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Lecture 1: Parton branching & showering
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[1 Evolution of parton distributions
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[ Monte Carlo method
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[] Angular ordering



Parton branching

e Leading soft and collinear enhanced terms in QCD matrix elements (and
corresponding virtual corrections) can be identified and summed to all orders.
Consider splitting of outgoing parton a into b + c.

[J Can assume p?, p> < p2 = t. Opening angle is § = 6, + 0y, energy fraction is

:=FEy,/E,=1-E,/E, .

[1 For small angles

t = 2E,E.(1—cosf) =z(1—-2)E>6*,
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e Consider first ¢ — gg branching:

[ Amplitude has triple-gluon vertex factor

B

gf*PC e €l[gap(Pa — Pb)y + 98+ (Db — Pe)a + Gya (Pe — Pa) ]
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e; 1s polarization vector for gluon . All momenta defined as outgoing here,

SO Po = —Pp — Pe- Using this and ¢; - p; = 0, vertex factor becomes

Iwb\f»mm.:ma ~€p)(€c - b) — (€ - €c)(€a - Do) — (€c - €a) (€ - Pc)] -

out

[ Resolve polarization vectors into €l in plane of branching and €"* normal to

plane, so that
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[] For small 0, neglecting terms of order 6%, we have

mws *Pp = |m@%@ — |NAH — Nvm@%
mws ‘pe = +EH =(1-2)E,0
mwnb Py = |mw_@% = |wa_9% .

[] Vertex factor proportional to 6, together with propagator factor of
1/t < 1/62, gives 1/0 collinear singularity in amplitude.

[0 (n + 1)-parton matrix element squared (in small-angle region) is given in



terms of that for n partons:

4g°
t

where colour factor C4 = 3 comes from fABC fABC and functions F are

given below
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€a € € F(z;€q,€p,€c)

in in in | (1—2)/z4+2/(1—2)+2(1-2)
in out out z2(1—2)

out in  out (1—2)/z

out out in z/(1—z)

[ Sum/averaging over polarizations gives

~ 1 —
Ca(F) = Poy(z) = Ca | —— + 7~ +2(1-2)

This is (unregularized) gluon splitting function.

[1 Enhancements at z — 0 (b soft) and z — 1 (¢ soft) due to soft gluon

polarized in plane of branching.



[J Correlation between polarization and plane of branching (angle ¢):

Fy M_OOm@EAmwﬁm?mav+m5%.>\2mmcﬁm?mov_w
€b,c
1—-=2 z

1— 1 — 20 .
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Hence branching in plane of gluon polarization preferred.

e (Consider next ¢ — ¢g branching:
[] Vertex factor is
I&mﬁftmm@o
where u® and v¢ are quark and antiquark spinors.

[] Spin-averaged splitting function is

Tr(F) = Py (2) =Tr[2* + (1 —2)%].

No soft (z — 0 or 1) singularities since these are associated only with gluon
emission.

[1 Vector quark-gluon coupling implies (for m, ~ 0) ¢ and ¢ helicities always
opposite (helicity conservation).



[] Correlation between gluon polarization and plane of branching:
Fy=2"4+(1-2)%—22(1 — 2) cos 2¢
i.e. strong preference for splitting perpendicular to polarization.

e DBranching ¢ — qg:

[1 Spin-averaged splitting function is

. 1+ 22
Cr (F) = Pyg(2) = Cr—

[1 Helicity conservation ensures that quark does not change helicity in
branching.

[1 Gluon polarized in plane of branching preferred, polarization angular

correlation being

1 + 22 2z
F, = 20 .
¢ lel_.HINOOm%




Phase space

e Phase space factors before and after branching are related by

1
APnt1 =d 4(27)3 2 dg

e Hence cross sections before and after branching are related by

dt ,_dg as

CF
t ““oron

where C' and F' are colour factor and polarization-dependent z-distribution

introduced earlier. Integrating over azimuthal angle gives

where Pyq(2) is a — b splitting function.



Evolution of quark distribution

e (Consider enhancement of higher-order contributions due to
multiple small-angle gluon emission, for example in deep inelastic scattering (DIS)

e Incoming quark from target hadron, initially with low virtual mass-squared —tg
and carrying a fraction zg of hadron’s momentum, moves to more virtual masses
and lower momentum fractions by successive small-angle emissions, and is

finally struck by photon of virtual mass-squared ¢?> = —Q?.

e Cross section will depend on 2 and on momentum fraction distribution of

partons seen by virtual photon at this scale, D(z, Q?).

e To derive evolution equation for Q?-dependence of D(z, Q?), first introduce
pictorial representation of evolution, also useful later for Monte Carlo simulation.



0

Lo : t . : :
e Represent sequence of branchings by path in (¢, z)-space. Each branching is a
step downwards in z, at a value of ¢ equal to (minus) the virtual mass-squared

after the branching.

e At t = tg, paths have distribution of starting points D(xg, tg) characteristic of
target hadron at that scale. Then distribution D(z,t) of partons at scale t is
just the z-distribution of paths at that scale.

e Consider change in the parton distribution D(x,t) when ¢ is increased to ¢ + dt.
This is number of paths arriving in element (Jt,dx) minus number leaving that
element, divided by dzx.



e Number arriving is branching probability times parton density integrated over

all higher momenta z’

%EEA&U wv

=x/z,

_ o % dz=SP(2)D(2',t) 6(z — 22')
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ot 1 dz aq

= — | —5oP(2)D(z/z,1)

t Jo 227

e For the number leaving element, must integrate over lower momenta =’ = zx:

ot

0Dous(z,t) = ﬂ@@f&\o &H\&NWWA&%A&\IN&V

e Change in population

0D(x,t)

0t Loy -
_ M@?s\o 102 ()

of element is
— %@E — %Nvocﬁ
1

w o d 52 P(2) TEQiTEﬁs



e Introduce plus-prescription with definition

|z 1@ 0@ = [ d (1) = FD]9(e)

Using this we can define regularized splitting function

P(z) = P(2)4
and obtain Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution
equation:
0 L dz ag
2 D(a,1) = \ % p(2)D(/z 1)
NB. [} dz f(2)9(2)+ = [y d2O(z = 2)f(2)9(2)+
= [, dz[f(2) = F(D]g(z) — £(1) [y dzg(2).

e Here D(x,t) represents parton momentum fraction distribution inside incoming
hadron probed at scale t. In timelike branching, it represents instead hadron
momentum fraction distribution produced by an outgoing parton. Boundary
conditions and direction of evolution are different, but evolution equation

remains the same.



Quark and gluon distributions

e For several different types of partons, must take into account different processes
by which parton of type ¢ can enter or leave the element (d¢,dx). This leads to
coupled DGLAP evolution equations of form

%w &w M\ dz Qs ANVQQA&\NL&

z o1

e (Quark (i = q) can enter element via either ¢ — qg or g — ¢q@, but can only leave
via ¢ — qg. Thus plus-prescription applies only to ¢ — qg part, giving

11—z

Po(2) = Pyle)s = Cr A$|v+

e Gluon can arrive either from g — gg (2 contributions) or from ¢ — gg (or
g — qg). Thus number arriving is
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e Gluon can leave by splitting into either gg or qg, so that

A

X
|“.\\.
<

RXE

Am.\\. 1 Qw ~
0D, out = MUQAH“& &Nw| TUQQANV + Nf¢Pyy(2) &L
0 s

e After some manipulation we find
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e Using definition of the plus-prescription, can check that

z z 11
+WNHINV = +22(1—2)+ =61 —2),
(12 + 3 ) = g R e
Hl_.va 1+ 22 3
o = + =0(1—2),
AHIN n (1—2)4 MA )

so Py, and P,, can be written in more common forms

P.(z) = O THWMM + W% - &

P, (z) = 2C4 T |NNV+ . M © b1 NL + MES —ANTR) (1 — 2) .



Sudakov form factor

e DGLAP equations convenient for evolution of parton distributions. To study
structure of final states, slightly different form is useful. Consider again
simplified treatment with only one type of branching. Introduce Sudakov form

factor:
| A(t) = exp ~|\ﬂ &\\% ; u
Then :
wE 1) = \ MNW (2)D 5&?@%@3%57

2(2) - [ Ezronern

e This is similar to DGLAP, except D replaced by D/A and regularized splitting
function P replaced by unregularized P. Integrating,

D(z,t) = A(@)D io
\ \ Qw WENE@\NS.




e This has simple interpretation. First term is contribution from paths that do
not branch between scales ty and t. Thus Sudakov form factor A(%) is
probability of evolving from ¢y to ¢ without branching. Second term is
contribution from paths which have their last branching at scale ¢'. Factor of
A(t)/A(t") is probability of evolving from ¢’ to ¢ without branching.

e Generalization to several species of partons straightforward. Species ¢ has
Sudakov form factor

Aq(t) = exp -|Mu\g &\\&N Pji(z)|

which is probability of it evolving from %y to ¢ without branching. Then

o (5) = 2 \ % by @)Dy e/ 1)



Infrared cutoft

e In DGLAP equation, infrared singularities of splitting functions at z = 1 are
regularized by plus-prescription. However, in above form we must introduce an
explicit infrared cutoff, 2 < 1 — €(¢). Branchings with z above this range are
unresolvable: emitted parton is too soft to detect. Sudakov form factor with this
cutoff is probability of evolving from g to t without any resolvable branching.

e Sudakov form factor sums enhanced virtual (parton loop) as well as real (parton
emission) contributions. No-branching probability is the sum of virtual and
unresolvable real contributions: both are divergent but their sum is finite.

e Infrared cutoff €(¢) depends on what we classify as resolvable emission. For
timelike branching, natural resolution limit is given by cutoff on parton virtual
mass-squared, ¢ > ty. When parton energies are much larger than virtual
masses, transverse momentum in a — bc is

pr=2(1—2)p2 — (1 —2z)ps — 2p2 > 0.

Hence for p2 =t and p3, p2 > to we require z(1 — z) > to/t, that is,

2, 1—z>e(t)=24 - 2\/1—4dtg/t ~to/t.



e (Quark Sudakov form factor is then

to gy 1- S\ﬁ
Aty =exp |~ [ [ 2 Pra(2)
2tq to/t! 27

0

e C(Careful treatment of running coupling suggests its argument should be

pa ~ 2(1 — z)t'. Then at large ¢

Qm AMO

2,0~ (

(p = a constant), which tends to zero faster than any negative power of ¢.

e Infrared cutoff discussed here follows from kinematics. We shall see later that
QCD dynamics effectively reduces phase space for parton branching, leading to

a more restrictive effective cutoff.



Monte Carlo method

e Formulation in terms of Sudakov form factor is well suited to computer

implementation, and is basis of “parton shower” Monte Carlo programs.

e Monte Carlo branching algorithm operates as follows: given virtual mass scale
and momentum fraction (¢1,z1) after some step of the evolution, or as initial

conditions, it generates values (t2, z2) after the next step.

e Since probability of evolving from ¢; to to without branching is A(ts)/A(t1), to
can be generated with the correct distribution by solving

Alts)

A(ty) K

where R is random number (uniform on [0, 1]).

[0 If ¢5 is higher than hard process scale ()2, this means branching has finished.



[J Otherwise, generate z = x5 /x1 with distribution proportional to
(as/2m)P(z), where P(z) is appropriate splitting function, by solving

T2 /x1 o 1—e o
S P(z) =R/ \ S p
\m dz o (z) =R m dz o (2)

where R’ is another random number and € is cutoff for resolvable branching.

e In DIS, (¢;,x;) values generated define virtual masses and momentum fractions
of exchanged quark, from which momenta of emitted gluons can be computed.
Azimuthal emission angles are then generated uniformly in the range [0, 27].
More generally, e.g. when exchanged parton is a gluon, azimuths must be
generated with polarization angular correlations discussed earlier.

e FEach emitted (timelike) parton can itself branch. In that case ¢ evolves
downwards towards cutoff value ¢y, rather than upwards towards hard process
scale Q2. Probability of evolving downwards without branching between t; and
to is now given by

A(t1)
A(ts)

Thus branching stops when R < A(tq).

=R.

\V)



® Due to successive branching, parton cascade or shower develops. Each outgoing
line is source of new cascade, until all outgoing lines have stopped branching. At
this stage, which depends on cutoff scale ¢y, outgoing partons have to be

converted into hadrons via a hadronization model.



Soft gluon emission

e Parton branching formalism discussed so far takes account of collinear
enhancements to all orders in PT. There are also soft enhancements: When
external line with momentum p and mass m (not necessarily small) emits gluon

with momentum ¢, propagator factor is

1 +1 +1

(ptq)?—m? 2p-q - 2WE(1 —wvcosh)

where w is emitted gluon energy, E and v are energy and velocity of parton
emitting it, and 6 is angle of emission. This diverges as w — 0, for any velocity

and emission angle.

e Including numerator, soft gluon emission gives a colour factor times a universal,

spin-independent factor in amplitude

g
)

Numo? —

i~
K

where € is polarization of emitted gluon.



[1 For example, emission from quark gives numerator factor NV - €, where

Nt = (F+d+mulp) =, (7w + 9" m)u(p)

w0
= (2" =P+ *m)ulp) = 2p"u(p) .
(using Dirac equation for on-mass-shell spinor u(p)).
e Universal factor F,.s coincides with classical eikonal formula for radiation from
current p*, valid in long-wavelength limit.
[] No soft enhancement of radiation from off-mass-shell internal lines, since

associated denominator factor (p + q)* —m? — p? —m? #0 as w — 0.

e Enhancement factor in amplitude for each external line implies cross section
enhancement is sum over all pairs of external lines {3, j}:

dw df)
don,y1 = doy, * o MQ&.S\&

W 2T 27 “—
i,J

where df} is element of solid angle for emitted gluon, C;; is a colour factor, and
radiation function Wj; is given by

W — Ew@& "Dy _ 1— U; U5 COS %S.
Y pigpirq (1 —w;c080;,)(1 —vjcosbj,)




e (Colour-weighted sum of radiation functions C;;W;; is antenna pattern of hard

process.

e Radiation function can be separated into two parts containing collinear
singularities along lines ¢ and j. Consider for simplicity massless particles,

v; ; = 1. Then W;; = S\@m + S\& where

o1 1 1

1—cosb;, 1—cos 04

e This function has remarkable property of angular ordering. Write angular
integration in polar coordinates w.r.t. direction of ¢, d{) = d cos 0;, d¢;,.

Performing azimuthal integration, we find

wﬁ.
\o wﬂ@ S\&. — 1 — cos %S Hm ms A %3; odw@aﬁmmo.



Thus, after azimuthal averaging, contribu-
tion from W, is confined to cone, centred
on direction of ¢, extending in angle to di-
rection of j. Similarly, S\%ﬁ
®;q, 1s confined to cone centred on line j

averaged over

extending to direction of 1.



Angular ordering

e To prove angular ordering property, write 1 — cos6,, = a — bcos ¢;, where
a=1—cosb;;cosb;; and b = sin0;; sin 0;,.

Defining z = exp(i¢;,), we have

m.n\?%s . & T
v Jo 2w 1—cosb;, imb )] (z—z4)(z—2-)

where z-integration contour the unit circle and

2

a a
=—*+4/—=-1.
TRV
Now only pole at z = z_ can lie inside unit circle, so
i _ I 1
9 Va2 —b2  |cosB, —cosby;|
Hence
27
&%S i 1 )
\o o W = 20— cos i) [1 + (cosb;q — cos0;;)1;]
1

Rl m—— i if 0;, < 0;;, otherwise 0.



e Angular ordering is coherence effect common to all gauge theories. In QED it
causes Chudakov effect — suppression of soft bremsstrahlung from eTe™ pairs,
which has simple explanation in old-fashioned (time-ordered) perturbation

theory.

zp+kr

(1—2)p—ky

[] Consider emission of soft photon at angle 6 from electron in pair with

opening angle .. < 0. For simplicity assume 0., 0 < 1.

[1 Transverse momentum of photon is k7 ~ zpf and energy imbalance at

e — ey vertex 1s
AE ~ k3/zp ~ zp6? .

(] Time available for emission is At ~ 1/AFE. In this time transverse separation
of pair will be Ab ~ 6..At.



[] For non-negligible probability of emission, photon must resolve this

transverse separation of pair, so
Ab> M0 ~ (zpf)~*

where A is photon wavelength.

[] This implies that
mmm@@%va > ANEQVL :

and hence 6., > 0. Thus soft photon emission is suppressed at angles larger

than opening angle of pair, which is angular ordering.

[] Photons at larger angles cannot resolve electron and positron charges
separately — they see only total charge of pair, which is zero, implying no

emission.

e More generally, if ¢ and j come from branching of parton k, with (colour) charge
Q. = Q, + Q;, then radiation outside angular-ordered cones is emitted

coherently by 7 and j and can be treated as coming directly from (colour) charge

of k.



Coherent branching

e Angular ordering provides basis for coherent parton branching formalism, which
includes leading soft gluon enhancements to all orders.

e In place of virtual mass-squared variable ¢ in earlier treatment, use angular

variable
Ey E,

as evolution variable for branching a — be, and impose angular ordering (' < (

~ 1 —cosf

for successive branchings. Iterative formula for n-parton emission becomes

dc ..

m ﬁSA ).

e In place of virtual mass-squared cutoff ¢y, must use angular cutoff (y for
coherent branching. This is to some extent arbitrary, depending on how we

classify emission as unresolvable. Simplest choice is
(o = to/E?

for parton of energy FE.



e For radiation from particle ¢ with mass-squared ¢y > 0, radiation function is

swA pi-p;i D va?|3v
pi-qpj-q (pi-q)? ¢ E2C)

so angular distribution of radiation is cut off at { = to/E?. Thus tg can still be

interpreted as minimum virtual mass-squared.

e With this cutoff, most convenient definition of evolution variable is not ( itself
but rather

t=FE*C>1t.

Angular ordering condition (p, (. < (, for timelike branching a — bc (a
outgoing) becomes

~ ~

ty < 2°t, t.<(1—2)%

where t = t, and z = E/E,. Thus cutoff on 2z becomes

)\wo\mANAH| wo\m.



e Neglecting masses of b and ¢, virtual mass-squared of a and transverse

momentum of branching are

t=2(1-2)t, pi=2%(1-2)7>%

e Thus for coherent branching Sudakov form factor of quark becomes
t 1 pl—a/to/t
~ dt °"d A
A,(t) = exp I\ \ |NQmA (1 —2)*t")Pyy(2)
4tq Vto/t' 27

At large ¢ this falls more slowly than form factor without coherence, due to the

suppression of soft gluon emission by angular ordering.



e Note that for spacelike branching a — be (a incoming, b spacelike), angular

ordering condition is

0, >0, > 0.,

and so for z = Ey/E, we now have

ty > 2%ty , te< (1—2)%,.

e Thus we can have either ¢, > t, or t; < t,, especially at small z — spacelike
branching becomes disordered at small z.



Summary of Lecture 1

Parton branching approximation describes collinear-enhanced contribution to

multi-parton cross sections in terms of splitting functions P;;(2).

Evolution of parton distributions (or parton fragmentation) is controlled by
DGLAP equation.

Sudakov form factor is probability of evolution without resolvable branching —
useful for Monte Carlo implementation.

Successive branching leads to parton showering, terminated by infrared cutoff,
followed by hadronization.

Soft gluon coherence implies angular ordered parton showers.



