QCD and Collider Phenomenology

Bryan Webber

IPMU/KEK Lectures 2009

Lecture 2: Jet Fragmentation and Hadron-Hadron Processes

- Jet Fragmentation
 - Fragmentation functions
 - Coherent parton branching
 - Small-x fragmentation and average multiplicity

- Hadronization Models
 - General ideas
 - Cluster model
 - String model

- Hadron-Hadron Processes
 - Parton-parton luminosities
 - Lepton pair, jet and heavy quark production
 - Higgs boson production

- Survey of NLO Calculations for LHC
Jet Fragmentation

- **Fragmentation functions** $F^h_i(x, t)$ gives distribution of momentum fraction x for hadrons of type h in a jet initiated by a parton of type i, produced in a hard process at scale t.

- Like parton distributions in a hadron, $D^h_i(x, t)$, these are *factorizable* quantities, in which infrared divergences of PT can be factorized out and replaced by experimentally measured factor that contains all long-distance effects.

- In e^+e^- annihilation, for example, the hard process is $e^+e^- \rightarrow q\bar{q}$ at scale equal to c.m. energy squared s; distribution of $x = 2p_h/\sqrt{s}$ is (for $s \ll M_Z^2$)

$$\frac{d\sigma}{dx} = 3\sigma_0 \sum_q Q^2_q \left\{ F^h_q(x, s) + F^h_{\bar{q}}(x, s) \right\}$$

where σ_0 is $e^+e^- \rightarrow \mu^+\mu^-$ cross section.

- Fragmentation functions satisfy DGLAP evolution equation

$$t \frac{\partial}{\partial t} F^h_i(x, t) = \sum_j \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P_{ji}(z, \alpha_s) F^h_j(x/z, t) .$$

Splitting functions P_{ji} have perturbative expansions of the form

$$P_{ji}(z, \alpha_s) = P_{ji}^{(0)}(z) + \frac{\alpha_s}{2\pi} P_{ji}^{(1)}(z) + \cdots$$
Leading terms $P_{ji}^{(0)}(z)$ were given earlier. Notice that splitting function is P_{ji} rather than P_{ij} since F_{j}^{h} represents fragmentation of final parton j.

- Solve DGLAP equation by taking moments as explained for DIS. As in that case, scaling violation is clearly seen.
Soft Gluon Coherence

- Parton branching formalism discussed so far takes account of **collinear** enhancements to all orders in PT. There are also **soft** enhancements: When external line with momentum p and mass m (not necessarily small) emits gluon with momentum q, propagator factor is

$$\frac{1}{(p \pm q)^2 - m^2} = \frac{\pm 1}{2p \cdot q} = \frac{\pm 1}{2\omega E(1 - v \cos \theta)}$$

where ω is emitted gluon energy, E and v are energy and velocity of parton emitting it, and θ is angle of emission. This diverges as $\omega \to 0$, for any velocity and emission angle.

- Including numerator, soft gluon emission gives a colour factor times universal, spin-independent factor in amplitude

$$F_{\text{soft}} = \frac{p \cdot \epsilon}{p \cdot q}$$

where ϵ is polarization of emitted gluon. For example, emission from quark gives numerator factor $N \cdot \epsilon$, where

$$N^\mu = (\slashed{q} + \slashed{m}) \gamma^\mu u(p) \quad \omega \to 0 \quad (\gamma^\nu \gamma^\mu p_\nu + \gamma^\mu m) u(p)$$

$$= (2p^\mu - \gamma^\mu \slashed{q} + \gamma^\mu m) u(p) = 2p^\mu u(p).$$

(Using Dirac equation for on-mass-shell spinor $u(p)$).

- Universal factor F_{soft} coincides with classical **eikonal formula** for radiation from current p^μ, valid in long-wavelength limit.
No soft enhancement of radiation from off-mass-shell internal lines, since associated denominator factor $(p + q)^2 - m^2 \rightarrow p^2 - m^2 \neq 0$ as $\omega \rightarrow 0$.

Enhancement factor in amplitude for each external line implies cross section enhancement is sum over all pairs of external lines $\{i, j\}$:

$$d\sigma_{n+1} = d\sigma_n \frac{d\omega}{\omega} \frac{d\Omega}{2\pi} \frac{\alpha_s}{2\pi} \sum_{i,j} C_{ij} W_{ij}$$

where $d\Omega$ is element of solid angle for emitted gluon, C_{ij} is a colour factor, and radiation function W_{ij} is given by

$$W_{ij} = \frac{\omega^2 p_i \cdot p_j}{p_i \cdot q p_j \cdot q} = \frac{1 - v_i v_j \cos \theta_{ij}}{(1 - v_i \cos \theta_{iq})(1 - v_j \cos \theta_{jq})}.$$

Colour-weighted sum of radiation functions $C_{ij} W_{ij}$ is antenna pattern of hard process.
Radiation function can be separated into two parts containing collinear singularities along lines i and j. Consider for simplicity massless particles, $v_{i,j} = 1$. Then $W_{ij} = W^i_{ij} + W^j_{ij}$ where

$$W^i_{ij} = \frac{1}{2} \left(W_{ij} + \frac{1}{1 - \cos \theta_{iq}} - \frac{1}{1 - \cos \theta_{jq}} \right).$$

This function has remarkable property of angular ordering. Write angular integration in polar coordinates w.r.t. direction of i, $d\Omega = d\cos \theta_{iq} d\phi_{iq}$. Performing azimuthal integration, we find

$$\int_0^{2\pi} \frac{d\phi_{iq}}{2\pi} W^i_{ij} = \frac{1}{1 - \cos \theta_{iq}} \quad \text{if} \: \theta_{iq} < \theta_{ij}, \text{otherwise} \: 0.$$

Thus, after azimuthal averaging, contribution from W^i_{ij} is confined to cone, centred on direction of i, extending in angle to direction of j. Similarly, W^j_{ij}, averaged over ϕ_{jq}, is confined to cone centred on line j extending to direction of i.
To prove angular ordering property, write

\[1 - \cos \theta_{jq} = a - b \cos \phi_{iq} \]

where

\[a = 1 - \cos \theta_{ij} \cos \theta_{iq} \quad b = \sin \theta_{ij} \sin \theta_{iq} . \]

Defining \(z = \exp(i\phi_{iq}) \), we have

\[I_{ij}^i \equiv \int_0^{2\pi} \frac{d\phi_{iq}}{2\pi} \frac{1}{1 - \cos \theta_{jq}} = \frac{1}{i\pi b} \oint \frac{dz}{(z - z_+)(z - z_-)} \]

where \(z \)-integration contour the unit circle and

\[z_\pm = \frac{a}{b} \pm \sqrt{\frac{a^2}{b^2} - 1} . \]

Now only pole at \(z = z_- \) can lie inside unit circle, so

\[I_{ij}^i = \sqrt{\frac{1}{a^2 - b^2}} = \frac{1}{|\cos \theta_{iq} - \cos \theta_{ij}|} . \]
Hence

\[\int_{0}^{2\pi} \frac{d\phi_{iq}}{2\pi} W_{ij} = \frac{1}{2(1 - \cos \theta_{iq})} [1 + (\cos \theta_{iq} - \cos \theta_{ij}) I_{ij}^{i}] \]

\[= \frac{1}{1 - \cos \theta_{iq}} \quad \text{if} \quad \theta_{iq} < \theta_{ij}, \text{otherwise} \ 0. \]

Angular ordering is coherence effect common to all gauge theories. In QED it causes Chudakov effect – suppression of soft bremsstrahlung from \(e^+ e^- \) pairs, which has simple explanation in old-fashioned (time-ordered) perturbation theory.

Consider emission of soft photon at angle \(\theta \) from electron in pair with opening angle \(\theta_{ee} < \theta \). For simplicity assume \(\theta_{ee}, \theta \ll 1 \).

Transverse momentum of photon is \(k_T \sim zp\theta \) and energy imbalance at \(e \rightarrow e\gamma \) vertex is

\[\Delta E \sim \frac{k_T^2}{zp} \sim zp\theta^2. \]
Time available for emission is $\Delta t \sim 1/\Delta E$. In this time transverse separation of pair will be $\Delta b \sim \theta_{ee}\Delta t$.

For non-negligible probability of emission, photon must resolve this transverse separation of pair, so

$$\Delta b > \lambda/\theta \sim (zp\theta)^{-1}$$

where λ is photon wavelength.

This implies that

$$\theta_{ee}(zp\theta^2)^{-1} > (zp\theta)^{-1},$$

and hence $\theta_{ee} > \theta$. Thus soft photon emission is suppressed at angles larger than opening angle of pair, which is angular ordering.

Photons at larger angles cannot resolve electron and positron charges separately – they see only total charge of pair, which is zero, implying no emission.

More generally, if i and j come from branching of parton k, with (colour) charge $Q_k = Q_i + Q_k$, then radiation outside angular-ordered cones is emitted coherently by i and j and can be treated as coming directly from (colour) charge of k.

Coherent Branching

- Angular ordering provides basis for coherent parton branching formalism, which includes leading soft gluon enhancements to all orders.
- In place of virtual mass-squared variable t in earlier treatment, use angular variable
 \[
 \zeta = \frac{p_b \cdot p_c}{E_b E_c} \simeq 1 - \cos \theta
 \]
 as evolution variable for branching $a \to bc$, and impose angular ordering $\zeta' < \zeta$ for successive branchings. Iterative formula for n-parton emission becomes
 \[
 d\sigma_{n+1} = d\sigma_n \frac{d\zeta}{\zeta} dz \frac{\alpha_s}{2\pi} \hat{P}_{ba}(z).
 \]
- In place of virtual mass-squared cutoff t_0, must use angular cutoff ζ_0 for coherent branching. This is to some extent arbitrary, depending on how we classify emission as unresolvable. Simplest choice is $\zeta_0 = t_0/E^2$ for parton of energy E.
- For radiation from particle i with finite mass-squared t_0, radiation function becomes
 \[
 \omega^2 \left(\frac{p_i \cdot p_j}{p_i \cdot q p_j \cdot q} - \frac{p_i^2}{(p_i \cdot q)^2} \right) \simeq \frac{1}{\zeta} \left(1 - \frac{t_0}{E^2 \zeta} \right),
 \]
 so angular distribution of radiation is cut off at $\zeta = t_0/E^2$. Thus t_0 can still be interpreted as minimum virtual mass-squared.
With this cutoff, most convenient definition of evolution variable is not ζ itself but rather

$$\tilde{t} = E^2 \zeta \geq t_0 .$$

Angular ordering condition $\zeta_b, \zeta_c < \zeta_a$ for timelike branching $a \rightarrow bc$ (a outgoing) becomes

$$\tilde{t}_b < z^2 \tilde{t}, \quad \tilde{t}_c < (1 - z)^2 \tilde{t}$$

where $\tilde{t} = \tilde{t}_a$ and $z = E_b/E_a$. Thus cutoff on z becomes

$$\sqrt{t_0/\tilde{t}} < z < 1 - \sqrt{t_0/\tilde{t}} .$$

Neglecting masses of b and c, virtual mass-squared of a and transverse momentum of branching are

$$t = z(1 - z)\tilde{t}, \quad p_t^2 = z^2(1 - z)^2 \tilde{t} .$$

Thus for coherent branching Sudakov form factor of quark becomes

$$\tilde{\Delta}_q(\tilde{t}) = \exp \left[- \int_{\tilde{t}_0}^{\tilde{t}} \frac{dt'}{t'} \int_{\sqrt{t_0/t'}}^{1 - \sqrt{t_0/t'}} \alpha_S(z^2(1 - z)^2 t') \hat{P}_{qq}(z) \right]$$

At large \tilde{t} this falls more slowly than form factor without coherence, due to the suppression of soft gluon emission by angular ordering.
Note that for spacelike branching $a \rightarrow bc$ (a incoming, b spacelike), angular ordering condition is

$$\theta_b > \theta_a > \theta_c .$$

However, kinematics implies $E_b \theta_b > E_a \theta_a$ at small x and in this case $E_b < E_a$, so angular ordering does not impose an extra constraint on branching. Therefore gluon emission is not suppressed by coherence in spacelike branching at small x.

- This permits the rapid rise of structure functions at small x.
- We shall see that the production of low-momentum hadrons in jet fragmentation at small x, controlled by timelike branching, is quite different – strongly suppressed by QCD coherence.
Small-x fragmentation

- Evolution of fragmentation functions at small x sensitive to moments near $N = 1$. However, anomalous dimensions $\gamma_{gq}^{(0)}$, $\gamma_{gg}^{(0)}$ are not defined at $N = 1$: moment integrals for $N \leq 1$ are dominated by small z, where $P_{gi}(z)$ diverges due to soft gluon emission.

- At small z must take into account coherence effects. Recall evolution variable becomes $\tilde{t} = E^2 [1 - \cos \theta]$, with angular ordering condition $\tilde{t}' < z^2 \tilde{t}$. Thus, redefining t as \tilde{t}, evolution equation in integrated form is

$$F_i(x, t) = F_i(x, t_0) + \sum_j \int_x^1 \frac{dz}{z} \int_{t_0}^{z^2 t} \frac{dt'}{t'} \frac{\alpha_S}{2\pi} P_{ji}(z) F_j(x/z, t')$$

or in differential form

$$t \frac{\partial}{\partial t} F_i(x, t) = \sum_j \int_x^1 \frac{dz}{z} \frac{\alpha_S}{2\pi} P_{ji}(z) F_j(x/z, z^2 t) .$$

- Only difference from DGLAP equation is z-dependent scale on the right-hand side — not important for most values of x but crucial at small x.

- For simplicity, consider first α_S fixed and neglect sum over j. Taking moments as usual,

$$t \frac{\partial}{\partial t} \tilde{F}(N, t) = \frac{\alpha_S}{2\pi} \int_x^1 dz z^{N-1} P(z) \tilde{F}(N, z^2 t) .$$
Try solution of form $F(N, t) \propto t^{\gamma(N, \alpha_S)}$. Then anomalous dimension $\gamma(N, \alpha_S)$ must satisfy

$$\gamma(N, \alpha_S) = \frac{\alpha_S}{2\pi} \int_0^1 z^{N-1+2\gamma(N, \alpha_S)} P(z).$$

For $N - 1$ not small, we can neglect $2\gamma(N, \alpha_S)$ in exponent and obtain usual formula for anomalous dimension. For $N \simeq 1$, $z \to 0$ region dominates, where $P_{gg}(z) \simeq 2C_A/z$. Hence

$$\gamma_{gg}(N, \alpha_S) = \frac{C_A\alpha_S}{\pi} \frac{1}{N - 1 + 2\gamma_{gg}(N, \alpha_S)}$$

$$= \frac{1}{4} \left[\sqrt{(N - 1)^2 + \frac{8C_A\alpha_S}{\pi}} - (N - 1) \right]$$

$$= \sqrt{\frac{C_A\alpha_S}{2\pi}} - \frac{1}{4} (N - 1) + \frac{1}{32} \sqrt{\frac{2\pi}{C_A\alpha_S}} (N - 1)^2 + \cdots$$

To take account of running α_S, write

$$\tilde{F}(N, t) \sim \exp \left[\int_0^t \gamma_{gg}(N, \alpha_S) \frac{dt'}{t'} \right],$$
and note that $\gamma_{gg}(N, \alpha_S)$ should be $\gamma_{gg}(N, \alpha_S(t'))$. Use

$$
\int^t \gamma_{gg}(N, \alpha_S(t')) \frac{dt'}{t'} = \int^{\alpha_S(t)} \frac{\gamma_{gg}(N, \alpha_S)}{\beta(\alpha_S)} d\alpha_S,
$$

where $\beta(\alpha_S) = -b\alpha_S^2 + \cdots$, to find

$$
\tilde{F}(N, t) \sim \exp \left[\frac{1}{b} \sqrt{\frac{2C_A}{\pi \alpha_S}} - \frac{1}{4b \alpha_S} (N - 1) \right. \\
+ \left. \frac{1}{48b} \sqrt{\frac{2\pi}{C_A \alpha_S^3}} (N - 1)^2 + \cdots \right]_{\alpha_S = \alpha_S(t)}.
$$

- In e^+e^- annihilation, scale $t \sim s$ and behaviour of $\tilde{F}(N, s)$ near $N = 1$ determines form of small-x fragmentation functions. Keeping terms up to $(N - 1)^2$ in exponent gives Gaussian function of N which transforms into Gaussian function of $\xi \equiv \ln(1/x)$:

$$
x F(x, s) \propto \exp \left[-\frac{1}{2\sigma^2} (\xi - \xi_p)^2 \right],
$$
Width of distribution

\[
\sigma = \left(\frac{1}{24b} \sqrt{\frac{2\pi}{C_A \alpha_S^3(s)}} \right)^{\frac{1}{2}} \propto (\ln s)^{\frac{3}{4}}.
\]
Peak position

\[\xi_p = \frac{1}{4b\alpha_s(s)} \sim \frac{1}{4} \ln s \]

Energy-dependence of the peak position \(\xi_p \) tests suppression of hadron production at small \(x \) due to soft gluon coherence. Decrease at very small \(x \) is expected on kinematical grounds, but this would occur at particle energies proportional to their masses, i.e. at \(x \propto m/\sqrt{s} \), giving \(\xi_p \sim \frac{1}{2} \ln s \). Thus purely kinematic suppression would give \(\xi_p \) increasing twice as fast.

In \(p\bar{p} \rightarrow \text{dijets} \), \(\sqrt{s} \) is replaced by \(M_{JJ}\sin\theta \) where \(M_{JJ} \) is dijet mass and \(\theta \) is jet cone angle.
CDF Preliminary

\[\frac{1}{N_{\text{event}}} \frac{dN}{d\xi} \]

\[\xi = \log\left(\frac{1}{x} \right) \]

- \(M_{jj} = 82 \text{ GeV} \)
- \(M_{jj} = 105 \text{ GeV} \)
- \(M_{jj} = 140 \text{ GeV} \)
- \(M_{jj} = 183 \text{ GeV} \)
- \(M_{jj} = 229 \text{ GeV} \)
- \(M_{jj} = 293 \text{ GeV} \)
- \(M_{jj} = 378 \text{ GeV} \)
- \(M_{jj} = 488 \text{ GeV} \)
- \(M_{jj} = 628 \text{ GeV} \)

CDF Preliminary

MLLA Fit: (CDF Data only)

\[Q_{\text{eff}} = 256 \pm 13 \text{ MeV} \]
Average Multiplicity

Mean number of hadrons is $N = 1$ moment of fragmentation function:

$$\langle n(s) \rangle = \int_0^1 dx \, F(x, s) = \tilde{F}(1, s)$$

$$\sim \exp \frac{1}{b} \sqrt{\frac{2C_A}{\pi \alpha_s(s)}} \sim \exp \sqrt{\frac{2C_A}{\pi b} \ln \left(\frac{s}{\Lambda^2} \right)}$$

(plus NLL corrections) in good agreement with data.
Hadronization Models

General ideas

- Local parton-hadron duality
 - Hadronization is long-distance process, involving small momentum transfers. Hence hadron-level flow of energy-momentum, flavour should follow parton level.
 - Implicit in earlier discussion of jet fragmentation.
 - Results on spectra and multiplicities support this.

- Universal low-scale α_S
 - PT works well down to very low scales, $Q \sim 1$ GeV.
 - Assume $\alpha_S(Q)$ defined (non-perturbatively) for all Q.
 - Good description of heavy quark spectra, event shapes.
Universal low-scale α_S

- Infrared renormalon

\[
F \sim \int_0^Q \frac{d p_t}{Q} \alpha_S(p_t)
\]

\[
= \alpha_S(Q) \sum_n \int_0^Q \frac{d p_t}{Q} \left[b \alpha_S(Q) \ln \frac{Q^2}{p_t^2} \right]^n
\]

\[
= \alpha_S(Q) \sum_n n! [2b\alpha_S(Q)]^n
\]

- Divergent series: truncate at smallest term ($n_m = [2b\alpha_S(Q)]^{-1}$) \Rightarrow uncertainty in F

\[
\delta F \sim n_m! [2b\alpha_S(Q)]^{nm} \sim e^{-nm} = \frac{\Lambda}{Q}
\]

- Renormalon is due to infrared divergence of α_S
 - Postulate universal infrared-regular α_S. Then $1/Q$ power corrections depend on

\[
\alpha_0(\mu_I) = \frac{1}{\mu_I} \int_0^{\mu_I} \alpha_S(p_t) \, dp_t
\]

- Match PT and NP at $\mu_I \sim 2$ GeV
Event shapes in e^+e^-

Event shapes in DIS

$\alpha_s(M_Z)$

$\alpha_s(\mu=2\text{GeV})$

$\langle 1-T \rangle$

$\langle \sqrt{s}/s \rangle$

$\langle M_H^2/s \rangle$

$\langle B_{T} \rangle$

$\langle B_{W} \rangle$

$\langle C \rangle$

$\langle \alpha_0 \rangle$

$\langle 1-T \rangle$

$\langle M_H^2/s \rangle$

$\langle B_{T} \rangle$

$\langle B_{W} \rangle$

$\langle C \rangle$

$\langle \alpha_0 \rangle$

$\langle \alpha_s(\mu=2\text{GeV}) \rangle$

$\langle 1-T \rangle$

$\langle M_H^2/s \rangle$

$\langle B_{T} \rangle$

$\langle B_{W} \rangle$

$\langle C \rangle$

$\langle \alpha_0 \rangle$

$\langle \alpha_s(\mu=2\text{GeV}) \rangle$

$\langle 1-T \rangle$

$\langle M_H^2/s \rangle$

$\langle B_{T} \rangle$

$\langle B_{W} \rangle$

$\langle C \rangle$

$\langle \alpha_0 \rangle$

$\langle \alpha_s(\mu=2\text{GeV}) \rangle$
Specific Hadronization Models

- General ideas do not describe hadron formation. Main current models are cluster and string.
Cluster (HERWIG)

- Non-perturbative $g \rightarrow q\bar{q}$ splitting after parton shower.
- Colour singlet $q\bar{q}$ clusters have lower mass due to preconfinement property of parton shower.

- Clusters decay according to 2-hadron density of states.
- Few parameters: natural p_T and heavy particle suppression
- Problems with massive clusters, baryons, heavy quarks
String (PYTHIA)

- Uses string dynamics: colour string stretched between initial $q\bar{q}$ breaks up into hadrons via $q\bar{q}$ pair production.
- String gives linear confinement potential, area law for matrix elements.
- Gluons produced in shower give 'kinks' on string.

Extra parameters for p_T and heavy particle suppression.
Some problems with baryons.

Both models describe e^+e^- data well . . .
Jet rates and mean number of jets

- **Jet Fraction**

 - **OPAL (91 GeV)**
 - **Durham**
 - 2-jet
 - 3-jet
 - 4-jet
 - 5-jet

 - PYTHIA
 - HERWIG

- **k_T or Durham algorithm:**
 - Define jet resolution y_{cut} (dimensionless).
 - For final-state momenta p_i, p_j define $y_{ij} = 2 \min\{E_i^2, E_j^2\}(1 - \cos \theta_{ij})/s$
 - If $y_{IJ} = \min\{y_{ij}\} < y_{\text{cut}}$, combine I, J into one object K with $p_K = p_I + p_J$.
 - Repeat until $y_{IJ} > y_{\text{cut}}$. Then remaining objects are jets.
Light quark and gluon fragmentation functions

![Graphs showing quark and gluon fragmentation functions](image)

- **udsc Quark**
 - OPAL
 - PYTHIA 6.1
 - HERWIG 6.2
 - ARIADNE 4.08

- **Gluon**
 - OPAL
 - PYTHIA 6.1
 - HERWIG 6.2
 - ARIADNE 4.08

DATA
- \(\langle Q_{\text{jet}} \rangle = 6.4\,\text{GeV}\)
- \(\langle Q_{\text{jet}} \rangle = 13.4\,\text{GeV}\)
- \(\langle Q_{\text{jet}} \rangle = 21.0\,\text{GeV}\)
- \(\sqrt{s}/2 = 45.6\,\text{GeV}\)
- \(\langle Q_{\text{jet}} \rangle = 46.5\,\text{GeV}\)
- \(\langle Q_{\text{jet}} \rangle = 48.5\,\text{GeV}\)
Hadron-Hadron Processes

- In hard hadron-hadron scattering, constituent partons from each incoming hadron interact at short distance (large momentum transfer Q^2).

- For hadron momenta P_1, P_2 ($S = 2P_1 \cdot P_2$), form of cross section is

$$
\sigma(S) = \sum_{i,j} \int d x_1 d x_2 D_i(x_1, \mu) D_j(x_2, \mu) \hat{\sigma}_{ij}(\hat{s} = x_1 x_2 S, \alpha_S(\mu), Q/\mu)
$$

where μ is factorization scale and $\hat{\sigma}_{ij}$ is subprocess cross section for parton types i, j.

- Factorization scale is in principle arbitrary: it affects only what we call part of subprocess or part of initial-state evolution (parton shower).

- Rapidity of subprocess c.m. frame $p^\mu = p_1^\mu + p_2^\mu$:

$$
y \equiv \frac{1}{2} \ln \left[\frac{(p^0 + p_3)/p^0 - p_3}{p^0 + p_3} \right] = \frac{1}{2} \ln \left(\frac{x_1}{x_2} \right)
$$
Unlike $e^+ e^-$ or ep, we may have interaction between spectator partons, leading to soft underlying event and/or multiple hard scattering.
Double Parton Scattering

- DPS has ‘best-balanced’ ($\gamma + \text{jet}$) and dijet uncorrelated in azimuth.

- They found $\sigma_{\text{DPS}} = \sigma_{\gamma j} \sigma_{jj} / \sigma_{\text{eff}}$ where $\sigma_{\text{eff}} = 14 \pm 1.7^{+1.7}_{-2.3}$ mb
Parton-Parton Luminosities

Useful to define the differential parton-parton luminosity \(dL_{ij}/d\hat{s} \, dy \) and its integral \(dL_{ij}/d\hat{s} \):

\[
\frac{dL_{ij}}{d\hat{s} \, dy} = \frac{1}{S} \frac{1}{1 + \delta_{ij}} \left[D_i(x_1, \mu) D_j(x_2, \mu) + (1 \leftrightarrow 2) \right].
\]

Factor with Kronecker delta avoids double-counting when partons are identical.

We have \(d\hat{s} \, dy = S \, dx_1 \, dx_2 \) and hence

\[
\sigma = \sum_{i,j} \int d\hat{s} \, dy \left(\frac{dL_{ij}}{d\hat{s} \, dy} \right) \hat{\sigma}_{ij}(\hat{s})
\]

\[
= \sum_{i,j} \int d\hat{s} \left(\frac{dL_{ij}}{d\hat{s}} \right) \hat{\sigma}_{ij}(\hat{s})
\]

This can be used to estimate the production rate for subprocesses at LHC.
Figure shows parton-parton luminosities at $\sqrt{s} = 14$ TeV for various parton combinations, calculated using the CTEQ6.1 parton distribution functions and scale $\mu = \sqrt{s}$. Widths of curves estimate PDF uncertainties.

Green = gg, Blue = $gq + g\bar{q} + qg + \bar{q}g$, Red = $q\bar{q} + \bar{q}q$ ($q = d + u + s + c + b$).
Lepton Pair Production

- Inverse of $e^+e^- \rightarrow q\bar{q}$ is Drell-Yan process. At $O(\alpha_s^0)$, mass distribution of lepton pair is given by

$$\frac{d\hat{\sigma}}{dM^2}(q\bar{q} \rightarrow \gamma^* \rightarrow l^+l^-) = \frac{4\pi\alpha^2}{3\hat{s}} Q_q^2 \delta(M^2 - \hat{s})$$

- Factor of $1/3 = 1/N$ instead of $3 = N$ because of average over colours of incoming q.

- In higher orders vertex corrections (a) have $M^2 = \hat{s}$, gluon emission (b) and QCD Compton (c) diagrams give $M^2 < \hat{s}$.
\[\frac{d^2 \sigma}{dM \, dy} \text{ [pb/GeV]} \]

\[\sqrt{s} = 1.8 \text{ TeV, } |y| < 1 \]

CDF data

\[p\bar{p} \rightarrow \ell^+ \ell^- + X \]
- W^\pm boson production is similar, except sensitive to different parton distributions, e.g.

$$u\bar{d} \rightarrow W^+ \rightarrow l^+ \nu_l$$

- Transverse momentum of lepton pair, p_T measures net transverse momentum of colliding partons plus any intrinsic p_T:

![Graph showing $W^+ + W^-$ production at large p_T with $\sqrt{s} = 1.8$ TeV, CDF data]
Jet Production

- Lowest-order subprocess for purely hadronic jet production is $2 \rightarrow 2$ scattering $p_1 + p_2 \rightarrow p_3 + p_4$

$$\frac{d\hat{\sigma}}{d\Phi_{34}} \equiv \frac{E_3 E_4 d^6 \hat{\sigma}}{d^3 p_3 d^3 p_4}$$

$$= \frac{1}{32 \pi^2 \hat{s}} \sum |\mathcal{M}|^2 \delta^4(p_1 + p_2 - p_3 - p_4).$$

- Many processes even at $\mathcal{O}(\alpha_S^2)$:

![Diagram](image-url)
● Single-jet inclusive cross section obtained by integrating over one outgoing momentum:

\[
\frac{E d^3 \hat{\sigma}}{d^3 p} = \frac{d^3 \hat{\sigma}}{d^2 p_T dy} \rightarrow \frac{1}{2\pi E_T} \frac{d^3 \hat{\sigma}}{d E_T d \eta} = \frac{1}{16\pi^2 \hat{s}} \sum |\mathcal{M}|^2 \delta(\hat{s} + \hat{t} + \hat{u})
\]

where (neglecting jet mass)

\[
E_T \equiv E \sin \theta = |p_T| , \quad \eta \equiv -\ln \tan(\theta/2) = y .
\]

● Jets can be defined by the \(k_T \) algorithm:

❖ For each final-state momentum \(p_i \) and each pair of final-state momenta \(p_i, p_j \), define

\[
k_{T_i} = E_{Ti} , \quad k_{Tij} = \min\{E_{Ti}, E_{Tj}\} \Delta R_{ij} / D
\]

where \(\Delta R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2} \) and \(D \) = dimensionless parameter for angular size of jets (\(D = 0.5 - 1.0 \))

❖ If \(k_{TI} \) is the smallest in the list of \(\{k_{T_i}, k_{Tij}\} \), define \(I \) as a jet and remove from list.

❖ If \(k_{TIJ} \) is the smallest, combine \(I, J \) into one object \(K \) with \(p_K = p_I + p_J \).

❖ Repeat until list is empty.

● Use \(\eta \) rather than \(\theta \) for invariance under longitudinal boosts: \(x_1 \rightarrow ax_1, x_2 \rightarrow x_2/a \) gives \(\eta_i \rightarrow \eta_i + \ln a \), so \(\eta_i - \eta_j \) is invariant.
NLO predictions and data agree very well:

\[\frac{d^2 \sigma}{dy \, dp_T} \text{[nb/(GeV/c)]} \]

CDF data (L = 1.0 fb\(^{-1}\))

Systematic uncertainties

NLO: JETRAD CTEQ6.1M corrected to hadron level

\[p_T = \mu = \max \left(\frac{p_T^{\text{jet}}}{2}, \mu_0 \right) \]

PDF uncertainties

Data/Theory

Parton to hadron level correction

Monte Carlo modeling uncertainties
Rapidity dependence:

\[J_{\text{ET}} T \]

\[\frac{d^2 \sigma}{dy JET dp_{T}} \ [\text{nb}/(\text{GeV}/c)] \]

CDF data (L = 1.0 fb⁻¹)

Systematic uncertainties

NLO: JETRAD CTEQ6.1M corrected to hadron level

\[\mu_R = \mu_F = \max p_{TJET} / 2 = \mu_0 \]

PDF uncertainties

\[|y^{JET}| < 0.1 \times 10^6 \]

\[0.1 < |y^{JET}| < 0.7 \times 10^3 \]

\[0.7 < |y^{JET}| < 1.1 \]

\[1.1 < |y^{JET}| < 1.6 \times 10^3 \]

\[1.6 < |y^{JET}| < 2.1 \times 10^6 \]

\[\mu_{T} D=0.7 \]

\[K_{T} \]

\[\mu_{T} = \text{max} p_{TJET} / 2 = \mu_0 \]
Contribution of different parton combinations determined by subprocess cross sections and parton distributions.

Quarks dominate at large E_T since this selects large $x_{1,2}$:

$$\hat{s} = x_1 x_2 S > 4E_T^2$$
Heavy Quark Production

- Lowest-order subprocesses for heavy quark production are (a) light quark-antiquark annihilation (10% at LHC) and (b) gluon-gluon fusion (90% at LHC)

- NLO top quark cross section = 840 ± 30(scale)± 20(pdf) pb at LHC
Standard Model Higgs Boson Production

- Lowest-order subprocesses for Higgs boson production at hadron colliders:
 - (a) Gluon-gluon fusion (via top loop)
 - (b) Vector boson fusion
 - (c) Associated production with W, Z boson
 - (d) Associated production with $t\bar{t}$.
NLO Higgs cross sections

\[p+p\to H+X \]
\[\sqrt{s}=14 \text{ TeV} \]
Discovery decay channels depend on Higgs mass
2 → 2 parton processes — all available, e.g. in MCFM (CaEl*)

2 → 3 parton processes

<table>
<thead>
<tr>
<th>Final State</th>
<th>Authors*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 jets</td>
<td>KuSiTr,BerDixKo,GiKi,Na</td>
<td>Public code available</td>
</tr>
<tr>
<td>V + 2 jets</td>
<td>ElCa,CaGIMi</td>
<td>Public code available</td>
</tr>
<tr>
<td>V b b</td>
<td>ElCa</td>
<td>Massless b quarks</td>
</tr>
<tr>
<td>V b b̄</td>
<td>ReFeWa</td>
<td>Massive b quarks</td>
</tr>
<tr>
<td>H + 2 jets</td>
<td>FiOLZep</td>
<td>Vector boson fusion</td>
</tr>
<tr>
<td>H + 2 jets</td>
<td>CaElZa</td>
<td>Gluon fusion</td>
</tr>
<tr>
<td>V V + 2 jets</td>
<td>JaOLZep</td>
<td>Vector boson fusion</td>
</tr>
<tr>
<td>γγ jet</td>
<td>deFKu,DelMalNaTr,BiGuMah</td>
<td></td>
</tr>
<tr>
<td>t̅t H, b̄b H</td>
<td>ReDaWaOr,BeeDitKrPISpZer</td>
<td></td>
</tr>
<tr>
<td>t̅t̅ jet</td>
<td>DitUwWe</td>
<td></td>
</tr>
<tr>
<td>H H H</td>
<td>PLRa,BiKarKauRu</td>
<td></td>
</tr>
<tr>
<td>W W jet</td>
<td>DiKalUw</td>
<td></td>
</tr>
<tr>
<td>Z Z Z</td>
<td>LaMePe</td>
<td></td>
</tr>
</tbody>
</table>

NLO Update (Glover, LP2009)

<table>
<thead>
<tr>
<th>Final State</th>
<th>Authors*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W + 3$ jets</td>
<td>BBDDFGIKMa</td>
<td></td>
</tr>
<tr>
<td>$VV b \bar{b}$</td>
<td>vHPPb</td>
<td></td>
</tr>
<tr>
<td>$H + 3$ jets</td>
<td>FHZc</td>
<td>Vector boson fusion</td>
</tr>
<tr>
<td>$t\bar{t}bb$</td>
<td>BDDPd, BCPPWe</td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}Z$</td>
<td>LMMPf</td>
<td></td>
</tr>
<tr>
<td>VVV</td>
<td>BOPPg</td>
<td>WZZ, WWW, WWW</td>
</tr>
<tr>
<td>multijets</td>
<td>GZh</td>
<td>$gg \rightarrow \text{up to 20 gluons}$</td>
</tr>
</tbody>
</table>

aBerger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre

bvan Hameren, Papadopoulos, Pittau

cFigy, Hankele, Zeppenfeld

dBredenstein, Denner, Dittmaier, Pozzorini

eBevilacqua, Czakon, Papadopoulos, Pittau, Worek

fLazopoulos, McElmurry, Melnikov, Petriello

gBinoth, Ossa, Papadopoulos, Pittau

hGiele, Zanderighi
Les Houches 2007 wish list of “feasible” NLO calculations

<table>
<thead>
<tr>
<th>Final State</th>
<th>Relevance</th>
<th>Progress?</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV jet</td>
<td>$t\bar{t}H$, new physics</td>
<td>$VV = \gamma\gamma, WW$</td>
</tr>
<tr>
<td>VV</td>
<td>SUSY trilepton</td>
<td>Done</td>
</tr>
<tr>
<td>$VVb\bar{b}$</td>
<td>VBF $\rightarrow H \rightarrow VV$, $t\bar{t}H$, new physics</td>
<td>Done</td>
</tr>
<tr>
<td>$VV + 2$ jets</td>
<td>VBF $\rightarrow H \rightarrow VV$</td>
<td>VBF</td>
</tr>
<tr>
<td>$V + 3$ jets</td>
<td>various new physics signatures</td>
<td>$W + 3$ jets</td>
</tr>
<tr>
<td>$t\bar{t} + 2$ jets</td>
<td>$t\bar{t}H$</td>
<td>$t\bar{t}Z$</td>
</tr>
<tr>
<td>$t\bar{t}b\bar{b}$</td>
<td>$t\bar{t}H$</td>
<td>Done</td>
</tr>
<tr>
<td>$b\bar{b}b\bar{b}$</td>
<td>$t\bar{t}H$</td>
<td></td>
</tr>
<tr>
<td>4 jets</td>
<td>various new physics signatures</td>
<td>$gg \rightarrow gggg$</td>
</tr>
</tbody>
</table>

“Done” does not necessarily mean a (parton-level) event generator exists

- Time for matrix element generation?
- Sum over spins and colours?
- Decays of unstable particles (with spin correlations)?
- Efficient phase space generation and unweighting?
- Interfacing to parton showers and hadronization?
Summary of Lecture 2

- Jet fragmentation functions also obey DGLAP evolution equations.
 - Scaling violation seen in e^+e^-.
 - Soft gluon coherence \Rightarrow angular-ordered branching.
 - Small-x fragmentation sensitive to coherence effects.
 - Gaussian peak in $\ln(1/x)$, peak position shows coherence.
 - Average hadron multiplicity predicted.

- Hadronization models needed for simulation of full final states.
 - General ideas describe spectra and event shapes.
 - Local parton-hadron duality \Rightarrow small-x hadron spectra.
 - Universal low-scale $\alpha_s \Rightarrow \langle \alpha_s(q < 2 \text{ GeV}) \rangle \sim 0.5$.
 - Specific models needed for hadron distributions.
 - String model (PYTHIA).
 - Cluster model (HERWIG).

- In hadron-hadron processes, factorization permits cross section calculations.
 - Parton-parton luminosities important: uncertainties $\sim 10 - 20\%$.
 - Lepton-pair, jet, top and Higgs production reliably predicted (NLO or NNLO).
 - All $2 \rightarrow 2$ and many $2 \rightarrow 3$ subprocesses predicted to NLO.