Classical Field Theory

- Consider waves on a string, mass per unit length ρ, tension T, displacement $\phi(x, t)$.

$$
\begin{array}{ll}
\text { K.E. } & T=\int \frac{1}{2} \rho\left(\frac{\partial \phi}{\partial t}\right)^{2} d x \\
\text { P.E. } & V=\int \frac{1}{2} T\left(\frac{\partial \phi}{\partial x}\right)^{2} d x=\int \frac{1}{2} \rho c^{2}\left(\frac{\partial \phi}{\partial x}\right)^{2} d x
\end{array}
$$

where wave velocity $c=\sqrt{T / \rho}$.

- Lagrangian $L=T-V=\int \mathcal{L} d x$ with Lagrangian density

$$
\mathcal{L}=\frac{1}{2} \rho\left[\left(\frac{\partial \phi}{\partial t}\right)^{2}-c^{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}\right]
$$

For brevity, write

$$
\begin{gathered}
\frac{\partial \phi}{\partial t}=\dot{\phi}, \quad \frac{\partial \phi}{\partial x}=\phi^{\prime} \\
\Rightarrow \quad \mathcal{L}=\frac{1}{2} \rho\left(\dot{\phi}^{2}-c^{2} \phi^{\prime 2}\right)
\end{gathered}
$$

- Equations of motion given by least action $\delta S=0$ where $S=\int L d t$. Now

$$
\delta S=\int\left(\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi+\frac{\partial \mathcal{L}}{\partial \phi^{\prime}} \delta \phi^{\prime}+\frac{\partial \mathcal{L}}{\partial \dot{\phi}} \delta \dot{\phi}\right) d x d t
$$

But

$$
\int \frac{\partial \mathcal{L}}{\partial \phi^{\prime}} \delta \phi^{\prime} d x=\int \frac{\partial \mathcal{L}}{\partial \phi^{\prime}} \frac{\partial}{\partial x} \delta \phi d x=\left[\frac{\partial \mathcal{L}}{\partial \phi^{\prime}} \delta \phi\right]_{-\infty}^{+\infty}-\int \frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\prime}}\right) \delta \phi d x
$$

We can assume the boundary terms vanish. Similarly

$$
\int \frac{\partial \mathcal{L}}{\partial \dot{\phi}} \delta \dot{\phi} d t=-\int \frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right) \delta \phi d t
$$

and so

$$
\delta S=\int\left[\frac{\partial \mathcal{L}}{\partial \phi}-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\prime}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right)\right] \delta \phi d x d t
$$

- This has to vanish for any $\delta \phi(x, t)$, so we obtain the Euler-Lagrange equation of motion for the field $\phi(x, t)$:

$$
\frac{\partial \mathcal{L}}{\partial \phi}-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\prime}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right)=0
$$

- For the string, $\mathcal{L}=\frac{1}{2} \rho\left(\dot{\phi}^{2}-c^{2} \phi^{\prime 2}\right)$. Hence

$$
\rho c^{2} \frac{\partial \phi^{\prime}}{\partial x}-\rho \frac{\partial \dot{\phi}}{\partial t}=0
$$

which gives the wave equation

$$
c^{2} \frac{\partial^{2} \phi}{\partial x^{2}}-\frac{\partial^{2} \phi}{\partial t^{2}}=0
$$

- We shall also need the Hamiltonian

$$
H=\int \mathcal{H} d x
$$

Recall that for a single coordinate q we have $L=L(\dot{q}, q)$ and

$$
H=p \dot{q}-L
$$

where p is the generalized momentum

$$
p=\frac{\partial L}{\partial \dot{q}}
$$

- Similarly, for a field $\phi(x, t$,$) we define momentum density$

$$
\pi(x, t)=\frac{\partial \mathcal{L}}{\partial \dot{\phi}}
$$

Then

$$
\mathcal{H}(\pi, \phi)=\pi \dot{\phi}-\mathcal{L}
$$

- For the string $\pi=\rho \dot{\phi}$ (as expected) and

$$
\begin{aligned}
\mathcal{H} & =\pi\left(\frac{\pi}{\rho}\right)-\frac{1}{2} \rho\left(\frac{\pi}{\rho}\right)^{2}+\frac{1}{2} \rho c^{2} \phi^{\prime 2} \\
& =\frac{1}{2 \rho} \pi^{2}+\frac{1}{2} \rho c^{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}
\end{aligned}
$$

Klein-Gordon Field

- We choose the Lagrangian density $(\hbar=c=1)$

$$
\mathcal{L}=\frac{1}{2}\left(\frac{\partial \phi}{\partial t}\right)^{2}-\frac{1}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}-\frac{1}{2} m^{2} \phi^{2}
$$

to obtain the Klein-Gordon equation of motion:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \phi}-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\prime}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right) & =0 \\
\Rightarrow \quad-m^{2} \phi+\frac{\partial^{2} \phi}{\partial x^{2}}-\frac{\partial^{2} \phi}{\partial t^{2}} & =0
\end{aligned}
$$

- The momentum density is

$$
\pi=\frac{\partial \mathcal{L}}{\partial \dot{\phi}}=\frac{\partial \phi}{\partial t}
$$

and so the Klein-Gordon Hamiltonian density is

$$
\mathcal{H}=\frac{1}{2} \pi^{2}+\frac{1}{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

- In 3 spatial dimensions $\partial \phi / \partial x \rightarrow \nabla \phi$,

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \phi}-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial(\partial \phi / \partial x)}\right) & -\frac{\partial}{\partial y}\left(\frac{\partial \mathcal{L}}{\partial(\partial \phi / \partial y)}\right)-\frac{\partial}{\partial z}\left(\frac{\partial \mathcal{L}}{\partial(\partial \phi / \partial z)}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right)=0 \\
& \Rightarrow \quad-m^{2} \phi+\nabla^{2} \phi-\frac{\partial^{2} \phi}{\partial t^{2}}=0
\end{aligned}
$$

- Covariant notation:

$$
\mathcal{L}=\frac{1}{2} g_{\mu \nu}\left(\partial^{\mu} \phi\right)\left(\partial^{\nu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}
$$

Euler-Lagrange equation:

$$
\frac{\partial \mathcal{L}}{\partial \phi}-\partial^{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)}\right)=-m^{2} \phi-\partial^{\mu}\left(g_{\mu \nu} \partial^{\nu} \phi\right)=0
$$

i.e.

$$
\partial^{\mu} \partial_{\mu} \phi+m^{2} \phi=0
$$

- Note that the Lagrangian density \mathcal{L} and the action $S=\int \mathcal{L} d^{3} \boldsymbol{r} d t=\int \mathcal{L} d^{4} x$ are scalars (invariant functions), like ϕ.
- On the other hand the momentum density $\pi=\partial \phi / \partial t$ and the Hamiltonian density

$$
\mathcal{H}=\frac{1}{2} \pi^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}
$$

are not: time development \Rightarrow frame dependence.

Fourier Analysis

- We can express any real field $\phi(x, t)$ as a Fourier integral:

$$
\phi(x, t)=\int d k N(k)\left[a(k) e^{i k x-i \omega t}+a^{*}(k) e^{-i k x+i \omega t}\right]
$$

where $N(k)$ is a convenient normalizing factor for the Fourier transform $a(k)$. The frequency $\omega(k)$ is obtained by solving the equation of motion: KG equation $\Rightarrow \omega=+\sqrt{k^{2}+m^{2}}$.

- The Hamiltonian

$$
H=\int\left(\frac{1}{2} \pi^{2}+\frac{1}{2} \phi^{\prime 2}+\frac{1}{2} m^{2} \phi^{2}\right) d x
$$

takes a simpler form in terms of the Fourier amplitudes $a(k)$. We can write e.g.

$$
\phi^{2}=\int d k N(k)[\ldots] \int d k^{\prime} N\left(k^{\prime}\right)[\ldots]
$$

and use

$$
\int d x e^{i\left(k \pm k^{\prime}\right) x}=2 \pi \delta\left(k \pm k^{\prime}\right)
$$

to show that

$$
\begin{aligned}
\int \phi^{2} d x & =2 \pi \int d k d k^{\prime} N(k) N\left(k^{\prime}\right)\left[a(k) a\left(k^{\prime}\right) \delta\left(k+k^{\prime}\right) e^{-i\left(\omega+\omega^{\prime}\right) t}\right. \\
& +a^{*}(k) a^{*}\left(k^{\prime}\right) \delta\left(k+k^{\prime}\right) e^{i\left(\omega+\omega^{\prime}\right) t}+a(k) a^{*}\left(k^{\prime}\right) \delta\left(k-k^{\prime}\right) e^{-i\left(\omega-\omega^{\prime}\right) t} \\
& \left.+a^{*}(k) a\left(k^{\prime}\right) \delta\left(k-k^{\prime}\right) e^{i\left(\omega-\omega^{\prime}\right) t}\right]
\end{aligned}
$$

- Noting that $\omega(-k)=\omega(k)$ and choosing $N(k)$ such that $N(-k)=N(k)$, this gives

$$
\begin{aligned}
\int \phi^{2} d x & =2 \pi \int d k[N(k)]^{2}\left[a(k) a(-k) e^{-2 i \omega t}\right. \\
& \left.+a^{*}(k) a^{*}(-k) e^{2 i \omega t}+a(k) a^{*}(k)+a^{*}(k) a(k)\right]
\end{aligned}
$$

- Similarly

$$
\begin{aligned}
\int \phi^{\prime 2} d x & =2 \pi \int d k[k N(k)]^{2}\left[a(k) a(-k) e^{-2 i \omega t}\right. \\
& \left.+a^{*}(k) a^{*}(-k) e^{2 i \omega t}+a(k) a^{*}(k)+a^{*}(k) a(k)\right]
\end{aligned}
$$

while

$$
\begin{aligned}
\int \dot{\phi}^{2} d x= & 2 \pi \int d k[\omega(k) N(k)]^{2}\left[-a(k) a(-k) e^{-2 i \omega t}\right. \\
& \left.-a^{*}(k) a^{*}(-k) e^{+2 i \omega t}+a(k) a^{*}(k)+a^{*}(k) a(k)\right]
\end{aligned}
$$

and hence, using $k^{2}=\omega^{2}-m^{2}$,

$$
H=2 \pi \int d k[N(k) \omega(k)]^{2}\left[a(k) a^{*}(k)+a^{*}(k) a(k)\right]
$$

or, choosing

$$
\begin{gathered}
N(k)=\frac{1}{2 \pi \cdot 2 \omega(k)} \\
H=\int d k N(k) \frac{1}{2} \omega(k)\left[a(k) a^{*}(k)+a^{*}(k) a(k)\right]
\end{gathered}
$$

i.e. the integrated density of modes $N(k)$ times the energy per mode $\omega(k)|a(k)|^{2}$.
\Rightarrow Each normal mode of the system behaves like an independent harmonic oscillator with amplitude $a(k)$.

- In 3 spatial dimensions we write

$$
\phi(\boldsymbol{r}, t)=\int d^{3} \boldsymbol{k} N(\boldsymbol{k})\left[a(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t}+a^{*}(\boldsymbol{k}) e^{-i \boldsymbol{k} \cdot \boldsymbol{r}+i \omega t}\right]
$$

and use

$$
\int d^{3} \boldsymbol{r} e^{i\left(\boldsymbol{k} \pm \boldsymbol{k}^{\prime}\right) \cdot \boldsymbol{r}}=(2 \pi)^{3} \delta^{3}\left(\boldsymbol{k} \pm \boldsymbol{k}^{\prime}\right)
$$

Therefore we should choose

$$
N(\boldsymbol{k})=\frac{1}{(2 \pi)^{3} 2 \omega(\boldsymbol{k})}
$$

to obtain an integral with the usual relativistic phase space (density of states) factor:

$$
H=\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3} 2 \omega(\boldsymbol{k})} \omega(\boldsymbol{k})|a(\boldsymbol{k})|^{2}
$$

Second Quantization

- First quantization was the procedure of replacing classical dynamical variables q and p by quantum operators \hat{q} and \hat{p} such that

$$
[\hat{q}, \hat{p}]=i \quad(\hbar=1)
$$

- Second quantization is replacing the field variable $\phi(x, t)$ and its conjugate momentum density $\pi(x, t)$ by operators such that

$$
\left[\hat{\phi}(x, t), \hat{\pi}\left(x^{\prime}, t\right)\right]=i \delta\left(x-x^{\prime}\right)
$$

N.B. x and x^{\prime} are not dynamical variables but labels for the field values at different points. Compare (and contrast)

$$
\left[\hat{q}_{j}, \hat{p}_{k}\right]=i \delta_{j k} \quad(j, k=x, y, z)
$$

- The wave function ϕ satisfying the Klein-Gordon equation is replaced by the field operator $\hat{\phi}$, satisfying the same equation.
- The Fourier representation becomes

$$
\hat{\phi}(x, t)=\int d k N(k)\left[\hat{a}(k) e^{i k x-i \omega t}+\hat{a}^{\dagger}(k) e^{-i k x+i \omega t}\right]
$$

i.e. $\hat{\phi}$ is hermitian but the Fourier conjugate operator \hat{a} is not.

- Keeping track of the order of operators, the Hamiltonian operator is

$$
\hat{H}=\int d k N(k) \frac{1}{2} \omega(k)\left[\hat{a}(k) \hat{a}^{\dagger}(k)+\hat{a}^{\dagger}(k) \hat{a}(k)\right]
$$

- Comparing this with the simple harmonic oscillator,

$$
\hat{H}_{\mathrm{SHO}}=\frac{1}{2} \omega\left(\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}\right)
$$

we see that $\hat{a}^{\dagger}(k)$ and $\hat{a}(k)$ must be the ladder operators for the mode of wave number k. They add/remove one quantum of excitation of the mode. These quanta are the particles corresponding to that field:

$$
\Rightarrow \quad \hat{a}^{\dagger}(k)=\text { creation operator }, \quad \hat{a}(k)=\text { annihilation operator }
$$

for Klein-Gordon particles.

- Ladder operators of simple harmonic oscillator satisfy

$$
\left[\hat{a}, \hat{a}^{\dagger}\right]=1
$$

The analogous commutation relation for the creation and annihilation operators is

$$
\begin{aligned}
N(k)\left[\hat{a}(k), \hat{a}^{\dagger}\left(k^{\prime}\right)\right] & =\delta\left(k-k^{\prime}\right) \\
\Rightarrow \quad\left[\hat{a}(k), \hat{a}^{\dagger}\left(k^{\prime}\right)\right] & =2 \pi \cdot 2 \omega(k) \delta\left(k-k^{\prime}\right)
\end{aligned}
$$

or in 3 spatial dimensions

$$
\left[\hat{a}(\boldsymbol{k}), \hat{a}^{\dagger}\left(\boldsymbol{k}^{\prime}\right)\right]=(2 \pi)^{3} \cdot 2 \omega(\boldsymbol{k}) \delta^{3}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

On the other hand

$$
\left[\hat{a}(\boldsymbol{k}), \hat{a}\left(\boldsymbol{k}^{\prime}\right)\right]=\left[\hat{a}^{\dagger}(\boldsymbol{k}), \hat{a}^{\dagger}\left(\boldsymbol{k}^{\prime}\right)\right]=0
$$

- The commutators of the creation and annihilation operators correspond to the field commutation relation

$$
\begin{aligned}
& {\left[\hat{\phi}(\boldsymbol{r}, t), \hat{\pi}\left(\boldsymbol{r}^{\prime}, t\right)\right]=\int d^{3} \boldsymbol{k} d^{3} \boldsymbol{k}^{\prime} N(\boldsymbol{k}) N\left(\boldsymbol{k}^{\prime}\right)\left[-i \omega\left(\boldsymbol{k}^{\prime}\right)\right] \times} \\
& {\left[\hat{a}(\boldsymbol{k}) e^{-i k \cdot x}+\hat{a}^{\dagger}(\boldsymbol{k}) e^{i k \cdot x}, \hat{a}\left(\boldsymbol{k}^{\prime}\right) e^{-i k^{\prime} \cdot x^{\prime}}-\hat{a}^{\dagger}\left(\boldsymbol{k}^{\prime}\right) e^{i k^{\prime} \cdot x^{\prime}}\right]} \\
& =i \int d^{3} \boldsymbol{k} N(\boldsymbol{k}) \omega(\boldsymbol{k})\left[e^{-i k \cdot\left(x-x^{\prime}\right)}+e^{i k \cdot\left(x-x^{\prime}\right)}\right]
\end{aligned}
$$

where $x^{\mu}=(t, \boldsymbol{r})$ and $x^{\prime \mu}=\left(t, \boldsymbol{r}^{\prime}\right)$. Hence

$$
\left[\hat{\phi}(\boldsymbol{r}, t), \hat{\pi}\left(\boldsymbol{r}^{\prime}, t\right)\right]=i \delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
$$

as expected. On the other hand

$$
\left[\hat{\phi}(\boldsymbol{r}, t), \hat{\phi}\left(\boldsymbol{r}^{\prime}, t\right)\right]=\left[\hat{\pi}(\boldsymbol{r}, t), \hat{\pi}\left(\boldsymbol{r}^{\prime}, t\right)\right]=0
$$

- The fact that the field operator has positive- and negative-frequency parts now appears quite natural:
* positive frequency part $\hat{a}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t}$ annihilates particles
* negative frequency part $\hat{a}^{\dagger}(\boldsymbol{k}) e^{-i \boldsymbol{k} \cdot \boldsymbol{r}+i \omega t}$ creates particles
- $\pm \hbar \omega$ is the energy released/absorbed in the annihilation/creation process.
N.B. The hermitian field describes particles that are identical to their antiparticles, e.g. π^{0} mesons.
- More generally (as we shall see shortly) the negative-frequency part of $\hat{\phi}$ creates antiparticles.

Single Particle States

- If $|0\rangle$ represents the state with no particles present (the vacuum), then $\hat{a}^{\dagger}(\boldsymbol{k})|0\rangle$ is a state containing a particle with wave vector \boldsymbol{k}, i.e. momentum $\hbar \boldsymbol{k}$. More generally, to make a state with wave function $\phi(\boldsymbol{r}, t)$ where

$$
\phi(\boldsymbol{r}, t)=\int d^{3} \boldsymbol{k} \tilde{\phi}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t}
$$

we should operate on the vacuum with the operator

$$
\int d^{3} \boldsymbol{k} \tilde{\phi}(\boldsymbol{k}) \hat{a}^{\dagger}(\boldsymbol{k})
$$

- Writing this state as $|\phi\rangle=\int d^{3} \boldsymbol{k} \tilde{\phi}(\boldsymbol{k}) \hat{a}^{\dagger}(\boldsymbol{k})|0\rangle$ we can find the wave function using the relation

$$
\langle 0| \hat{\phi}(\boldsymbol{r}, t)|\phi\rangle=\phi(\boldsymbol{r}, t)
$$

- Thus the field operator is an operator for "finding out the wave function" (for single-particle states).

Two Particle States

- Similarly, we can make a state $\left|\phi_{12}\right\rangle$ of two particles:

$$
\left|\phi_{12}\right\rangle=\int d^{3} \boldsymbol{k}_{1} d^{3} \boldsymbol{k}_{2} \tilde{\phi}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \hat{a}^{\dagger}\left(\boldsymbol{k}_{1}\right) \hat{a}^{\dagger}\left(\boldsymbol{k}_{2}\right)|0\rangle
$$

Since the two particles are identical bosons, this state is symmetric in the labels 1 and 2 even if $\tilde{\phi}$ isn't, because $\hat{a}^{\dagger}\left(\boldsymbol{k}_{1}\right)$ and $\hat{a}^{\dagger}\left(\boldsymbol{k}_{2}\right)$ commute:

$$
\begin{aligned}
\left|\phi_{12}\right\rangle & =\int d^{3} \boldsymbol{k}_{1} d^{3} \boldsymbol{k}_{2} \tilde{\phi}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \hat{a}^{\dagger}\left(\boldsymbol{k}_{1}\right) \hat{a}^{\dagger}\left(\boldsymbol{k}_{2}\right)|0\rangle \\
& =\int d^{3} \boldsymbol{k}_{1} d^{3} \boldsymbol{k}_{2} \tilde{\phi}\left(\boldsymbol{k}_{2}, \boldsymbol{k}_{1}\right) \hat{a}^{\dagger}\left(\boldsymbol{k}_{2}\right) \hat{a}^{\dagger}\left(\boldsymbol{k}_{1}\right)|0\rangle \\
& =\left|\phi_{21}\right\rangle
\end{aligned}
$$

- The 2-particle wave function is

$$
\begin{aligned}
\phi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, t\right) & =\langle 0| \hat{\phi}\left(\boldsymbol{r}_{1}, t\right) \hat{\phi}\left(\boldsymbol{r}_{2}, t\right)\left|\phi_{12}\right\rangle \\
& =\phi\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}, t\right)
\end{aligned}
$$

Thus quantum field theory is also a good way of dealing with systems of many identical particles.

Number Operator

- Recall that for the simple harmonic oscillator the operator $\hat{a}^{\dagger} \hat{a}$ tells us the number of quanta of excitation:

$$
\hat{a}^{\dagger} \hat{a}\left|\phi_{n}\right\rangle=n\left|\phi_{n}\right\rangle
$$

when $\left|\phi_{n}\right\rangle$ is the nth excited state.

- Similarly, in field theory the operator

$$
\hat{\mathcal{N}}=\int d k N(k) \hat{a}^{\dagger}(k) \hat{a}(k)
$$

counts the number of particles in a state. For example,

$$
\hat{\mathcal{N}}\left|\phi_{12}\right\rangle=\int d k d k_{1} d k_{2} N(k) \tilde{\phi}\left(k_{1}, k_{2}\right) \hat{a}^{\dagger}(k) \hat{a}(k) \hat{a}^{\dagger}\left(k_{1}\right) \hat{a}^{\dagger}\left(k_{2}\right)|0\rangle
$$

where

$$
\begin{aligned}
& N(k) \hat{a}^{\dagger}(k) \hat{a}(k) \hat{a}^{\dagger}\left(k_{1}\right) \hat{a}^{\dagger}\left(k_{2}\right) \\
= & N(k) \hat{a}^{\dagger}(k) \hat{a}^{\dagger}\left(k_{1}\right) \hat{a}(k) \hat{a}^{\dagger}\left(k_{2}\right)+\hat{a}^{\dagger}(k) \hat{a}^{\dagger}\left(k_{2}\right) \delta\left(k-k_{1}\right) \\
= & N(k) \hat{a}^{\dagger}(k) \hat{a}^{\dagger}\left(k_{1}\right) \hat{a}^{\dagger}\left(k_{2}\right) \hat{a}(k)+\hat{a}^{\dagger}(k) \hat{a}^{\dagger}\left(k_{1}\right) \delta\left(k-k_{2}\right)+\hat{a}^{\dagger}(k) \hat{a}^{\dagger}\left(k_{2}\right) \delta\left(k-k_{1}\right)
\end{aligned}
$$

However, $\hat{a}(k)|0\rangle=0$ (by definition of the vacuum) and so

$$
\hat{\mathcal{N}}\left|\phi_{12}\right\rangle=0+\left|\phi_{12}\right\rangle+\left|\phi_{12}\right\rangle=2\left|\phi_{12}\right\rangle
$$

N.B. In general, states do not need to be eigenstates of $\hat{\mathcal{N}}$: they need not contain a definite number of particles.

Electromagnetic Field

- Each component of A^{μ} (in Lorenz gauge) is quantized like a massless Klein-Gordon field (i.e. with $\omega=|\boldsymbol{k}|$):

$$
\begin{aligned}
& \hat{A}^{\mu}(\boldsymbol{r}, t)=\sum_{P=L, R} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3} 2 \omega} \\
& {\left[\varepsilon_{P}^{\mu}(\boldsymbol{k}) \hat{a}_{P}(\boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t}+\varepsilon_{P}^{* \mu}(\boldsymbol{k}) \hat{a}_{P}^{\dagger}(\boldsymbol{k}) e^{-i \boldsymbol{k} \cdot \boldsymbol{r}+i \omega t}\right]}
\end{aligned}
$$

where $\hat{a}_{P}(\boldsymbol{k})$ annihilates a photon with momentum $\hbar \boldsymbol{k}$ and polarization P and $\hat{a}_{P}^{\dagger}(\boldsymbol{k})$ creates one.

- $\varepsilon_{L, R}^{\mu}(\boldsymbol{k})$ are the left/right-handed circular polarization 4-vectors for wave vector k and

$$
\left[\hat{a}_{P}(\boldsymbol{k}), \hat{a}_{P^{\prime}}^{\dagger}\left(\boldsymbol{k}^{\prime}\right)\right]=(2 \pi)^{3} 2 \omega(\boldsymbol{k}) \delta_{P P^{\prime}} \delta^{3}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

N.B. Different polarizations commute.

- The Hamiltonian for the e.m. field is

$$
\hat{H}=\frac{1}{2} \int d^{3} \boldsymbol{r}\left(\boldsymbol{E}^{2}+\boldsymbol{B}^{2}\right)
$$

where (in $A^{0}=0$ gauge) from $\hat{\boldsymbol{E}}=-\partial \hat{\boldsymbol{A}} / \partial t, \hat{\boldsymbol{B}}=\nabla \times \hat{\boldsymbol{A}}$ we have

$$
\begin{aligned}
\hat{\boldsymbol{E}} & =\sum_{P} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3} 2 \omega} i \omega\left[\varepsilon_{P} \hat{a}_{P} e^{-i k \cdot x}-\varepsilon_{P}^{*} \hat{a}_{P}^{\dagger} e^{+i k \cdot x}\right] \\
\hat{\boldsymbol{B}} & =\sum_{P} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3} 2 \omega} i \boldsymbol{k} \times\left[\varepsilon_{P} \hat{a}_{P} e^{-i k \cdot x}-\varepsilon_{P}^{*} \hat{a}_{P}^{\dagger} e^{+i k \cdot x}\right]
\end{aligned}
$$

- Using $k \times \varepsilon_{L}=i \omega \varepsilon_{L}, k \times \varepsilon_{R}=-i \omega \varepsilon_{R}$ [recall that for \boldsymbol{k} along the z-axis we have $\left.\varepsilon_{L, R}^{\mu}=(0,1, \mp i, 0) / \sqrt{2}\right]$ we find, as expected, that

$$
\hat{H}=\sum_{P} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3} 2 \omega} \frac{1}{2} \omega(\boldsymbol{k})\left[\hat{a}_{P}(\boldsymbol{k}) a_{P}^{\dagger}(\boldsymbol{k})+\hat{a}_{P}^{\dagger}(\boldsymbol{k}) a_{P}(\boldsymbol{k})\right]
$$

Vacuum Energy and Normal Ordering

- Using the above expression for the e.m. Hamiltonian and the commutation relation for the photon annihilation and creation operators, we find that the energy of the vacuum is given by

$$
\hat{H}|0\rangle=\int d^{3} \boldsymbol{k} \omega(\boldsymbol{k}) \lim _{k^{\prime} \rightarrow k} \delta^{3}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)|0\rangle
$$

- In a finite volume V, we should interpret

$$
\lim _{k^{\prime} \rightarrow k} \delta^{3}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)=\lim _{k^{\prime} \rightarrow k} \int_{V} \frac{d^{3} \boldsymbol{r}}{(2 \pi)^{3}} e^{i\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \cdot \boldsymbol{r}}=\frac{V}{(2 \pi)^{3}}
$$

The energy density of the vacuum is thus U_{0} where $\hat{H}|0\rangle=U_{0} V|0\rangle$

$$
\Rightarrow U_{0}=\int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \omega(\boldsymbol{k})=\infty
$$

- This is due to the zero-point fluctuations of the e.m. field ($\frac{1}{2} \hbar \omega$ per mode). In reality, we don't understand physics at very short distances (very large wave
numbers) and presumably the integral gets cut off at some very large $|\boldsymbol{k}| \sim \Lambda$. We shall see that quantities we can measure don't depend much on Λ or the form of the cut-off.
- For most purposes we can throw away the term in \hat{H} that gives rise to the vacuum energy, which corresponds to measuring all energies relative to the vacuum. This means writing

$$
\hat{H}=\sum_{P} \int \frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3} 2 \omega} \omega(\boldsymbol{k}) \hat{a}_{P}^{\dagger}(\boldsymbol{k}) \hat{a}_{P}(\boldsymbol{k})
$$

which is called the normal-ordered form of \hat{H}, i.e. a form with the annihilation operator \hat{a}_{P} on the right.
N.B. After normal-ordering, \hat{H} is still hermitian.

Clearly, a normal-ordered operator has the vacuum as an eigenstate with eigenvalue zero.

- However, we should not think that this means vacuum fluctuations are not there. They give rise to real effects, such as spontaneous transitions and ...

The Casimir Effect

- Suppose a region of vacuum is bounded by the plane surfaces of two semi-infinite conductors. Then some (low-frequency) vacuum fluctuations are forbidden by the boundary conditions $\left(\boldsymbol{E}_{\|}=\boldsymbol{B}_{\perp}=0\right)$. Thus the vacuum energy is reduced, corresponding to an attractive force between the conductors.

- Since the vacuum energy density is proportional to $\hbar c$, by dimensional analysis this Casimir force per unit area must be

$$
F_{C} \propto \frac{\hbar c}{a^{4}}
$$

- To find the constant of proportionality, note that $k_{z}=n \pi / a$ where $n=0,1,2, \ldots$, so

$$
\omega=c|\boldsymbol{k}|=c \sqrt{\boldsymbol{k}_{\|}^{2}+(n \pi / a)^{2}}
$$

- For $n=1,2,3 \ldots$ there are 2 polarizations; for $n=0$ only one polarization is allowed, since $\boldsymbol{E}_{\|}=0$. Hence the energy per unit area is

$$
E=\frac{1}{2} \hbar c \int \frac{d^{2} \boldsymbol{k}_{\|}}{(2 \pi)^{2}}\left[\left|\boldsymbol{k}_{\|}\right|+2 \sum_{n=1}^{\infty} \sqrt{\boldsymbol{k}_{\|}^{2}+(n \pi / a)^{2}}\right]
$$

- This is assumed to be cut off by new physics at wave numbers $|\boldsymbol{k}|>\Lambda$. Thus

$$
E=\frac{\hbar c}{2 \pi}\left[\frac{1}{2} F(0)+\sum_{n=1}^{\infty} F(n)\right]
$$

where

$$
F(n)=\int k_{\|} d k_{\|} \sqrt{\boldsymbol{k}_{\|}^{2}+(n \pi / a)^{2}} f\left(\sqrt{\boldsymbol{k}_{\|}^{2}+(n \pi / a)^{2}}\right)
$$

with $f(k)=1$ for $k \ll \Lambda$ and $f(k)=0$ for $k \gg \Lambda$.

- Changing variable from $k_{\|}$to $k=\sqrt{\boldsymbol{k}_{\|}^{2}+(n \pi / a)^{2}}$,

$$
F(n)=\int_{n \pi / a}^{\infty} k^{2} d k f(k)
$$

Removing the boundary conditions would allow n to be a continuous variable:

$$
E_{0}=\frac{\hbar c}{2 \pi} \int_{0}^{\infty} d n F(n)
$$

Hence the change in the vacuum energy per unit area is

$$
\delta E=E-E_{0}=\frac{\hbar c}{2 \pi}\left[\frac{1}{2} F(0)+\sum_{n=1}^{\infty} F(n)-\int_{0}^{\infty} d n F(n)\right]
$$

- The Euler-McLaurin formula tells us that

$$
\int_{0}^{\infty} d n F(n)=\frac{1}{2} F(0)+\sum_{n=1}^{\infty}\left[F(n)+\frac{1}{(2 n)!} B_{2 n} F^{(2 n-1)}(0)\right]
$$

where $B_{2 n}$ are Bernoulli numbers:

$$
B_{2}=\frac{1}{6}, \quad B_{4}=-\frac{1}{30}, \ldots
$$

Hence

$$
\delta E=\frac{\hbar c}{2 \pi}\left[-\frac{1}{12} F^{\prime}(0)+\frac{1}{720} F^{\prime \prime \prime}(0)+\cdots\right]
$$

But

$$
F(n)=\int_{n \pi / a}^{\infty} k^{2} d k f(k) \quad \Rightarrow \quad F^{\prime}(n)=-\frac{\pi}{a}\left(\frac{n \pi}{a}\right)^{2} f\left(\frac{n \pi}{a}\right)
$$

and so $F^{\prime}(0)=0, F^{\prime \prime \prime}(0)=-2(\pi / a)^{3}$ and

$$
\delta E=-\frac{\pi^{2}}{720} \frac{\hbar c}{a^{3}}
$$

- Thus the Casimir force is

$$
F_{C}=\frac{d}{d a} \delta E=\frac{\pi^{2}}{240} \frac{\hbar c}{a^{4}}
$$

This is very small,

$$
F_{C}=\frac{1.3 \times 10^{-27}}{a^{4}} \mathrm{~Pa} \mathrm{~m}{ }^{4}
$$

but it has been measured (Sparnaay, 1957).

Complex Fields

- Suppose $\hat{\phi}$ is the second-quantized version of a complex field, i.e. $\hat{\phi}^{\dagger} \neq \hat{\phi}$. We can always decompose it into

$$
\hat{\phi}=\frac{1}{\sqrt{2}}\left(\hat{\phi}_{1}+i \hat{\phi}_{2}\right)
$$

where $\hat{\phi}_{1}$ and $\hat{\phi}_{2}$ are hermitian. Then

$$
\hat{\phi}(x, t)=\int d k N(k)\left[\hat{a}(k) e^{i k x-i \omega t}+\hat{b}^{\dagger}(k) e^{-i k x+i \omega t}\right]
$$

where

$$
\hat{a}=\frac{1}{\sqrt{2}}\left(\hat{a}_{1}+i \hat{a}_{2}\right), \quad \hat{b}^{\dagger}=\frac{1}{\sqrt{2}}\left(\hat{a}_{1}^{\dagger}+i \hat{a}_{2}^{\dagger}\right) \neq \hat{a}^{\dagger}
$$

- From the canonical commutation relations

$$
\left[\hat{\phi}_{j}(x, t), \hat{\pi}_{l}\left(x^{\prime}, t\right)\right]=i \delta_{j l} \delta\left(x-x^{\prime}\right) \quad(j, l=1,2)
$$

we can deduce

$$
N(k)\left[\hat{a}_{j}(k), \hat{a}_{l}^{\dagger}\left(k^{\prime}\right)\right]=\delta_{j l} \delta\left(k-k^{\prime}\right)
$$

and hence that

$$
\begin{aligned}
& N(k)\left[\hat{a}(k), \hat{a}^{\dagger}\left(k^{\prime}\right)\right]=N(k)\left[\hat{b}(k), \hat{b}^{\dagger}\left(k^{\prime}\right)\right]=\delta\left(k-k^{\prime}\right), \\
& {\left[\hat{a}(k), \hat{b}^{\dagger}\left(k^{\prime}\right)\right]=\left[\hat{a}(k), \hat{b}\left(k^{\prime}\right)\right]=\left[\hat{a}^{\dagger}(k), \hat{b}^{\dagger}\left(k^{\prime}\right)\right]=0 .}
\end{aligned}
$$

Hence \hat{a}^{\dagger} and \hat{b}^{\dagger} are creation operators for different particles.

- The Lagrangian density

$$
\mathcal{L}=\mathcal{L}\left[\hat{\phi}_{1}\right]+\mathcal{L}\left[\hat{\phi}_{2}\right]
$$

can be written as

$$
\mathcal{L}=\frac{\partial \hat{\phi}^{\dagger}}{\partial t} \frac{\partial \hat{\phi}}{\partial t}-\frac{\partial \hat{\phi}^{\dagger}}{\partial x} \frac{\partial \hat{\phi}}{\partial x}-m^{2} \hat{\phi}^{\dagger} \hat{\phi}
$$

The canonical momentum density is thus

$$
\hat{\pi}=\frac{\partial \mathcal{L}}{\partial \hat{\dot{\phi}}}=\frac{\partial \hat{\phi}^{\dagger}}{\partial t}
$$

and the Hamiltonian density is

$$
\hat{\mathcal{H}}=\hat{\pi} \hat{\dot{\phi}}+\hat{\pi}^{\dagger} \hat{\dot{\phi}}^{\dagger}-\hat{\mathcal{L}}=\hat{\pi}^{\dagger} \hat{\pi}+\frac{\partial \hat{\phi}^{\dagger}}{\partial x} \frac{\partial \hat{\phi}}{\partial x}+m^{2} \hat{\phi}^{\dagger} \hat{\phi}
$$

- Using the Fourier expansion of $\hat{\phi}$ and integrating over all space, we find

$$
\begin{aligned}
& \hat{H}=\int d x \hat{\mathcal{H}}=\frac{1}{2} \int d k N(k) \omega(k) \times \\
& {\left[\hat{a}(k) \hat{a}^{\dagger}(k)+\hat{a}^{\dagger}(k) \hat{a}(k)+\hat{b}(k) \hat{b}^{\dagger}(k)+\hat{b}^{\dagger}(k) \hat{b}(k)\right]}
\end{aligned}
$$

or after normal ordering

$$
\hat{H}=\int d k N(k) \omega(k)\left[\hat{a}^{\dagger}(k) \hat{a}(k)+\hat{b}^{\dagger}(k) \hat{b}(k)\right]
$$

Thus both \hat{a}^{\dagger} and \hat{b}^{\dagger} create particles with positive energy $\hbar \omega(k)$.

Symmetries and Conservation Laws

- We want to find a current and a density that satisfy the continuity equation for the complex Klein-Gordon field. We use an important general result called Noether's theorem (Emmy Noether, 1918), which tells us that there is a conserved current associated with every continuous symmetry of the Lagrangian, i.e. with symmetry under a transformation of the form

$$
\phi \rightarrow \phi+\delta \phi
$$

where $\delta \phi$ is infinitesimal. Symmetry means

$$
\delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi+\frac{\partial \mathcal{L}}{\partial \phi^{\prime}} \delta \phi^{\prime}+\frac{\partial \mathcal{L}}{\partial \dot{\phi}} \delta \dot{\phi}=0
$$

where

$$
\begin{aligned}
\delta \phi^{\prime} & =\delta\left(\frac{\partial \phi}{\partial x}\right)
\end{aligned}=\frac{\partial}{\partial x} \delta \phi,
$$

(easily generalized to 3 spatial dimensions).

- The Euler-Lagrange equation of motion

$$
\frac{\partial \mathcal{L}}{\partial \phi}-\frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\prime}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right)=0
$$

then implies that

$$
\begin{aligned}
\delta \mathcal{L}= & \frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\prime}}\right) \delta \phi+\frac{\partial \mathcal{L}}{\partial \phi^{\prime}} \frac{\partial}{\partial x}(\delta \phi) \\
+ & \frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}}\right) \delta \phi+\frac{\partial \mathcal{L}}{\partial \dot{\phi}} \frac{\partial}{\partial t}(\delta \phi)=0 \\
\Rightarrow \quad & \frac{\partial}{\partial x}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\prime}} \delta \phi\right)+\frac{\partial}{\partial t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\phi}} \delta \phi\right)=0
\end{aligned}
$$

- Comparing with the conservation/continuity equation (in 1 dimension)

$$
\frac{\partial}{\partial x}\left(J_{x}\right)+\frac{\partial \rho}{\partial t}=0
$$

shows that the conserved density and current are (proportional to)

$$
\rho=\frac{\partial \mathcal{L}}{\partial \dot{\phi}} \delta \phi, \quad J_{x}=\frac{\partial \mathcal{L}}{\partial \phi^{\prime}} \delta \phi
$$

- In 3 spatial dimensions

$$
J_{x}=\frac{\partial \mathcal{L}}{\partial(\partial \phi / \partial x)} \delta \phi, \quad J_{y}=\frac{\partial \mathcal{L}}{\partial(\partial \phi / \partial y)} \delta \phi, \ldots
$$

and hence in covariant notation

$$
J^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi
$$

- If the Lagrangian involves several fields $\phi_{1}, \phi_{2}, \ldots$, the symmetry may involve changing them all: invariance w.r.t. $\phi_{j} \rightarrow \phi_{j}+\delta \phi_{j} \Rightarrow$ conserved Noether current

$$
J^{\mu}=\sum_{j} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{j}\right)} \delta \phi_{j}
$$

- After second quantization, the same procedure (being careful about the order of operators) can be used to define conserved current and density operators.

Phase (Gauge) Invariance

- The Klein-Gordon Lagrangian density

$$
\mathcal{L}=\frac{\partial \hat{\phi}^{\dagger}}{\partial t} \frac{\partial \hat{\phi}}{\partial t}-\frac{\partial \hat{\phi}^{\dagger}}{\partial x} \frac{\partial \hat{\phi}}{\partial x}-m^{2} \hat{\phi}^{\dagger} \hat{\phi}
$$

or in 3 spatial dimensions

$$
\begin{aligned}
\mathcal{L} & =\frac{\partial \hat{\phi}^{\dagger}}{\partial t} \frac{\partial \hat{\phi}}{\partial t}-\nabla \hat{\phi}^{\dagger} \cdot \nabla \hat{\phi}-m^{2} \hat{\phi}^{\dagger} \hat{\phi} \\
& =\partial_{\mu} \hat{\phi}^{\dagger} \partial^{\mu} \hat{\phi}-m^{2} \hat{\phi}^{\dagger} \hat{\phi}
\end{aligned}
$$

is invariant under a global phase change in $\hat{\phi}$:

$$
\begin{aligned}
\hat{\phi} & \rightarrow e^{-i \varepsilon} \hat{\phi} \simeq \hat{\phi}-i \varepsilon \hat{\phi} \\
\hat{\phi}^{\dagger} & \rightarrow e^{+i \varepsilon} \hat{\phi}^{\dagger} \simeq \hat{\phi}^{\dagger}+i \varepsilon \hat{\phi}^{\dagger}
\end{aligned}
$$

i.e. $\delta \hat{\phi} \propto-i \hat{\phi}, \delta \hat{\phi}^{\dagger} \propto+i \hat{\phi}^{\dagger}$.

- The corresponding conserved Noether current is just that derived earlier:

$$
\hat{J}^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \hat{\phi}\right)} \delta \hat{\phi}+\delta \hat{\phi}^{\dagger} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \hat{\phi}^{\dagger}\right)}=-i\left(\partial^{\mu} \hat{\phi}^{\dagger}\right) \hat{\phi}+i \hat{\phi}^{\dagger}\left(\partial^{\mu} \hat{\phi}\right)
$$

- We can define an associated conserved charge, which is the integral of $\hat{\rho}$ over all space:

$$
\begin{gathered}
\hat{Q}=\int \hat{\rho} d^{3} \boldsymbol{r} \\
\frac{d \hat{Q}}{d t}=\int \frac{\partial \hat{\rho}}{\partial t} d^{3} \boldsymbol{r}=-\int \nabla \cdot \hat{\boldsymbol{J}} d^{3} \boldsymbol{r}=-\int_{\infty \text { sphere }} \hat{\boldsymbol{J}} \cdot d \boldsymbol{S}=0
\end{gathered}
$$

- In this case

$$
\hat{Q}=-i \int\left(\frac{\partial \hat{\phi}^{\dagger}}{\partial t} \hat{\phi}-\hat{\phi}^{\dagger} \frac{\partial \hat{\phi}}{\partial t}\right) d^{3} \boldsymbol{r}
$$

Inserting the Fourier decomposition of the field,

$$
\hat{\phi}=\int d^{3} \boldsymbol{k} N(\boldsymbol{k})\left[\hat{a}(\boldsymbol{k}) e^{-i k \cdot x}+\hat{b}^{\dagger}(\boldsymbol{k}) e^{i k \cdot x}\right]
$$

where $N(\boldsymbol{k})=\left[(2 \pi)^{3} 2 \omega(\boldsymbol{k})\right]^{-1}$, we find

$$
\hat{Q}=\int d^{3} \boldsymbol{k} N(\boldsymbol{k})\left[\hat{a}^{\dagger}(\boldsymbol{k}) \hat{a}(\boldsymbol{k})-\hat{b}^{\dagger}(\boldsymbol{k}) \hat{b}(\boldsymbol{k})\right]
$$

- Comparing with the energy

$$
\hat{H}=\int d^{3} \boldsymbol{k} N(\boldsymbol{k}) \omega(\boldsymbol{k})\left[\hat{a}^{\dagger}(\boldsymbol{k}) \hat{a}(\boldsymbol{k})+\hat{b}^{\dagger}(\boldsymbol{k}) \hat{b}(\boldsymbol{k})\right]
$$

we see that the particles created by \hat{a}^{\dagger} and \hat{b}^{\dagger} have opposite charge.

- Thus we see that in quantum field theory all the 'problems' with the negative-energy solutions of the Klein-Gordon equation are resolved, as follows
* The object ϕ that satisifies the KG equation is in fact the field operator $\hat{\phi}$.
* The Fourier decomposition of ϕ has a positive frequency part that annihilates a particle (with energy $\hbar \omega$ and charge +1) AND a negative frequency part that creates an antiparticle (with energy $\hbar \omega$ and charge -1).
* Similarly, $\hat{\phi}^{\dagger}$ creates a particle or annihilates an antiparticle.

The Dirac Field

- The Lagrangian density that gives the Dirac equation of motion,

$$
i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0
$$

is

$$
\mathcal{L}_{\mathrm{D}}=\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi
$$

- As in the Klein-Gordon case, we should treat ψ and $\bar{\psi}=\psi^{\dagger} \gamma^{0}$ as independent fields. The Euler-Lagrange equation for $\bar{\psi}$ gives the Dirac equation for ψ :

$$
\frac{\partial \mathcal{L}_{\mathrm{D}}}{\partial \bar{\psi}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}_{\mathrm{D}}}{\partial\left(\partial_{\mu} \bar{\psi}\right)}\right)=i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0
$$

while that for ψ gives the Dirac equation for $\bar{\psi}$:

$$
\frac{\partial \mathcal{L}_{\mathrm{D}}}{\partial \psi}=\partial_{\mu}\left(\frac{\partial \mathcal{L}_{\mathrm{D}}}{\partial\left(\partial_{\mu} \psi\right)}\right)=-m \bar{\psi}-i \partial_{\mu}\left(\bar{\psi} \gamma^{\mu}\right)=0
$$

Check: $-i \partial_{\mu} \psi^{\dagger} \gamma^{\mu \dagger}-m \psi^{\dagger}=0, \bar{\psi}=\psi^{\dagger} \gamma^{0}, \gamma^{\mu \dagger} \gamma^{0}=\gamma^{0} \gamma^{\mu} \Rightarrow-i \partial_{\mu} \bar{\psi} \gamma^{\mu}=m \bar{\psi}$.

- The generalized momentum densities are

$$
\begin{aligned}
\pi & =\frac{\partial \mathcal{L}_{\mathrm{D}}}{\partial \dot{\psi}}=\bar{\psi} i \gamma^{0}=i \psi^{\dagger} \\
\bar{\pi} & =\frac{\partial \mathcal{L}_{\mathrm{D}}}{\partial \overline{\dot{\psi}}}=0
\end{aligned}
$$

- Hence the Hamiltonian density is

$$
\begin{aligned}
\mathcal{H}_{\mathrm{D}} & =\pi \dot{\psi}-\mathcal{L}_{\mathrm{D}}=\bar{\psi} i \gamma^{0} \frac{\partial \psi}{\partial t}-\mathcal{L}_{\mathrm{D}} \\
& =-\bar{\psi} i \gamma \cdot \nabla \psi+m \bar{\psi} \psi
\end{aligned}
$$

and the total energy is given by

$$
\begin{aligned}
H=\int d^{3} \boldsymbol{r} \mathcal{H}_{\mathrm{D}} & =\int d^{3} \boldsymbol{r} \bar{\psi}(-i \boldsymbol{\gamma} \cdot \nabla+m) \psi \\
& =\int d^{3} \boldsymbol{r} \psi^{\dagger}(-i \boldsymbol{\alpha} \cdot \nabla+\beta m) \psi
\end{aligned}
$$

which is indeed the expectation value of the original Dirac Hamiltonian.

- Now we second quantize by expressing the field operator $\hat{\psi}$ as a Fourier integral over plane-wave spinors with operator coefficients:

$$
\hat{\psi}(\boldsymbol{r}, t)=\int d^{3} \boldsymbol{k} N(\boldsymbol{k}) \sum_{s}\left[\hat{c}_{s}(\boldsymbol{k}) u_{s}(\boldsymbol{k}) e^{-i k \cdot x}+\hat{d}_{s}^{\dagger}(\boldsymbol{k}) v_{s}(\boldsymbol{k}) e^{+i k \cdot x}\right]
$$

where $s=1,2$ label spin up/down, i.e. $u_{1}=u^{\uparrow}$ free particle spinor, etc.

- We expect that the operator $\hat{c}_{s}(\boldsymbol{k})$ annihilates a particle (e.g. an electron) of momentum $\hbar \boldsymbol{k}$, spin orientation s. while $\hat{d}_{s}^{\dagger}(\boldsymbol{k})$ creates an antiparticle (positron) of the same momentum and spin. But the Hamiltonian operator is

$$
\hat{H}=\int d^{3} \boldsymbol{r} \hat{\psi}^{\dagger}(-i \boldsymbol{\alpha} \cdot \nabla+\beta m) \hat{\psi}
$$

and using the Dirac equation

$$
\begin{aligned}
(-i \boldsymbol{\alpha} \cdot \boldsymbol{\nabla}+\beta m) u_{s} & =E u_{s}=\omega u_{s} \\
(-i \boldsymbol{\alpha} \cdot \boldsymbol{\nabla}+\beta m) v_{s} & =-E v_{s}=-\omega v_{s}
\end{aligned}
$$

we find that

$$
\hat{H}=\int d^{3} \boldsymbol{k} N(\boldsymbol{k}) \omega(\boldsymbol{k}) \sum_{s}\left[\hat{c}_{s}^{\dagger}(\boldsymbol{k}) \hat{c}_{s}(\boldsymbol{k})-\hat{d}_{s}(\boldsymbol{k}) \hat{d}_{s}^{\dagger}(\boldsymbol{k})\right]
$$

- Thus there appears to be a problem: unlike the Klein-Gordon case, we seem to get a negative contribution to the energy from the antiparticles!
- The Dirac equation also has phase (gauge) symmetry:

$$
\begin{aligned}
\hat{\psi} & \rightarrow e^{-i \varepsilon} \hat{\psi} \simeq \hat{\psi}-i \varepsilon \hat{\psi} \\
\hat{\psi}^{\dagger} & \rightarrow e^{+i \varepsilon} \hat{\psi}^{\dagger} \simeq \hat{\psi}^{\dagger}+i \varepsilon \hat{\psi}^{\dagger}
\end{aligned}
$$

with corresponding Noether current

$$
\begin{aligned}
\hat{J}^{\mu} & =\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \hat{\psi}\right)} \delta \hat{\psi}+\delta \hat{\psi}^{\dagger} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \hat{\psi}^{\dagger}\right)} \\
& =\hat{\bar{\psi}} i \gamma^{\mu}(-i \hat{\psi})=\hat{\bar{\psi}} \gamma^{\mu} \hat{\psi}
\end{aligned}
$$

and conserved charge

$$
\hat{Q}=\int d^{3} \boldsymbol{r} \hat{J}^{0}=\int d^{3} \boldsymbol{r} \hat{\psi}^{\dagger} \hat{\psi}=\int d^{3} \boldsymbol{k} N(\boldsymbol{k}) \sum_{s}\left[\hat{c}_{s}^{\dagger}(\boldsymbol{k}) \hat{c}_{s}(\boldsymbol{k})+\hat{d}_{s}(\boldsymbol{k}) \hat{d}_{s}^{\dagger}(\boldsymbol{k})\right]
$$

which also seems to have the wrong sign for the antiparticle contribution.

- However, we actually need the normal-ordered operators, which involve $\hat{d}_{s}^{\dagger} \hat{d}_{s}$, not $\hat{d}_{s} \hat{d}_{s}^{\dagger}$. Hence if

$$
d_{s}^{\dagger} \hat{d}_{s}=-\hat{d}_{s} \hat{d}_{s}^{\dagger}+\text { const }
$$

then all signs are correct.

- Thus we are forced to give the creation and annihilation operators for spin one-half particles anticommutation relations:

$$
\begin{aligned}
& \left.\left\{\hat{c}_{s}(\boldsymbol{k}), \hat{c}_{s^{\prime}}^{\dagger}\left(\boldsymbol{k}^{\prime}\right)\right\} \equiv \hat{c}_{s}(\boldsymbol{k}) \hat{c}_{s^{\prime}}^{\dagger} \boldsymbol{k}^{\prime}\right)+\hat{c}_{s^{\prime}}^{\dagger}\left(\boldsymbol{k}^{\prime}\right) \hat{c}_{s}(\boldsymbol{k}) \\
& =(2 \pi)^{3} 2 \omega(\boldsymbol{k}) \delta_{s s^{\prime}} \delta^{3}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)=\left\{\hat{d}_{s}(\boldsymbol{k}), \hat{d}_{s^{\prime}}^{\dagger}\left(\boldsymbol{k}^{\prime}\right)\right\}
\end{aligned}
$$

while

$$
\left\{\hat{c}_{s}(\boldsymbol{k}), \hat{c}_{s^{\prime}}\left(\boldsymbol{k}^{\prime}\right)\right\}=\left\{\hat{d}_{s}(\boldsymbol{k}), \hat{d}_{s^{\prime}}\left(\boldsymbol{k}^{\prime}\right)\right\}=0
$$

- This means that two-particle states are antisymmetric:

$$
\begin{aligned}
& \left|\phi_{12}\right\rangle=\int d^{3} \boldsymbol{k}_{1} d^{3} \boldsymbol{k}_{2} \sum_{s_{1}, s_{2}} \tilde{\phi}_{s_{1} s_{2}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \hat{c}_{s_{1}}^{\dagger}\left(\boldsymbol{k}_{1}\right) \hat{c}_{s_{2}}^{\dagger}\left(\boldsymbol{k}_{2}\right)|0\rangle \\
& =-\int d^{3} \boldsymbol{k}_{1} d^{3} \boldsymbol{k}_{2} \sum_{s_{1}, s_{2}} \tilde{\phi}_{s_{1} s_{2}}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \hat{c}_{s_{2}}^{\dagger}\left(\boldsymbol{k}_{2}\right) \hat{c}_{s_{1}}^{\dagger}\left(\boldsymbol{k}_{1}\right)|0\rangle \\
& =-\int d^{3} \boldsymbol{k}_{1} d^{3} \boldsymbol{k}_{2} \sum_{s_{1}, s_{2}} \tilde{\phi}_{s_{2} s_{1}}\left(\boldsymbol{k}_{2}, \boldsymbol{k}_{1}\right) \hat{c}_{s_{1}}^{\dagger}\left(\boldsymbol{k}_{1}\right) \hat{c}_{s_{2}}^{\dagger}\left(\boldsymbol{k}_{2}\right)|0\rangle \\
& =-\left|\phi_{21}\right\rangle
\end{aligned}
$$

- Thus spin one-half particles must be fermions. This is the spin-statistics theorem.

Interacting Fields

- We introduce e.m. interactions into the Dirac Lagrangian by the usual minimal substitution, $\partial^{\mu} \rightarrow \partial^{\mu}+i e A^{\mu}$:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{D}} & =\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu}+i e A_{\mu}\right) \psi-m \bar{\psi} \psi \\
& =\mathcal{L}_{0}-e A_{\mu} \bar{\psi} \gamma^{\mu} \psi
\end{aligned}
$$

where \mathcal{L}_{0} is the free-particle Lagrangian density.

- Notice that the canonical momentum $\pi=\partial \mathcal{L}_{\mathrm{D}} / \partial \dot{\psi}$ is unchanged, and so the Hamiltonial density is

$$
\mathcal{H}_{\mathrm{D}}=\pi \dot{\psi}-\mathcal{L}_{\mathrm{D}}=\mathcal{H}_{0}+\mathcal{H}_{\mathrm{I}}
$$

where the interaction Hamiltonian density is

$$
\mathcal{H}_{\mathrm{I}}=e A_{\mu} \bar{\psi} \gamma^{\mu} \psi
$$

- In the second-quantized theory \mathcal{H}_{I} becomes an operator,

$$
\hat{\mathcal{H}}_{\mathrm{I}}=e \hat{A}_{\mu} \hat{\bar{\psi}} \gamma^{\mu} \hat{\psi}
$$

where all the field operators are capable of creating or annihilating particles:

$$
\begin{aligned}
\hat{A}_{\mu} & =\int d^{3} \boldsymbol{k} N(\boldsymbol{k}) \sum_{P}\left[\hat{a}_{P}(\boldsymbol{k}) \varepsilon_{P \mu} e^{-i k \cdot x}+\hat{a}_{P}^{\dagger}(\boldsymbol{k}) \varepsilon_{P \mu}^{*} e^{+i k \cdot x}\right] \\
\hat{\bar{\psi}} & =\int d^{3} \boldsymbol{p}^{\prime} N\left(\boldsymbol{p}^{\prime}\right) \sum_{s^{\prime}}\left[\hat{c}_{s^{\prime}}^{\dagger}\left(\boldsymbol{p}^{\prime}\right) \bar{u}_{s^{\prime}}\left(\boldsymbol{p}^{\prime}\right) e^{+i p^{\prime} \cdot x}+\hat{d}_{s^{\prime}}\left(\boldsymbol{p}^{\prime}\right) \bar{v}_{s^{\prime}}\left(\boldsymbol{p}^{\prime}\right) e^{-i p^{\prime} \cdot x}\right] \\
\hat{\psi} & =\int d^{3} \boldsymbol{p} N(\boldsymbol{p}) \sum_{s}\left[\hat{c}_{s}(\boldsymbol{p}) u_{s}(\boldsymbol{p}) e^{-i p \cdot x}+\hat{d}_{s}^{\dagger}(\boldsymbol{p}) v_{s}(\boldsymbol{p}) e^{+i p \cdot x}\right]
\end{aligned}
$$

- In first-order perturbation theory, the transition matrix element is

$$
\mathcal{A}_{f i}=-i \int d^{4} x\langle f| \mathcal{H}_{\mathrm{I}}|i\rangle
$$

- Suppose for example that the initial state $|i\rangle$ contains an electron of momentum p_{i}, spin orientation s_{i}, and a photon of momentum q, polarization R :

$$
|i\rangle=\hat{c}_{s_{i}}^{\dagger}\left(\boldsymbol{p}_{i}\right) \hat{a}_{R}^{\dagger}(\boldsymbol{q})|0\rangle
$$

- Using the (anti)commutation relations for the \hat{c} 's and \hat{a} 's, the positive-frequency parts of \hat{A} and $\hat{\psi}$ give

$$
\hat{A}_{\mu}^{(+)} \hat{\psi}^{(+)}|i\rangle=\varepsilon_{R \mu}(\boldsymbol{q}) u_{s_{i}}\left(\boldsymbol{p}_{i}\right) e^{-i\left(p_{i}+q\right) \cdot x}|0\rangle
$$

- Similarly, if $|f\rangle$ contains an electron of momentum \boldsymbol{p}_{f}, spin s_{f},

$$
\begin{aligned}
|f\rangle & =\hat{c}_{s_{f}}^{\dagger}\left(\boldsymbol{p}_{f}\right)|0\rangle \\
\langle f| & =\langle 0| \hat{c}_{s_{f}}\left(\boldsymbol{p}_{f}\right)
\end{aligned}
$$

and hence the negative-frequency part of $\hat{\bar{\psi}}$ gives

$$
\langle f| \hat{\bar{\psi}}^{(-)}=\bar{u}_{s_{f}}\left(\boldsymbol{p}_{f}\right) e^{+i p_{f} \cdot x}\langle 0|
$$

- Putting everything together, we have

$$
\langle f| \hat{A}_{\mu}^{(+)} \hat{\bar{\psi}}^{(-)} \gamma^{\mu} \hat{\psi}^{(+)}|i\rangle=\varepsilon_{R \mu} \bar{u}_{s_{f}}\left(\boldsymbol{p}_{f}\right) \gamma^{\mu} u_{s_{i}}\left(\boldsymbol{p}_{i}\right) e^{i\left(p_{f}-p_{i}-q\right) \cdot x}
$$

which gives

$$
\mathcal{A}_{f i}=-i e(2 \pi)^{4} \delta^{4}\left(p_{f}-p_{i}-q\right) \varepsilon_{R \mu} \bar{u}_{s_{f}}\left(\boldsymbol{p}_{f}\right) \gamma^{\mu} u_{s_{i}}\left(\boldsymbol{p}_{i}\right)
$$

corresponding to the Feynman rule for the vertex

- Similarly, if the initial and final fermions are positrons, then the term

$$
\langle f| \hat{A}_{\mu}^{(+)} \hat{\bar{\psi}}^{(+)} \gamma^{\mu} \hat{\psi}^{(-)}|i\rangle
$$

gives the expected result

$$
\mathcal{A}_{f i}=-i e(2 \pi)^{4} \delta^{4}\left(p_{f}-p_{i}-q\right) \varepsilon_{R \mu} \bar{v}_{s_{i}}\left(\boldsymbol{p}_{i}\right) \gamma^{\mu} v_{s_{f}}\left(\boldsymbol{p}_{f}\right)
$$

