by i. If we

simply multiplied the operators, or did not divide by i, the result would not in general be a real
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linear combination of the generators, i.e. the algebra would not close. The properties of the group

are determined by the outcome of this multiplication rule. In general we can have

[X̂j , X̂k] = i
n
∑

l=1

fjklX̂j (6.44)

where the real constants fjkl are called the structure constants of the group. For an Abelian group

the structure constants are all zero, while for the rotation group we have fjkl = εjkl.

6.2.1 Angular momentum conservation

So far, we have discussed the rotation group in terms of its action on the position vector r. Consider

now its action on a quantum mechanical wave function ψ(r, t). We have to find the unitary

transformation operator ÛR such that

ψ′(R̂ r, t) = ψ(r, t) (6.45)

and therefore

ψ′(r, t) = ÛR ψ(r, t) = ψ(R̂−1r, t) (6.46)

for a general rotation R̂. As usual, we do this by studying the effects of infinitesimal transformations.

From Eq. (6.32), an infinitesimal rotation about the z-axis gives

ψ′(r, t) = ψ
(

(1 + i dϕ X̂z)r, t
)

(6.47)

and therefore, using Cartesian coordinates,

ψ′(x, y, z, t) = ψ(x+ y dϕ, y − x dϕ, z, t)

= ψ(x, y, z, t) − dϕ

(

x
∂

∂y
− y

∂

∂x

)

ψ(x, y, z, t)

= (1− i

h̄
dϕ L̂z)ψ (6.48)

where we recognise L̂z as the z-component of the orbital angular momentum operator:

L̂z = xp̂y − yp̂x =
h̄

i

(

x
∂

∂y
− y

∂

∂x

)

(6.49)

Thus L̂z/h̄ is the generator of rotations about the z-axis. Similarly, L̂x/h̄ and L̂y/h̄ are the

generators of rotations about the x and y axes. Notice that these operators generate the same

Lie algebra (6.40) as the matrices X̂j introduced earlier:

[L̂j , L̂k] = ih̄εjklL̂l ⇒
[

L̂j

h̄
,
L̂k

h̄

]

= iεjkl
L̂l

h̄
(6.50)
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We therefore obtain the following fundamental relation between the SO(3) generators and the

orbital angular momentum operators:

L̂ = h̄X̂ (6.51)

Correspondingly, the transformation operator for the general rotation (6.38), i.e. a finite rotation

ϕ about the unit vector n, is given by

ÛR = exp

(

− i

h̄
ϕn · L̂

)

(6.52)

Now we can invoke the general discussion in the previous section to relate the symmetry of a system

under rotations to the conservation of the generators of the rotation group, i.e. angular momentum

conservation. For example, as we discussed earlier, the motion of a particle in a potential that

depends only on x is symmetric with respect to displacements in the yz-plane, and it is also

symmetric under rotations in that plane, i.e. rotations about the x-axis. We therefore expect Lx,

but not Ly or Lz, to be conserved. If the potential is central, V = V (|r|), the system is symmetric

under all rotations and therefore all components of the angular momentum are conserved.

Problem 3: Consider a pair of particles moving under the influence of a mutual attraction V =

V (|r1 − r2|). Show that the transformation operator for the rotation of the whole system through

angle ϕ about the unit vector n is given by

ÛR = exp

[

− i

h̄
ϕn · (L̂(1) + L̂(2))

]

(6.53)

where L̂(1) and L̂(2) are the angular momentum operators for the two particles separately. Show

further that the total angular momentum L̂ = L̂(1) + L̂(2) is conserved, whereas L̂(1) and L̂(2)

separately are not.

6.2.2 Representations of SO(3)

We have seen that the 3×3 matrices X̂j in Eqs. (6.33) and (6.37) satisfy the same commutation

relations as the more abstract operators L̂j/h̄. We say that these matrices form a representation

of the Lie algebra generated by the operators. Correspondingly, the rotation matrices R̂n form

a representation of the Lie group SO(3). In fact, they are the smallest matrices that can form a

faithful representation, i.e. one in which each element is uniquely represented by a different matrix.

The smallest faithful representation is called the fundamental representation of a group.
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However, there are infinitely many other sets of matrices that satisfy the same Lie algebra. A trivial

example is to represent every generator by 0̂, the null matrix, which certainly satisfies the algebra

(6.40):

[0̂, 0̂] = iεjkl0̂ (6.54)

Then every rotation is represented by the identity operator Î. This smallest, but extremely un-

faithful, representation is called the singlet representation, 1.

Non-trivial representations can be constructed by appealing to the theory of angular momentum

presented in the quantum physics course. We note first that the quadratic Casimir operator

X̂2 =
∑

j

X̂2
j (6.55)

commutes with all the generators:

[X̂2, X̂k] = 0 (6.56)

Problem 4: Verify Eq. (6.56).

Now X̂2 = L̂2/h̄2, and we know that the magnitude of the orbital angular momentum is quantised

according to L2 = h̄2l(l + 1) where l = 0, 2, 3, . . .. The states with a given orbital angular momen-

tum are therefore eigenstates of the quadratic Casimir operator X̂2 with eigenvalue l(l + 1). The

corresponding wave functions are linear combinations of the spherical harmonics Y lm(θ, ϕ), where

the m signifies that the eigenvalue of L̂z is mh̄, i.e. the eigenvalue of X̂z is m. The quantum number

m can take 2l+1 values m = −l,−l+1, . . . , l− 1, l. Under rotations, the spherical harmonics with

a given value of l and different values of m transform amongst themselves, and therefore the action

of rotations on these states can be represented by (2l + 1)× (2l + 1) matrices. For example, when

l = 1 we can represent

Y11(θ, ϕ) = −
√

3

8π
sin θ eiϕ by











1

0

0











Y10(θ, ϕ) =

√

3

4π
cos θ by











0

1

0










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Y1−1(θ, ϕ) =

√

3

8π
sin θ e−iϕ by











0

0

1











(6.57)

Then, defining the angular momentum ladder operators L̂± = L̂x ± iL̂y, we have

L̂+Y11 = 0 , L̂+Y10 =
√

2h̄Y11 , L̂+Y1−1 =
√

2h̄Y10

L̂−Y11 =
√

2h̄Y10 , L̂−Y10 =
√

2h̄Y1−1 , L̂−Y1−1 = 0

L̂zY11 = h̄Y11 , L̂zY10 = 0 , L̂zY1−1 = −h̄Y1−1

(6.58)

Therefore in this representation the generator matrices L̂j/h̄ are represented by the matrices X̂ ′
j

where

X̂ ′
x =

1√
2











0 1 0

1 0 1

0 1 0











X̂ ′
y =

1√
2











0 −i 0

i 0 −i
0 i 0











X̂ ′
z =











1 0 0

0 0 0

0 0 −1











(6.59)

This so-called spherical representation of the Lie algebra is equivalent to the Cartesian representa-

tion generated by the matrices X̂j : they are related by a change of basis. They generate the triplet

representation, 3, of the rotation group.

Problem 5: Suppose Ĝ is an element of a Lie group with generators {X̂j},

Ĝ = exp
(

−i ajX̂j

)

, (6.60)

and Û is a unitary operator corresponding to a change of basis,

Ĝ→ Ĝ′ = Û ĜÛ † . (6.61)

Show that

Ĝ′ = exp
(

−i ajX̂
′
j

)

(6.62)
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where

X̂ ′
j = ÛX̂jÛ

† . (6.63)

Find the unitary matrix Û which relates the Cartesian and spherical forms of the triplet represen-

tation of SO(3).

Answer:

Û =
eiφ√

2











−1 i 0

0 0
√

2

1 i 0











(6.64)

where φ is an arbitrary phase angle.

In general, the (2l + 1) × (2l + 1) matrices that represent the action of the angular momentum

operators on the states of a system with orbital angular momentum quantum number l generate a

representation of SO(3) called the 2l + 1 representation. These are the so-called irreducible repre-

sentations of SO(3). The term ‘irreducible’ refers to the fact that the representation matrices cannot

be brought into block-diagonal form by any change of basis, whereas a reducible representation can

be written entirely in that form.

Notice that in the spherical representation we label the 2l + 1 basis states of an irreducible repre-

sentation of SO(3) according to the eigenvalues m of X̂z. We cannot specify any other quantum

numbers because the other generators do not commute with X̂z, i.e. because SO(3) has rank 1. In

general, if a group has rank r, the r commuting generators are compatible observables and we can

label the states by r quantum numbers which represent their eigenvalues.

Reducible representations of SO(3) are produced when we combine orbital angular momenta. For

example, when we combine particles 1 and 2 with l1 = l2 = 1 we can represent the states as

linear combinations of the products of spherical harmonics Y1m1
(θ1, ϕ1)Y1m2

(θ1, ϕ2). This makes

9 states |m1m2〉 with m1,2 = 1, 0 or –1. The 9×9 matrices representing the action of the angular

momentum operators on these states form the 3×3 representation of SO(3). However, we know that

by combining l1 = 1 and l2 = 1 we can make total angular momentum L = 0, 1 or 2. Each of these

separately forms an irreducible representation 2L+ 1. The angular momentum operators cannot

transform any state with a given value of L into one with a different value of L. Therefore the

3×3 representation must be expressible in a block-diagonal form with 1×1, 3×3 and 5×5 matrices

along the diagonal, representing the action of rotations on the L = 0, 1 and 2 multiplets of states

respectively. We express this reduction by writing

3× 3 = 1 + 3 + 5 (6.65)
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Problem 6: Write down the SO(3) reduction formula, corresponding to Eq. (6.65), for the general

case of combining angular momenta l1 and l2. Verify that the total numbers on the left- and

right-hand sides agree.

6.3 The group SU(2)

As its name implies, SU(2) is the group of 2×2 unitary matrices with unit determinant. Since

any unitary operator can be written as Û = exp(−iĤ) where Ĥ is Hermitian, and since |Û | =

exp(−iTr Ĥ), we see that the generators of SU(2) must be 2×2 Hermitian, traceless matrices.

There are 3 linearly independent 2×2 Hermitian, traceless matrices, which can be taken to be the

Pauli matrices

σ̂x =





0 1

1 0



 , σ̂y =





0 −i
i 0



 , σ̂z =





1 0

0 −1



 , (6.66)

Then any element of SU(2) can be written as

Û = exp(−i αj σ̂j) (6.67)

where {αj} are real parameters and, as usual, a sum over j = x, y, z is understood.

It is clear from Eq. (6.67) that SU(2) is a Lie group, but at this stage it is a purely mathematical

construct. We notice, however that the Lie algebra of the generators σ̂j is

[σ̂j , σ̂k] = 2iεjkl σ̂l (6.68)

which is the same as that in Eq. (6.40) if we just make the rescaling X̂j = 1
2 σ̂j. Therefore the Lie

algebras of SU(2) and SO(3) are identical. The two groups are then said to be homomorphic.

However, the homomorphism of SU(2) and SO(3) does not mean that the two groups are identical.

For a start, SU(2) has a representation in terms of 2×2 matrices, which SO(3) does not. The

difference lies not in the algebra of the generators of the groups but in the ranges of their parameters.

We can regard SU(2) as the group of rotations of a spin- 1
2 system such as a single electron. Con-

venient basis states are those with spin up and down relative to the z-axis:

| ↑〉 =





1

0



 , | ↓〉 =





0

1



 (6.69)
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Now consider the effect of a rotation around the y-axis:

Û = exp(−i α σ̂y) (6.70)

Since σ̂2
y = Î, the unit matrix, we can easily Taylor expand this to obtain

Û = cosα Î − i sinα σ̂y =





cosα − sinα

sinα cosα



 (6.71)

Thus the action of this operator on the spin-up state is

Û | ↑〉 = cosα| ↑〉+ sinα| ↓〉 (6.72)

Now suppose we wish to transform the spin-up state into spin-down. This clearly corresponds to

a rotation through angle π around the y-axis. However, we see from Eq. (6.72) that to transform

| ↑〉 into | ↓〉 we need α = π/2, not π. In general, to perform a rotation through angle θ about the

y-axis we need α = θ/2. Notice, however, that to get back to Û | ↑〉 = | ↑〉 we need α = 2π, i.e.

θ = 4π. We need to rotate twice around the axis of rotation to get back to the state we started

from! A rotation through only 2π changes | ↑〉 to −| ↑〉, which has observable consequences, for

example in interference experiments involving polarised neutron beams.

More generally, a rotation of the spin through angle ϕ about an axis along the unit vector n is

represented by the SU(2) matrix

Ûn(ϕ) = exp

(

−iϕ
2

n · σ̂
)

(6.73)

where, to cover all the elements of the group, the range of ϕ must be 0 ≤ ϕ < 4π. This is

equivalent to the expression (6.38) for the group SO(3), with the substitution X̂j = 1
2 σ̂j discussed

above, except that the range of ϕ in SO(3) is only 0 ≤ ϕ < 2π. Thus the group SU(2) has the same

Lie algebra as SO(3) but twice as many elements.

Problem 7: Show that

Ûn(ϕ) = cos(ϕ/2)Î − i sin(ϕ/2)n · σ̂ (6.74)

and hence that Ûn(2π) = −Î, independent of the direction of the unit vector n.

6.3.1 Representations of SU(2)

The representations of SU(2) are those that can be formed by combining spin one-half objects. The

representations of the spin operators and the SU(2) generators will be related in the same way as
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the orbital angular momentum and the SO(3) generators,

Ŝj = h̄X̂j (6.75)

where X̂j = 1
2 σ̂j in the fundamental representation. The irreducible representations can then be

labelled by the total spin quantum number S, which gives the eigenvalue of the magnitude-squared

of the total spin S2 = h̄2S(S + 1). Equivalently, S gives the eigenvalue S(S + 1) of the quadratic

Casimir operator X̂2, which, as in SO(3), commutes with all the generators. The representation

will consist of (2S + 1) × (2S + 1) matrices which transform the 2S + 1 basis states with a given

value of S amongst themselves. The basis states can be labelled by the eigenvalues of X̂z, which

range from −S to +S at unit intervals.

Since the total spin quantum number S can be an integer (from combining an even number of

spins) or a half-integer (from combining an odd number), there is an irreducible representation

2S + 1 corresponding to every positive integer. As for SO(3), the reduction formulae for reducible

representations follow from the rules for combining angular momenta. Fore example, combining

three spin one-half objects gives the reducible representation 2× 2× 2. Now

2× 2 = 1 + 3

2× 1 = 2

2× 3 = 2 + 4 (6.76)

and so

2× 2× 2 = 2 + 2 + 4 (6.77)

corresponding to two distinct spin one-half irreducible representations and a spin three-halves one.

6.4 The group SO(4)

As its name implies, SO(4) is the group of 4×4 real orthogonal matrices with unit determinant. As

usual we write the group elements as

Ĝ = exp



−i
n
∑

j=1

ajX̂j



 (6.78)

The generators {X̂j} must then be linearly independent 4×4 purely imaginary Hermitian matrices

with trace zero. There are six of these, so the dimension of SO(4) is 6. The first three generators
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can be chosen to be those of SO(3) or SU(2), filled out with zeros in the fourth row and column:

X̂1 =















0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0















, X̂2 =















0 0 i 0

0 0 0 0

−i 0 0 0

0 0 0 0















, X̂3 =















0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0















(6.79)

The remaining generators can then be defined as X̂j+3 = Ŵj where

Ŵ1 =















0 0 0 i

0 0 0 0

0 0 0 0

−i 0 0 0















, Ŵ2 =















0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0















, Ŵ3 =















0 0 0 0

0 0 0 0

0 0 0 i

0 0 −i 0















(6.80)

We then find that the generators satisfy the following commutation relations (j, k = 1,2 or 3)

[

X̂j , X̂k

]

= iεjklX̂l

[

X̂j , Ŵk

]

= iεjklŴl

[

Ŵj, Ŵk

]

= iεjklX̂l (6.81)

If we define the symmetric and antisymmetric combinations,

X̂±
j =

1

2
(X̂j ± Ŵj) (6.82)

then the commutation relations become simply

[

X̂+
j , X̂

+
k

]

= iεjklX̂
+
l

[

X̂−
j , X̂

−
k

]

= iεjklX̂
−
l

[

X̂+
j , X̂

−
k

]

= 0 (6.83)

Thus the Lie algebra of SO(4) is equivalent to two mutually commuting SU(2) subalgebras. (We

shall see shortly that they correspond to SU(2) and not SO(3) subgroups.) Since the maximal

commuting subgroup is generated by a single generator from each SU(2), the rank of SO(4) is 2.

6.4.1 Representations of SO(4)

Each of the SU(2) subalgebras of SO(4) can be regarded as applying to a hypothetical ‘spin’, which

we denote by K rather than S to avoid confusion with the real spin. They are related to the
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generators as in Eq. (6.75):

K̂±
j = h̄X̂±

j (6.84)

The eigenvalues of (K̂±)2 will then be of the form h̄2k±(k± + 1). The irreducible representations

of SO(4) can therefore be labelled by the two quantum numbers k+ and k− which are the ‘total

spin’ quantum numbers of the irreducible representations of the two commuting SU(2) subgroups.

The corresponding multiplets of states will have (2k+ + 1)(2k− + 1) members. For example, the

fundamental representation 4 has k+ = k− = 1
2 . Notice that if the subgroups were SO(3) instead

of SU(2), then k+ and k− would have to be integers and the 4 representation could not be formed.

6.4.2 SO(4) symmetry of the hydrogen atom

All of the above may seem purely mathematical, but it turns out that SO(4) symmetry is in fact

manifest in the dynamics of the hydrogen atom. The atomic shells of degenerate energy levels in

hydrogen correspond to irreducible representations of SO(4). The principal quantum number n is

equal to 2k + 1, where k labels the irreducible representation with k+ = k− = k.

The SO(4) symmetry of the hydrogen atom arises from the existence of a second conserved vector

quantity M, with components proportional to the SO(4) generators Ŵj, in addition to the conserved

angular momentum vector L with components proportional to the generators X̂j . This quantity is

the Runge-Lenz vector

M =
1

m
p× L− κ

r
r (6.85)

where κ = e2/4πε0 is the force constant.

In classical mechanics, M is a vector directed along the major axis of the orbital ellipse, with a

magnitude proportional to the eccentricity of the ellipse. Its constancy reflects the fact that the

classical orbit is a closed curve, which is a special property of the inverse square force law.

Problem 8: Show that dM/dt = 0 in classical mechanics.

Problem 9: Show further that L ·M = 0 and that

M2 =
2

m
HL2 + κ2 (6.86)

where H = p2/2m− κ/r is the Hamiltonian.
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In quantum mechanics we should represent M by the Hermitian operator

M̂ =
1

2m
(p̂× L̂− L̂× p̂)− κ

r
r (6.87)

because p̂ and L̂ do not commute and therefore p̂× L̂ is not equal to −L̂× p̂. We then find instead

of (6.86) that

M̂2 =
2

m
Ĥ
(

L̂2 + h̄2
)

+ κ2 (6.88)

After some fairly arduous operator algebra we find the following commutation relations

[

L̂j, Ĥ
]

=
[

M̂j , Ĥ
]

= 0

[

L̂j , L̂k

]

= ih̄εjklL̂l

[

L̂j, M̂k

]

= ih̄εjklM̂l

[

M̂j, M̂k

]

= −2ih̄
Ĥ

m
εjklL̂l (6.89)

Thus L̂j and M̂j are constants of the motion and, comparing with Eq. (6.81), we can relate them

to the generators of an SO(4) Lie algebra as follows:

L̂j = h̄X̂j , M̂j = h̄

√

−2Ĥ

m
Ŵj (6.90)

or, in terms of the symmetric and antisymmetric combinations (6.82):

L̂j = h̄
(

X̂+
j + X̂−

j

)

, M̂j = h̄

√

−2Ĥ

m

(

X̂+
j − X̂−

j

)

(6.91)

which we may express in terms of the hypothetical spin operators (6.84) as

L̂ = K̂+ + K̂− , M̂ =

√

−2Ĥ

m

(

K̂+ − K̂−
)

(6.92)

Therefore we find

L̂ · M̂ =

√

−2Ĥ

m

[

(

K̂+
)2
−
(

K̂−
)2
]

(6.93)

Now we recall that the irreducible representations of SO(4) are eigenstates of
(

K̂±
)2

with eigenval-

ues h̄2k±(k±+1). Therefore the eigenvalues of L̂ ·M̂ can only be zero, in accordance with Problem

9, if we have k+ = k− for the states of the hydrogen atom.
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We can picture the composition of L and M according to Eq. (6.92) as shown below.

K

L

M

K
+

_

_ K
_

To compute the energy levels of the hydrogen atom, we note from Eqs. (6.88) and (6.92) that

2Ĥ

m
L̂2 − M̂2 = −2h̄2

m
Ĥ − κ2 =

4Ĥ

m

[

(

K̂+
)2

+
(

K̂−
)2
]

(6.94)

which implies that the eigenvalues of Ĥ are E where

h̄2 4E

m

[

k+(k+ + 1) + k−(k− + 1) +
1

2

]

= −κ2 (6.95)

Hence, setting k+ = k− = k,

E = − mκ2

2h̄2(2k + 1)2
(6.96)

where k = 0, 1
2 , 1, . . .. Setting k = (n − 1)/2 with n = 1, 2, . . ., this does indeed give the familiar

formula for the energy levels of hydrogen,

En = − mκ2

2h̄2n2
(6.97)

where n is the principal quantum number.

Problem 10: Show that number of states in the shell with k+ = k− = (n− 1)/2 agrees with the

usual counting of angular momentum states with l < n.


