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Spin Correlations in SUSY & UED
SUSY:  new particles are superpartners
q↔ q̃ , g↔ g̃ , l↔ l̃ , (γ,Z, . . .)↔ (χ̃0

1, χ̃0
2, . . .)

spins differ by one-half

UED: new particles are KK excitations
q↔ q∗ , g↔ g∗ , l ↔ l∗ , (γ,Z, . . .)↔ (γ∗,Z∗, . . .)

spins are the same!

Suppose masses have been measured:
how could we distinguish?

need evidence on spins to be sure
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SUSY and UED decay chains

antiquarks. We have therefore computed the lowest-order two-parton to two-KK-parton
matrix elements, which are expected to dominate the production of these particles. Our
results, which differ somewhat from those presented in ref. [9], are discussed in section 5
and listed in appendix A.

Using our results on the UED production matrix elements and decay correlations,
together with the decay branching ratios suggested in ref. [5], we have included a full
simulation of the relevant UED processes in the HERWIG Monte Carlo event generator [10,
11]. Since the corresponding SUSY processes, with full spin correlations, are already a well-
established feature of HERWIG [12, 13], we are able in section 6 to present first detector-level
results on distinguishing UED and SUSY spin correlations at the LHC. Our results and
conclusions are summarized in section 6.

2. Decay chains in SUSY and UED
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Figure 1: (a) SUSY and (b) UED decay chains considered here.

The SUSY decay chain that we shall consider, which is the same as that studied in
ref. [1], is shown in figure 1, together with the corresponding UED process. In both cases
the visible decay products are a quark jet and a pair of opposite-sign same-flavour (OSSF)
leptons with the same chirality. We suppose that the new particle masses have been
measured, either by an edge analysis along the lines of refs. [2, 3] or some other means, and
it remains to decide whether the decay angular distributions agree better with the SUSY
or UED spin assignments.

The angular distributions depend on whether or not the chirality of the slepton/KK-
lepton is the same at that of the decaying squark/KK-quark.3 For definiteness, we assume

3We should emphasise that we use the term ‘chirality’ loosely here, since neither the sparticles nor the

KK-excitations concerned have definite handedness: what we mean is that they couple to SM particles of

that chirality.
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that the latter is left-handed, which is preferred in both of the models under consideration.
We can then characterise the process by the chirality and charge of the “near” lepton,
defined as shown in figure 1. Of course, we cannot distinguish experimentally between the
“near” and “far” leptons, and so their contributions to any distribution will eventually
have to be combined. However, in principle (in the zero-width approximation that we use)
the processes with opposite “near” and “far” charge assignments are distinct. There are
then two fundamental processes, which (as in ref. [1]) we label 1 and 2:

• Process 1: {q, lnear, lfar} = {qL, l−L , l+L } or {q̄L, l+L , l−L } or {qL, l+R , l−R} or {q̄L, l−R , l+R};

• Process 2: {q, lnear, lfar} = {qL, l+L , l−L } or {q̄L, l−L , l+L } or {qL, l−R , l+R} or {q̄L, l+R , l−R}.

3. Spin correlations in SUSY

We first recapitulate from ref. [1] the angular distributions that are expected in the SUSY
decay chain 1(a). The χ̃0

2 has spin one-half and its helicity is the same as that of the
quark, since the squark is a scalar. Therefore a near lepton with the same helicity as the
quark (process 1) will be emitted preferentially at large values of the angle θ∗ between its
direction and that of the quark in the χ̃0

2 rest frame, with angular distribution (neglecting
all SM particle masses)

dP SUSY
1

d cos θ∗
=

1
2
(1− cos θ∗) . (3.1)

A near lepton with helicity opposite to the quark (process 2), on the other hand, will have
angular distribution

dP SUSY
2

d cos θ∗
=

1
2
(1 + cos θ∗) . (3.2)

In terms of the qlnear invariant mass,

(mnear
lq )2 = 2|pl||pq|(1− cos θ∗) =

1
2
(mnear

lq )2max(1− cos θ∗) , (3.3)

defining the rescaled invariant mass variable to be

m̂ = mnear
lq /(mnear

lq )max = sin(θ∗/2) (3.4)

we therefore have
dP SUSY

1

dm̂
= 4m̂3 (3.5)

and
dP SUSY

2

dm̂
= 4m̂(1− m̂2) . (3.6)

The slepton produced in the decay of the χ̃0
2 is a scalar particle, and so its decay is

isotropic in its rest frame, and the near and far lepton directions are uncorrelated in that
frame. Therefore the only spin correlations to consider in the SUSY scenario are those
between the quark and near lepton given above.

– 4 –

Two distinct helicity structures, with different spin correlations:
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UED and SUSY mass spectra
UED models tend to have quasi-degenerate spectra

spectrum (from [5]) is given in Table 1 with inverse radius R−1 = 500GeV, cut-off Λ such
that ΛR = 20 and mh = 120 GeV. This model also assumes vanishing boundary terms
at the cut-off scale Λ, and a vanishing boundary mass term for the Higgs mass, m2

h. The
lightest four left KK-quarks are degenerate in mass and are labelled here collectively as
q∗L. Similarly the right and left KK-electrons and KK-muons are degenerate in mass and
are labelled here as l∗R and l∗L respectively. This spectrum illustrates the feature of UED
that the new particles have masses which are much closer to each other (usually within
100 − 200 GeV) than in a typical SUSY spectrum.

In the UED model we have eqs. (4.5) and (4.6)
γ∗ Z∗ q∗L l∗R l∗L
501 536 598 505 515

Table 1: UED masses in GeV, for
R−1 = 500GeV, ΛR = 20, mh =
120GeV, m2

h = 0 and vanishing
boundary terms at cut-off scale Λ.

with x = m2
Z∗/m2

q∗ = 0.803; the Z∗ decays preferen-
tially to a left-handed excited lepton and so we use
y = m2

l∗L
/m2

Z∗ = 0.923, which yields

dPUED
1

dm̂
= 0.727m̂ + 2.577m̂3 − 0.047m̂5 ,

dPUED
2

dm̂
= 3.257m̂ − 2.483m̂3 − 0.047m̂5 . (4.7)

These should be compared with the corresponding SUSY expressions (3.5) and (3.6), which
are independent of the particle masses.

(a) (b)

Figure 2: UED and SUSY distributions for (a) Process 1 and (b) Process 2 with respect to the
qlnear invariant mass, for the UED mass spectrum given above. Dotted: phase space. Dashed:
SUSY. Solid/red: UED.

The UED and SUSY angular distributions are plotted against each other for processes
1 and 2 in figures 2(a) and 2(b) respectively. Since x = m2

Z∗/m2
q∗ is large in the typical

UED scenario, and the effect of y = m2
l∗/m

2
Z∗ is weak at large x, the UED and SUSY

distributions are similar. Therefore it will be difficult to verify the UED spin assignments
if the spectrum is characteristic of UED.

The typical SUSY mass spectrum, on the other hand, does not have the same near-
degeneracy of neutralinos and squarks, and therefore the UED and SUSY angular distri-
butions are more distinct. For illustration, we consider the MSSM Snowmass point SPS
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1a [14], which has the mass spectrum shown in Table 2. The decay χ̃0
2 → ll̃R is preferred

and therefore we use x = m2
eχ0
2
/m2

euL
= 0.109 and y = m2

eeR
/m2

eχ0
2

= 0.653 for the comparative
UED distributions, giving

dPUED
1

dm̂
= 1.213m̂ + 3.108m̂3 − 2.301m̂5 ,

dPUED
2

dm̂
= 2.020m̂ + 1.493m̂3 − 2.301m̂5 . (4.8)

(a) (b)

Figure 3: UED and SUSY distributions for (a) Process 1 and (b) Process 2 with respect to the
qlnear invariant mass, for the SUSY mass spectrum given above. Dotted: phase space. Dashed:
SUSY. Solid/red: UED.

The resulting mass distributions are compared in
χ̃0

1 χ̃0
2 ũL ẽR ẽL

96 177 537 143 202

Table 2: SUSY masses in GeV, for
SPS point 1a.

fig. 3. Owing to the small value of x, the UED predic-
tions for the two processes are similar to each other, and
different from the SUSY predictions. This gives some
grounds for optimism that, if the spectrum is consis-
tent with SUSY, then the SUSY spin assignments can
be confirmed or ruled out in comparison with the UED assignments.

4.3 Correlations in l∗ decay

In the SUSY decay chain (figure 1a) , the slepton l̃ is spinless and therefore it decays
isotropically in its rest frame. In the UED case (figure 1b), the spin of the KK lepton l∗

induces non-trivial correlations. Up to an overall constant, the full matrix elements for
UED processes 1 and 2, as defined in section 2, take the form

|M|2 ∝ 2z(1 − z)Wl∗ + (1− 2z)Wf (4.9)

where z = m2
γ∗/m

2
l∗ , f represents the far lepton and, for l = l∗ or f ,

Wl = (1− x)(2pZ∗ · pn pZ∗ · pl + m2
Z∗ pn · pl)− 4x(pn · pq pZ∗ · pl + pn · pZ∗ pq · pl) +

+

{
8x2 pn · pq pq∗ · pl for process 1
8x2 pn · pq∗ pq · pl for process 2

(4.10)

– 7 –

SUSY spectra typically more hierarchical

( Mn ∼ n/R
broken by boundary 
terms and loops, with 

low cutoff)

(high-scale universality)

5



Production cross sections (pb) 

(a) (b)

Figure 9: UED and SUSY charge asymmetries with respect to the jet + lepton rescaled invariant
mass, for (a) the UED and (b) the SUSY mass spectrum given above. Dotted: phase space. Dashed:
SUSY. Solid/red: UED.

branching ratios suggested in ref. [5], to estimate the UED production cross sections and
the quantities fq and fq̄ appearing in eqs. (4.18) and (4.19).

Our expressions for the subprocess matrix elements are listed in appendix B. These
results were obtained by including the Feynman rules for the effective four-dimensional
theory in CompHEP [15]. They differ in some important respects from those computed
earlier by Macesanu et al. [9]. For example, the matrix element for gg → q∗q̄∗ should be
t − u symmetric and identical to that for the QCD process gg → QQ̄ at this order, but
the expression given in ref. [9] lacks these properties. In addition, we find a larger overall
normalization.

Our numerical results for the produc- Masses Model σall σq∗ σq̄∗ fq

UED UED 253 163 84 0.66

UED SUSY 28 18 9 0.65

SPS 1a UED 433 224 80 0.74

SPS 1a SUSY 55 26 11 0.70

Table 3: Production cross sections (pb) in UED
and SUSY models, with UED or SUSY masses.

tion cross sections at the LHC are pre-
sented in table 3. These results were ob-
tained from parton-level Monte Carlo sim-
ulations of the production processes and
decay chains, using the HERWIG event gen-
erator in SUSY mode with parton show-
ering, hadronization and underlying event
switched off. The HERWIG default (MRST
leading-order [16]) parton distributions were
used. For the UED simulations, the SUSY
matrix element subroutine was replaced
by a UED one and the SUSY particle data
input file consisted of UED data based on
ref. [5].

As a result of the more singular structure of the matrix elements and the extra helicity
states, the UED production cross sections tend to be larger than those of the analogous
SUSY processes for identical mass spectra, leading to an overall enhancement of the cross

– 12 –

q∗/q̄∗ ∼ 2 ⇒ charge asymmetry

σUED! σSUSY for same masses (100 pb = 1/sec)
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Angular variables

χ̃0
2/Z∗

l̃/l∗

χ̃0
1/γ∗

lnear

l f arq

l̃/l∗defined in rest frameθ,φ

θ φ

χ̃0
2/Z∗defined in rest frameθ∗

θ∗
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Invariant masses

qlnear

lnearl f ar

ql f ar mql/(mql)max =
1
2

[
(1− y)(1− cosθ∗ cosθ)+

+(1− y)(cosθ∗− cosθ)−2
√

ysinθ∗ sinθcosφ
]1

2

x = m2
Z∗/m2

q∗, y = m2
l∗/m2

Z∗, z = m2
γ∗/m2

l∗

:

:

:

mql/(mql)max = sin(θ∗/2)

mll/(mll)max = sin(θ/2)

where
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Helicity dependence
Process 1 (SUSY)

Process 1 (UED, transverse Z*:  P /P = 2x)

qL

q∗

q̃ χ̃0
2

l−L

l̃+

Z∗
l∗

l−L
qL

qL

(ql−)nearBoth prefer high invariant mass

9
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UED masses SPS 1a masses

UED and SUSY not distinguishable for UED masses

ql mass distributionnear
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UED masses SPS 1a masses

Correlation weak but slightly enhances UED-SUSY difference

ql mass distributionfar
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Jet + lepton mass distribution
UED masses SPS 1a masses

Not resolvable for UED masses, maybe for SUSY masses

12

Charge asymmetry due to quark vs antiquark excess



LHC Event Simulation
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HERWIG Event Generator
Most important SM & MSSM processes at LO

parton showers at leading log (LL)
spin correlations included

no showering from SUSY particles

MC@NLO provides some SM processes at NLO
see S Frixione & BW, hep-ph/0506182 & refs therein

Interface to CHARYBDIS black hole generator

UED model put in ‘by hand’ at present

14



Charge Asymmetry
A =

( jl+)− ( jl−)
( jl+)+( jl−)

UED masses SPS 1a masses

Similar form, different magnitude
Not detectable for UED masses

15



dPUED

dm̂ll
=

4m̂ll

(2+ y)(1+2z)
[
y+4z+(2− y)(1−2z)m̂2

ll
]

SPS 1a:

y = m2
l∗/m2

Z∗ z = m2
γ∗/m2

l∗and

UED: y = 0.92 z = 0.95

z = 0.45y = 0.65

Sensitivity greatest at small y zand

Dilepton mass distribution

16



Dilepton mass distribution (2)

No sensitivity for these masses!
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z = 0.05

z = 0.95

y = m2
l∗/m2

Z∗ = 0.65 z = m2
γ∗/m2

l∗ = 0.95−0.05,

Independent of masses and spins at m̂ = 1/
√

2 (θ = π/2)

Dilepton mass distribution (3)

18



Barr’s spin analyses (1)
hep-ph/0405052 = Phys Lett B596(2004)205 considers same decay chain
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Determining the spin of supersymmetric
particles at the LHC using lepton charge

asymmetry.

A.J. Barr

Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge,

CB3 0HE, UK

Abstract

If signals suggesting supersymmetry (SUSY) are discovered at the LHC then it will
be vital to measure the spins of the new particles to demonstrate that they are
indeed the predicted super-partners. A method is discussed by which the spins of
some of the SUSY particles can be determined. Angular distributions in sparticle
decays lead to charge asymmetry in lepton-jet invariant mass distributions. The size
of the asymmetry is proportional to the primary production asymmetry between
squarks and anti-squarks. Monte Carlo simulations are performed for a particular
mSUGRA model point at the LHC. The resultant asymmetry distributions are
consistent with a spin-0 slepton and a spin-1

2
χ̃0

2, but are not consistent with both
particles being scalars.

Key words: Hadronic Colliders, Supersymmetry, Spin, LHC
Cavendish HEP-2004-14

1 Spin correlations and charge asymmetry

A recent publication [1] describes the method by which spin correlations were
added to the HERWIG [2,3] Monte Carlo event generator. It includes an example
of part of a supersymmetric decay chain,

q̃L → χ̃0
2qL → l̃±R l∓qL (1)

in which spin correlations can play a significant role in the kinematics of the
emitted particles. When the decay of the slepton is also considered, (fig. 1),

Email address: alan.barr@cern.ch (A.J. Barr).

Preprint submitted to Elsevier Science 27 June 2005

Compares with no spin
(phase space) only

More careful study of background 
and detector effects
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Fig. 7. (a) The l+q (squares) and l−q (triangles) invariant mass distributions after
detector simulation and event selection. (b) The solid circles show the lepton charge
asymmetry A+− as a function of mlq, again after detector simulation. The shaded
rectangles are the parton-level result scaled down by a factor of 0.6. The stars
show a cross-check – the equivalent detector-level asymmetry with spin correlations
suppressed. For both of the upper two plots

∫

Ldt = 500 fb−1. (c) The detector-level
charge asymmetry, A+−, with spin correlations, using a 150 fb−1 subset of the
data. (d) The opposite-sign, same-family dilepton invariant mass distribution after
opposite-sign, different-family subtraction.

Fig. 8.
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Barr’s spin analyses (2)
hep-ph/0511115 considers slepton pair production

with Universal Extra Dimensions (UED) and Kaluza-Klein (KK) parity [1] could
have very similar collider phenomenology to supersymmetric model [2].

The minimal version of UED predicts that for each SM particle there should be

a tower of Kaluza-Klein (KK) excitations. KK parity means that particles with odd
KK-number, such as the first excited state of any SM particle can only be produced
in pairs. It also ensures that the lightest KK particle must be stable, in the same way

as R-parity does for supersymmetry. Distinguishing between SUSY and UED could
therefore be a difficult problem, since both models predict TeV-scale pair-produced

particles which decay through cascades with Standard Model couplings, with the
eventual production of a pair of invisible daughters (LSP or LKP).

While other measurements might be indicative [3, 4], the property which will a
give conclusive answer as to whether we are observing SUSY or UED is the spin of

the excited particles.

Recently some progress has been made towards spin-determination of supersym-
metric particles at the LHC. The method, suggested in [5] and investigated in [3,6,7],

involved measurement of the lepton charge asymmetry in !q invariant mass distribu-
tions in the cascade decay,

q̃L → χ̃0
2 qL → l̃±R l∓ qL . (1.1)

That measurement was shown to have sensitivity to the spin of the χ̃0
2. While it was

comforting to see that the LHC can have sensitivity to sparticle spins, the caveat

is that in some parts of parameter space, the decay chain eq. 1.1 is kinematically
forbidden or has a small branching ratio. This makes it important to investigate

other channels and other particles for which the LHC experiments could measure
spin.

In this paper we present a new method for measuring slepton spin at the LHC.
The paper is organised as follows. In section 2 we introduce an angular variable

cos θ∗ll, and show that it is sensitive to the production polar angle in slepton pair pro-
duction. Our supersymmetric test points, Monte Carlo event generator and detector

simulation are described in section 3. In section 3.1 we identify an event selec-
tion and demonstrate that it can cleanly isolate the signal process. Results showing
the experimentally-measurable angular distributions and luminosity requirements are

shown in section 3.2. In section 4 we discuss the main systematic uncertainties and
some methods for reducing them. Our conclusions are presented in section 5.

2. Angular distributions, and cos θ∗ll

In this paper we investigate the supersymmetric process,

qq̄ → Z0/γ → !̃+!̃− → χ̃0
1!

+ χ̃0
1!

− , (2.1)
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Figure 2: 2-dimensional plots showing the correlation between our dilepton angular vari-

able, cos θ∗ll, (y-axes) and the cosine of the production angle of the parent sleptons (a) or

KK-leptons (b) in the center of mass frame (x-axes). Darker regions correspond to larger

numbers of events, the normalisation being arbitrary. The mass spectrum is that of SUSY

point S5.

and because invisible particles are produced, the center of mass frame of the parton-
parton interaction cannot be recovered from the final state.

To make a spin measurement at a hadron collider, we propose a variable which

is a function only of the pseudorapidity difference between the final state leptons,
∆η!+!− . The advantage of differences in rapidity is that they are independant of the

longitudinal boost. The leptons are highly relativistic, so we can use their pseudo-
rapidities as a very good approximation to their true rapidities. By using a function

only of ∆η!+!−, we no longer have to face the problem of determining the center-
of-mass frame along the beam direction. The inter-lepton pseudorapdity difference,
∆η!+!− , is also sensitive to the slepton production angle. The reasons are the same

reasons as for the lepton angular distributions – the leptons ‘inherit’ some knowledge
of the rapidity of their slepton or KK-lepton parents. Lepton pairs from slepton pair

decay will therefore be on average less separated in pseudorapidty than those coming
from particles produced according to the corresponding phase-space or Kaluza Klein
production angular distributions.

To allow a more direct comparison with the production distributions, rather than
using ∆η!+!− directly, we propose the angular variable

cos θ∗ll ≡ cos
(

2 tan−1 exp(∆η!+!−/2)
)

= tanh(∆η!+!−/2) . (2.6)

This variable, like ∆η!+!−, has the benefit of being longitudinally boost invariant,

but also has a simpler geometrical interpretation: cos θ∗ll is the cosine of the polar

4
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some methods for reducing them. Our conclusions are presented in section 5.

2. Angular distributions, and cos θ∗ll

In this paper we investigate the supersymmetric process,

qq̄ → Z0/γ → !̃+!̃− → χ̃0
1!

+ χ̃0
1!

− , (2.1)
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Figure 2: 2-dimensional plots showing the correlation between our dilepton angular vari-

able, cos θ∗ll, (y-axes) and the cosine of the production angle of the parent sleptons (a) or

KK-leptons (b) in the center of mass frame (x-axes). Darker regions correspond to larger

numbers of events, the normalisation being arbitrary. The mass spectrum is that of SUSY

point S5.

and because invisible particles are produced, the center of mass frame of the parton-
parton interaction cannot be recovered from the final state.

To make a spin measurement at a hadron collider, we propose a variable which

is a function only of the pseudorapidity difference between the final state leptons,
∆η!+!− . The advantage of differences in rapidity is that they are independant of the

longitudinal boost. The leptons are highly relativistic, so we can use their pseudo-
rapidities as a very good approximation to their true rapidities. By using a function

only of ∆η!+!−, we no longer have to face the problem of determining the center-
of-mass frame along the beam direction. The inter-lepton pseudorapdity difference,
∆η!+!− , is also sensitive to the slepton production angle. The reasons are the same

reasons as for the lepton angular distributions – the leptons ‘inherit’ some knowledge
of the rapidity of their slepton or KK-lepton parents. Lepton pairs from slepton pair

decay will therefore be on average less separated in pseudorapidty than those coming
from particles produced according to the corresponding phase-space or Kaluza Klein
production angular distributions.

To allow a more direct comparison with the production distributions, rather than
using ∆η!+!− directly, we propose the angular variable

cos θ∗ll ≡ cos
(

2 tan−1 exp(∆η!+!−/2)
)

= tanh(∆η!+!−/2) . (2.6)

This variable, like ∆η!+!−, has the benefit of being longitudinally boost invariant,

but also has a simpler geometrical interpretation: cos θ∗ll is the cosine of the polar

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

cos !
*

c
o

s
 !

* ll

SUSY

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

cos !
*

c
o

s
 !

* ll

UED

Figure 2: 2-dimensional plots showing the correlation between our dilepton angular vari-

able, cos θ∗ll, (y-axes) and the cosine of the production angle of the parent sleptons (a) or

KK-leptons (b) in the center of mass frame (x-axes). Darker regions correspond to larger

numbers of events, the normalisation being arbitrary. The mass spectrum is that of SUSY

point S5.

and because invisible particles are produced, the center of mass frame of the parton-
parton interaction cannot be recovered from the final state.

To make a spin measurement at a hadron collider, we propose a variable which

is a function only of the pseudorapidity difference between the final state leptons,
∆η!+!− . The advantage of differences in rapidity is that they are independant of the

longitudinal boost. The leptons are highly relativistic, so we can use their pseudo-
rapidities as a very good approximation to their true rapidities. By using a function

only of ∆η!+!−, we no longer have to face the problem of determining the center-
of-mass frame along the beam direction. The inter-lepton pseudorapdity difference,
∆η!+!− , is also sensitive to the slepton production angle. The reasons are the same

reasons as for the lepton angular distributions – the leptons ‘inherit’ some knowledge
of the rapidity of their slepton or KK-lepton parents. Lepton pairs from slepton pair

decay will therefore be on average less separated in pseudorapidty than those coming
from particles produced according to the corresponding phase-space or Kaluza Klein
production angular distributions.

To allow a more direct comparison with the production distributions, rather than
using ∆η!+!− directly, we propose the angular variable

cos θ∗ll ≡ cos
(

2 tan−1 exp(∆η!+!−/2)
)

= tanh(∆η!+!−/2) . (2.6)

This variable, like ∆η!+!−, has the benefit of being longitudinally boost invariant,

but also has a simpler geometrical interpretation: cos θ∗ll is the cosine of the polar
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where throughout this paper ! is understood to mean electron or muon only. Since
sleptons are scalars, the angluar distribution for Drell-Yan slepton pair production

is
(

dσ

d cos θ∗

)

SUSY

∝ 1 − cos2 θ∗ (2.2)

where θ∗ is the angle between the incoming quark in one of the protons and the pro-
duced slepton. Slepton pair production via gauge boson fusion [8] is not considered
here, but it would become important for sleptons with masses greater than about

300 − 400 GeV. For comparison we use a pure phase space distribution,
(

dσ

d cos θ∗

)

PS

∝ constant . (2.3)

The phase space distribution does not correspond to any physical model, but does
provide a convenient benchmark against which to compare the SUSY distribution.

We also compare against the UED equiv-
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Figure 1: Production angular distribu-

tions, dp
d cos θ∗ , for scalar sleptons (SUSY),

spin-1
2KK leptons UED and pure phase

space (PS). The mass spectrum for the

UED distribution is that of SUSY point S5

(see section 3).

alent of eq. 2.1,

qq̄ → Z0/γ → !+
1 !−1 → γ1 !+γ1 !− . (2.4)

which has the characteristic distribution
for spin-1

2 KK leptons:

(

dσ

d cos θ∗

)

UED

∝ 1+

(

E2
"1
− M2

"1

E2
"1

+ M2
"1

)

cos2 θ∗ ,

(2.5)
where E"1 and M"1 are the energy and mass
respectively of the KK leptons in the center-

of-mass frame. The three different pro-
duction angular distributions are shown graph-

ically in fig. 1.
The different angular distributions pro-

vide a mechanism for determining the heavy

particle spin. Excited leptons (selptons or
KK-leptons) which are produced significantly above threshold will have decays which

are boosted in the lab frame. This means that a pair of leptons from slepton decays
(eq. 2.2) should be on average less widely separated in polar angle than the pair from

phase space (eq. 2.3) or KK-lepton pair production (eq. 2.5).
It has already been suggested [9, 10] that the final state lepton angular distri-

butions could be used at a future high-energy e+e− linear collider to distinguish

between UED and SUSY models. With a proton-proton collider such as the LHC,
it is not possible to measure the lepton angluar distributions in the parton-parton

center-of-mass frame – the initial z-momenta of the incoming partons are not known,

3

(neglects KKlepton polarisation)



Barr’s spin analyses (3)
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Figure 5: The points show the cos θ∗ll distribution for the S5 signal sample ("̃+"̃− →

χ̃0
1"

+ χ̃0
1"

−) after an integrated luminosity of 200 fb−1. The lines show the predictions for

angular distributions according to supersymmetry (solid black line, eq. 2.2), phase space

(dotted blue line, eq. 2.3), and universal extra dimensions (dashed red line, eq. 2.5). The

error bars on the data show the statistical uncerainty on: inner error bar: SUSY signal

only; intermediate error bar: inclusive SUSY with the SUSY background subtracted; outer

error: inclusive SUSY with both the SUSY and the SM backgrounds subtracted. The

narrow shaded band around the SUSY expectation shows how it is modified when the

sparticle masses are simultaneously changed for all sparticles by ±20 GeV, as described in

section 4.4. Systematic uncertainties in the SUSY and SM background subtraction are not

included here, but are discussed in sections 4.2 and 4.3.

space one or the UED-like one. This means cos θ∗ll does indeed measure the spin of
the sleptons for this point.

In fig. 6 we present the statistical separation expected for our test points (S5

and the Snowmass points) as a function of integrated luminosity. The significance
indicated is shows the gaussian-equivalent significance of each of two tests:

1. A test comparing the SUSY angular distribution (eq. 2.2) to the phase space
one (eq. 2.3) – demonstrating that there is sensitivity to spin in the dynamics;

and separately,

2. A test comparing the SUSY angular distribution to the UED-like one (eq. 2.5)
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Outer error bars:  after SUSY & SM background subtraction



Conclusions
Distinguishing SUSY from UED at LHC will be difficult

If masses favour UED, spin confirmation very difficult

jets typically have low energy

little sensitivity to spins

If masses favour SUSY, spin sensitivity is better

dilepton distributions clean but not very sensitive

good prospect of excluding UED spins

other methods may be better (Z  ,...)*
2

jet+lepton charge asymmetry similar in shape
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