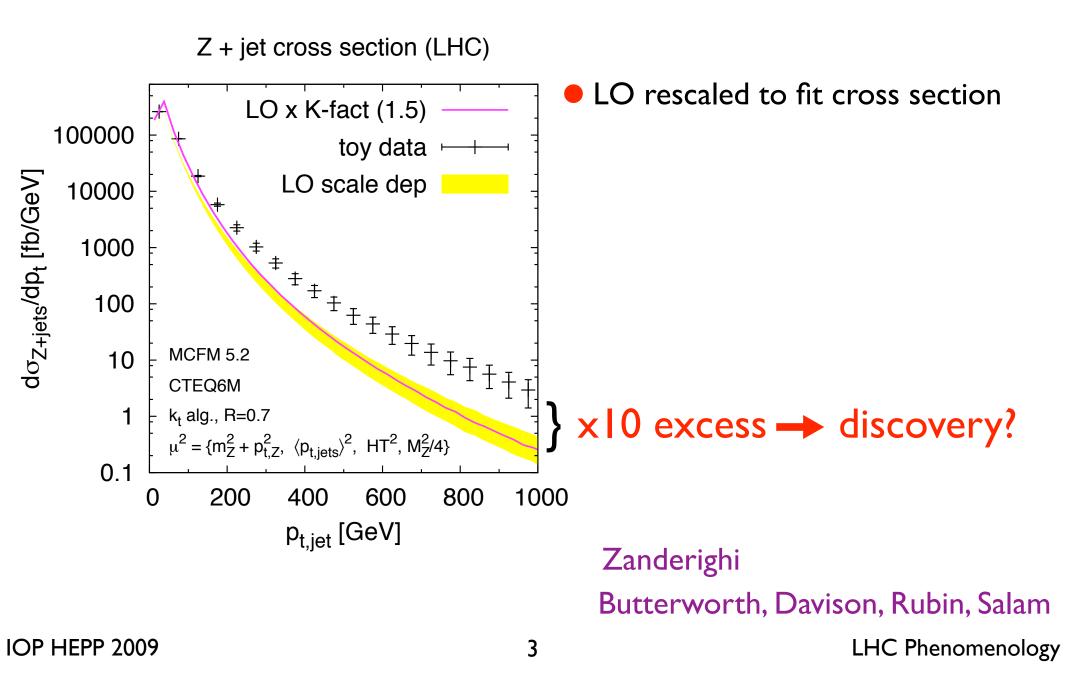
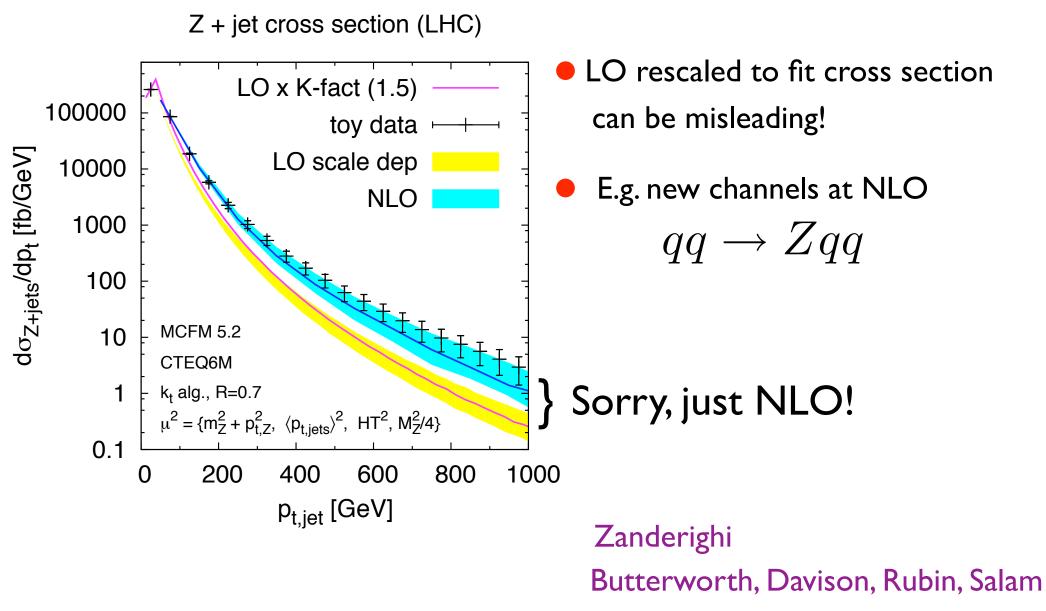
# Phenomenology for LHC: A (Selective) Status Report


Bryan Webber

UNIVERSITY OF 800 YEARS CAMBRIDGE 1209-2009


- Higher-order calculations
- Monte Carlos
- Jet algorithms
- Beyond Standard Model

Higher-order calculations

## Need for NLO



# Need for NLO



## Les Houches 2007 wish list

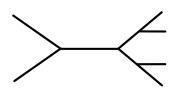
| Process                                                                                                                                                                            | Comments                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(V \in \{Z, W, \gamma\})$                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |
| Calculations completed since Les Houches 2005                                                                                                                                      |                                                                                                                                                                                                                                                                                       |
| 1. $pp \rightarrow VV$ jet                                                                                                                                                         | WWjet completed by Dittmaier/Kallweit/Uwer [3];<br>Campbell/Ellis/Zanderighi [4]                                                                                                                                                                                                      |
| 2. $pp \rightarrow \text{Higgs+2jets}$                                                                                                                                             | and Binoth/Karg/Kauer/Sanguinetti (in progress)<br>NLO QCD to the gg channel<br>completed by Campbell/Ellis/Zanderighi [5];<br>NLO QCD+EW to the VBF channel                                                                                                                          |
| 3. $pp \rightarrow V V V$                                                                                                                                                          | completed by Ciccolini/Denner/Dittmaier [6,7]<br>ZZZ completed by Lazopoulos/Melnikov/Petriello [8]<br>and $WWZ$ by Hankele/Zeppenfeld [9]                                                                                                                                            |
| Calculations remaining from Les Houches 2005                                                                                                                                       |                                                                                                                                                                                                                                                                                       |
| 4. $pp \rightarrow t\bar{t} b\bar{b}$<br>5. $pp \rightarrow t\bar{t}$ +2jets<br>6. $pp \rightarrow VV b\bar{b}$ ,<br>7. $pp \rightarrow VV$ +2jets<br>8. $pp \rightarrow V$ +3jets | relevant for $t\bar{t}H$<br>relevant for $t\bar{t}H$<br>relevant for VBF $\rightarrow H \rightarrow VV, t\bar{t}H$<br>relevant for VBF $\rightarrow H \rightarrow VV$<br>VBF contributions calculated by<br>(Bozzi/)Jäger/Oleari/Zeppenfeld [10–12]<br>various new physics signatures |
| NLO calculations added to list in 2007                                                                                                                                             |                                                                                                                                                                                                                                                                                       |
| 9. $pp \rightarrow b\bar{b}b\bar{b}$                                                                                                                                               | Higgs and new physics signatures                                                                                                                                                                                                                                                      |
| Calculations beyond NLO added in 2007                                                                                                                                              |                                                                                                                                                                                                                                                                                       |
| 10. $gg \rightarrow W^*W^* \mathcal{O}(\alpha^2 \alpha_s^3)$<br>11. NNLO $pp \rightarrow t\bar{t}$<br>12. NNLO to VBF and $Z/\gamma$ +jet                                          | backgrounds to Higgs<br>normalization of a benchmark process<br>Higgs couplings and SM benchmark                                                                                                                                                                                      |
| Calculations including electroweak effects                                                                                                                                         |                                                                                                                                                                                                                                                                                       |
| 13. NNLO QCD+NLO EW for $W/Z$                                                                                                                                                      | precision calculation of a SM benchmark                                                                                                                                                                                                                                               |

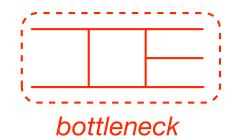
#### IOP HEPP 2009

# NLO calculations

#### Ingredients for N-particle NLO calculation:

- ✓ tree graph rates with N+1 partons
   → soft/collinear divergences
- virtual correction to N-leg process
   divergence from loop integration
- set of subtraction terms


#### Status of NLO:


- $\mathbf{\overline{M}}$  2  $\rightarrow$  2: all known (or easy) in SM and beyond
- $\textcircled{2} \rightarrow 3$ : very few processes left

[but: often do not include decays, newest codes mostly private]

 $\Box 2 \rightarrow 4: \text{ barely touched ground } [q\bar{q} \rightarrow t\bar{t} b\bar{b}]$ 

Bredenstein, Denner, Dittmaier, Pozzorini '08





# Done since 2007

- Most physics results done from Feynman diagram approach:
  - QCD corrections to vector boson pair production (W<sup>+</sup>W<sup>-</sup>, W<sup>±</sup>Z & ZZ) via vector boson fusion (VBF). (Jager, Oleari, Zeppenfeld)+(Bozzi)
  - QCD and EW corrections to Higgs production via VBF. (Ciccolini, Denner, Dittmaier)
  - -pp → Higgs+2 jets. (via gluon fusion Campbell, Ellis, Zanderighi), (via weak interactions Ciccolini, Denner, Dittmaier). pp → Higgs+3 jets (leading contribution) (Figy, Hankele, Zeppenfeld).
  - $pp \rightarrow t \overline{t}H$ . (Beenakker, Dittmaier, Krämer, Plümper, Spira, Zerwas), (Dawson, Jackson, Reina, Wackeroth)
  - $-pp \rightarrow ZZZ$ , (Lazopoulos, Petriello, Melnikov)  $pp \rightarrow t \overline{t} \overline{Z}$ -(McElmurry)
  - $-pp \rightarrow WWZ$ , WWW (Hankele, Zeppenfeld, Campanario, Oleari, Prestel)
  - $pp \rightarrow WW + j + X$ . (Campbell, Ellis, Zanderighi). (Dittmaier, Kallweit, Uwer)
  - $-pp \rightarrow W/Zbb$  (Febres Cordero, Reina, Wackeroth),
  - $pp \rightarrow tt + jet$  (Dittmaier,Uwer,Weinzierl),
  - $-q\overline{q} \rightarrow t\overline{t} + bb$  (Bredenstein, Denner, Dittmaier, Pozzorini),

#### IOP HEPP 2009

# Done with new techniques

- Past year progress using unitarity and related techniques,
  - *gg* → *gggg* amplitude. (Bern,Dixon,Kosower), (Britto,Feng,Mastrolia),
     (Bern,Bjerrum-Bohr,Dunbar,H.I.), (Berger,Bern,Dixon,Forde,Kosower),
     (Bedford,Brandhuber,Spence,Travaglini) (Xiao,Yang,Zhu), (Berger,Bern,Dixon,Forde,Kosower),
     (Giele,Kunszt,Melnikov)
  - Lots of gluons (Giele, Zanderighi), (Berger, Bern, Dixon, Febres Cordero, Forde, H.I., Kosower, Maître)
  - 6 photons (Nagy, Soper), (Ossola, Papadopoulos, Pittau), (Binoth, Heinrich, Gehrmann, Mastrolia)
  - $-pp \rightarrow ZZZ$ , WZZ, WWZ, ZZZ (Binoth, Ossola, Papadopoulos, Pittau),
  - $gg \rightarrow t\overline{tg}$  using D-Dimensional Unitarity (Ellis, Giele, Kunszt, Melnikov)
- Numerical packages under construction:
  - BlackHat Berger, Bern, Dixon, Febres Cordero, Forde, H.I., Kosower, Maître
  - CutTools Ossola, Papadopoulos, Pittau
  - Rocket Ellis, Giele, Kunszt, Melnikov, Zanderighi

Thanks to H.I.=Harald Ita LHC Phenomenology

#### IOP HEPP 2009

## BlackHat

Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre

**BlackHat**: A C++ implementation of onshell techniques for 1-loop amplitudes

- Portability (standard libraries for unix systems)
- Modularity (object oriented)
- Malleability (to accept several routines numerics and analytics)
- Numerical precision and efficiency
- Ready to use with existing Monte Carlo programs
  - Work in progress with automated real dipole subtraction from Sherpa (*with T. Gleisberg*)

# HELAC/CutTools

Cafarella, van Hameren, Kanaki, Ossola, Papadopoulos, Pittau, Worek

• Automatic 1-loop computation of all  $2 \rightarrow 4$  wish-list processes

 $q\bar{q}, gg \rightarrow t\bar{t}b\bar{b}, b\bar{b}b\bar{b}, W^+W^-b\bar{b}, t\bar{t}gg$  $q\bar{q}' \rightarrow Wggg, Zggg$ 

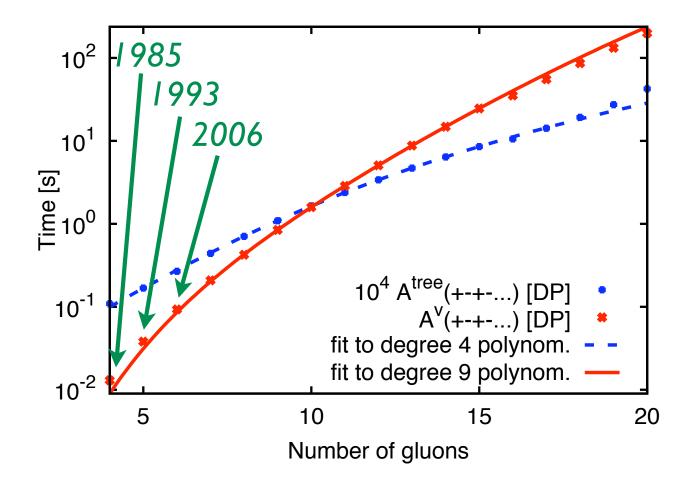
• All masses, colours and helicities treated exactly

 Still need to combine with LO 2→5 processes, subtraction terms and efficient MC integration

### Rocket

Ellis, Giele, Kunszt, Melnikov, Zanderighi




<u>First step</u>: use only three and four-gluon vertices ⇒ pure gluonic amplitudes

Input: arbitrary number of gluons and their arbitrary helicities (+/-)

<u>Output</u>: (un)-renormalized virtual amplitude in FDH or t'HV scheme

\* From the Italian Rucola, Recursive Unitarity Calculation of One-Loop Amplitudes

# $gg \rightarrow (N-2)g$ at 1-loop



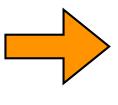
# QCDloop

#### **QCDloop: A repository for one-loop scalar integrals**

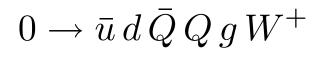
This is a repository of one-loop scalar Feynman integrals, evaluated close to four dimensions. For integrals with all massive internal lines the integrals are all known, both analytically and numerically. This website therefore concentrates on integrals with some internal masses vanishing; in general, these integrals contain infra-red and collinear singularities which are here regulated dimensionally. The integrals are described in a PDF file for every known integral. The general divergent box integral can be calculated using one of sixteen basis integrals which are given here. The general divergent triangle integral can be calculated using one of six triangle basis integrals which are also given here. The browser must be set to use hypertex-aware tool, such as Acrobat reader, and for best viewing, should open the pdf files in the browser. For general notation for the loop integrals click here

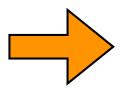
#### Box integrals definitions and generalities

- Basis set of 16 divergent box integrals
- Index of all box integrals currently in the repository
- Triangle integrals
  - Basis set of 6 divergent triangle integrals
  - Finite triangle integrals
- Bubble integrals
- <u>Tadpole integral</u>

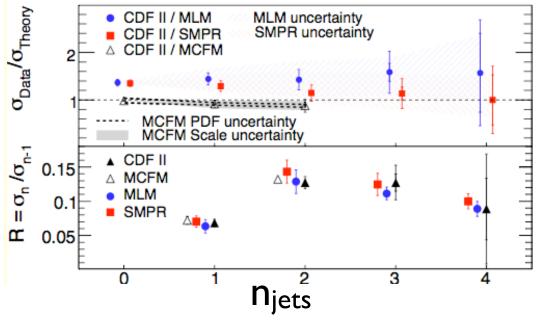

The results in this web-site are also available in the paper <u>arXiv:0712.1851</u> by <u>R.K. Ellis</u> and <u>G. Zanderighi</u> The corresponding fortran 77 code which calculates an arbitrary one-loop scalar integral, finite or divergent can be downloaded, <u>QCDLoop-1.8.tar.gz</u> (version 1.8, date 2008-Nov-07). If you encounter any problems with the code, please notify the authors.

We gratefully acknowledge comments on previous versions of the code from Andre van Hameren, Francesco Tramontano, Kirill Melnikov, Gudrun Heinrich, Adrian Signer, and Markus Schulze.


# Example:W+3 jets


#### Need to evaluate two amplitudes

 $0 \to \bar{u} \, d \, g \, g \, g \, W^+$ 



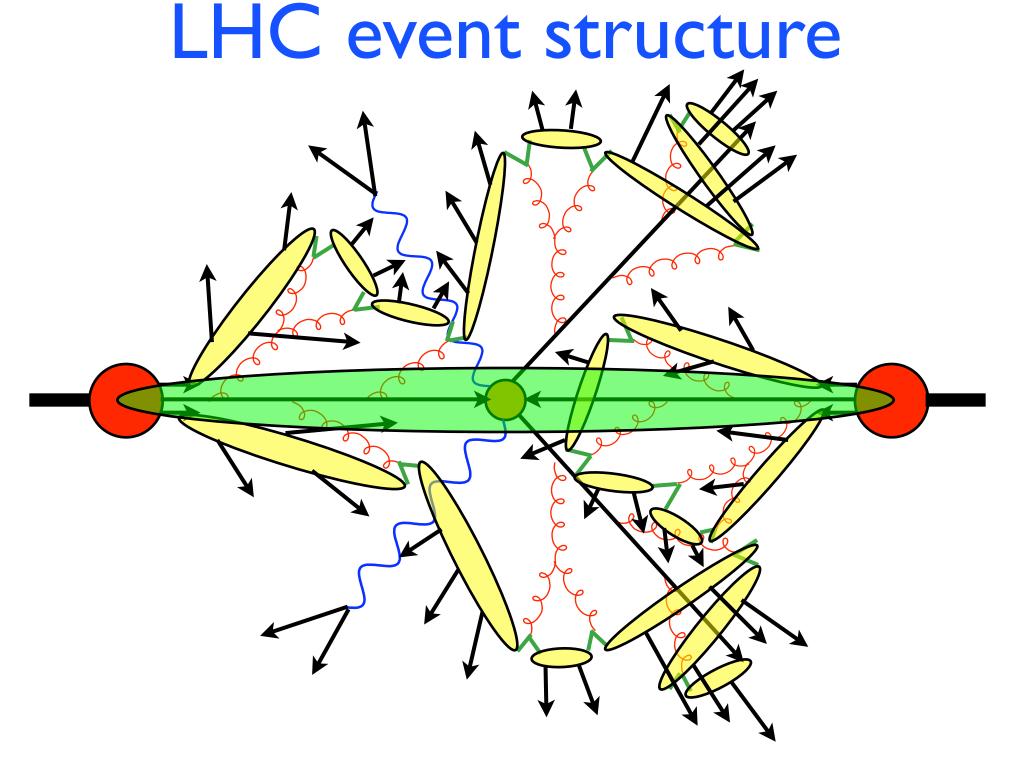

1203 +104 Feynman diagrams





258 + 18 Feynman diagrams




New!

All amplitudes in 0810.2762 [Ellis, Giele, Kunszt, Melnikov, GZ]

> Thanks to GZ=Giulia Zanderighi LHC Phenomenology

IOP HEPP 2009

# Monte Carlos



# MC event generators

#### • HERWIG

Angular-ordered shower, cluster hadronization

➡ v6 Fortran; Herwig++

#### • PYTHIA

→ Virtuality/k<sub>T</sub>-ordered shower, string hadronization

♦ v6 Fortran; v8 C++

#### SHERPA

Virtuality/dipole-ordered shower, string/cluster hadronization



# **ME-MC** Matching

- Two rather different objectives:
- Matching parton showers to NLO matrix elements, without double counting
  - MC@NLO Frixione, BW
  - POWHEG

Nason

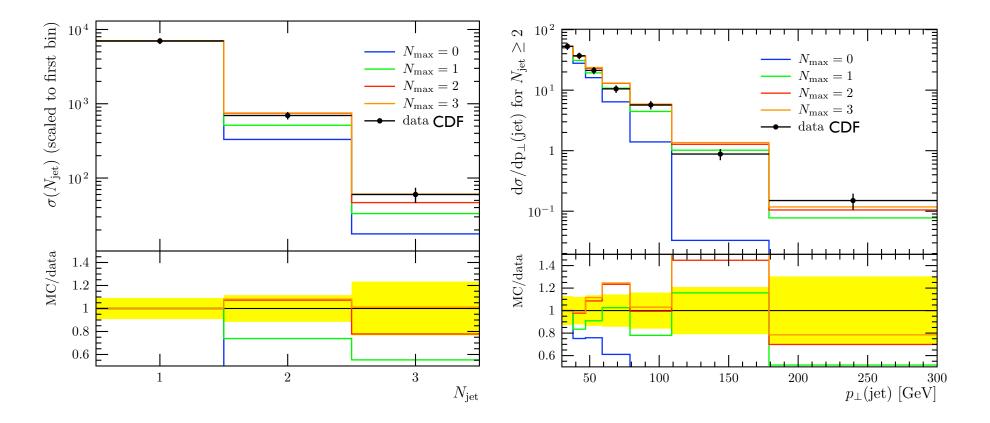
- Matching parton showers to LO n-jet matrix elements, minimizing jet resolution dependence
  - CKKW
  - Dipole
  - MLM Matching

Catani, Krauss, Kühn, BW

Lönnblad

Mangano

### H→WW: MC@NLO vs NNLO


 $pp \rightarrow H + X \rightarrow WW + X \rightarrow e^+ \nu e^- \nu + X$  $pp \rightarrow H + X \rightarrow WW + X \rightarrow e^+ \nu e^- \nu + X$ 300 **NNLO** MRST2004 NLO/NNLO 300  $M_{\rm h}/2 \leq \mu_{\rm R} = \mu_{\rm F} \leq 2 M_{\rm h}$  $M_h = 165 \text{ GeV}$ 250 200 R(MC@NLO) R(MC@NLO σ [fb] NNLO [fb] 200 ь MRST2004 NLO/NNLO 100 150  $M_h/2 \leq \mu_R = \mu_F \leq 2 M_h$  $M_h = 165 \text{ GeV}$  $M_{11}$  > 12 GeV 100 50 100 150 50 70 90 100 40 60 80  $\phi_{11}^{cut}$ M<sub>11</sub><sup>cut</sup> [GeV]  $pp \rightarrow H + X \rightarrow WW + X \rightarrow e^+ \nu e^- \nu + X$  $pp \rightarrow H + X \rightarrow WW + X \rightarrow e^+ \nu e^- \nu + X$ MRST2004 NLO/NNLO 300 250  $M_{\rm h}/2 \leq \mu_{\rm R} = \mu_{\rm F} \leq 2 M_{\rm h}$  $M_{\rm h} = 165 \ {\rm GeV}$ NNLC 200 200 [fb][fb] R(MC@NLO) ь ь 150 MRST2004 NLO/NNLO 100  $M_h/2 \leq \mu_R = \mu_F \leq 2 M_h$ R(MC@NLO) 100  $M_h = 165 \text{ GeV}$ NNLO  $p_{\pi}^{lepton} > 30 \text{ GeV}$ 60 80 40 100 120 20 40 60 80 100  $p_{T,max}^{cut}$  [GeV]  $E_{T,miss}^{cut}$  [GeV]

C Anastasiou, G Dissertori, F Stöckli & BW, JHEP03(2008)017 [arXiv:0801.2682]

IOP HEPP 2009

# CKKW matching

•  $p\bar{p} \to e^+ e^- X$ ,  $66 < m_{ee} < 116 \,\mathrm{GeV}$ 



SHERPA: S Höche, F Krauss, S Schumann & F Siegert, arXiv:0903.1219

# Herwig++ v2.3

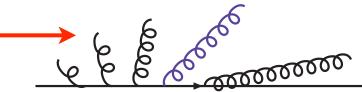
#### • Authors:

- CERN/Manchester
  - Mike Seymour
- Durham
  - Peter Richardson, David Grellscheid, Martyn Gigg\*, Jon Tully\*
- Karlsruhe
  - Stefan Gieseke, Manuel Bähr\*, Simon Plätzer\*
- Louvain
  - Keith Hamilton<sup>•</sup>
- Postdoc
- \* PhD Student

### Hard subprocesses

• We provide our own set of basic processes, currently

$$\begin{array}{c} e^+e^- \rightarrow Z^0, \ e^+e^- \rightarrow q\bar{q}, \\ e^+e^- \rightarrow h^0 e^+e^-, \ e^+e^- \rightarrow h^0 \nu_e \bar{\nu}_e \\ \text{DIS (NC and CC)} \\ \text{Minimum Bias} \\ \text{QCD } 2 \rightarrow 2, \ pp \rightarrow t\bar{t}, \\ pp \rightarrow (\gamma, Z^0) \rightarrow \ell^+\ell^-, \ pp \rightarrow W^{\pm} \rightarrow \ell^{\pm}\nu_\ell, \\ pp \rightarrow (Z^0, W^{\pm}) + \text{jet} \\ pp \rightarrow h^0, \ pp \rightarrow h^0 + \text{jet}, \\ pp \rightarrow h^0 + W^{\pm}, \ pp \rightarrow h^0 + Z^0 \\ pp \rightarrow \gamma + \text{jet}, \ pp \rightarrow \gamma\gamma \end{array}$$


(New from 2.3)

- Many processes available with POWHEG NLO matching.
- LesHouchesFileReader enables to read in and process any hard event generated by parton level event generators (MadGraph/MadEvent, AlpGen, VBFNLO, CompHEP, WHIZARD, ...).
- Exception: BSM Physics. Production and (long) cascade decay chains with spin correlations.

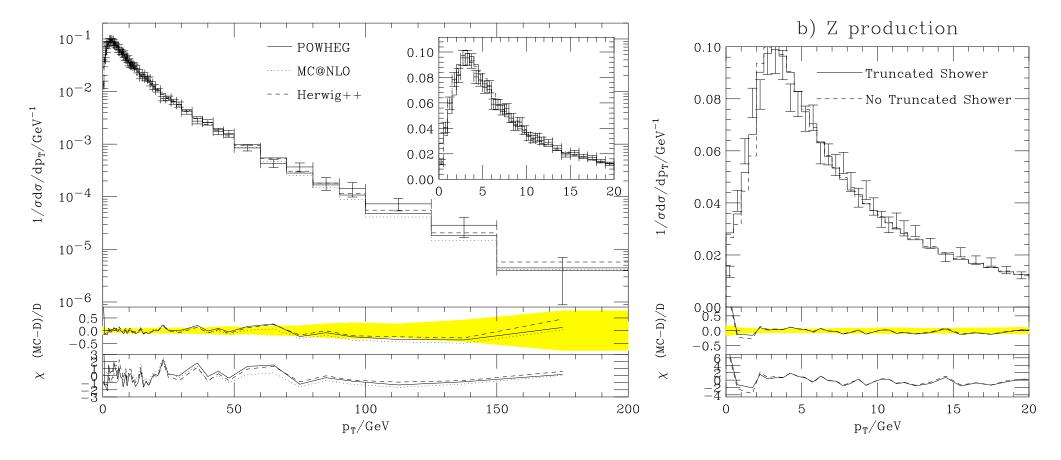
Herwig++ will probably never such a large library of built-in hard matrix elements as its predecessor.

# **POWHEG** matching

- Alternative method to match NLO computations with parton shower Monte Carlos, proposed by P. Nason.
- Generates hardest (highest  $p_T$ ) emission first.
- Uses modified Sudakov FF for this emission, full NLO recovered upon expansion in  $\alpha_S$ .
- Herwig++ angular-ordered Parton Shower may first emit fairly soft, large angle gluons, then higher  $p_T$  later
- Truncated Shower adds in this radiation afterwards. -
- Finally evolution with vetoed 'ordinary' Parton Shower.



Method avoids Phase Space division into hard/soft region. 'Hardest' emission may also be soft/collinear.


[Nason, JHEP 11 (2004) 040, Frixione, Nason, Oleari, JHEP 11 (2007) 070]

### POWHEG in Herwig++

Shipped with v2.3:

- Drell–Yan type,  $\gamma * /Z^0$  and  $W^{\pm}$  production.
- Decay of  $\gamma * /Z^0/W^{\pm}$ .
- Higgs in gg fusion.
- Higgs in association with  $W^{\pm}$  or  $Z^{0}$ .

With truncated shower. Examples provided.



POWHEG in Herwig++ with full truncated shower.

[K. Hamilton, P. Richardson, J. Tully, 0806.0290]

Effect of truncated shower here very small.

#### **Herwig++ Particle Properties DataBase**

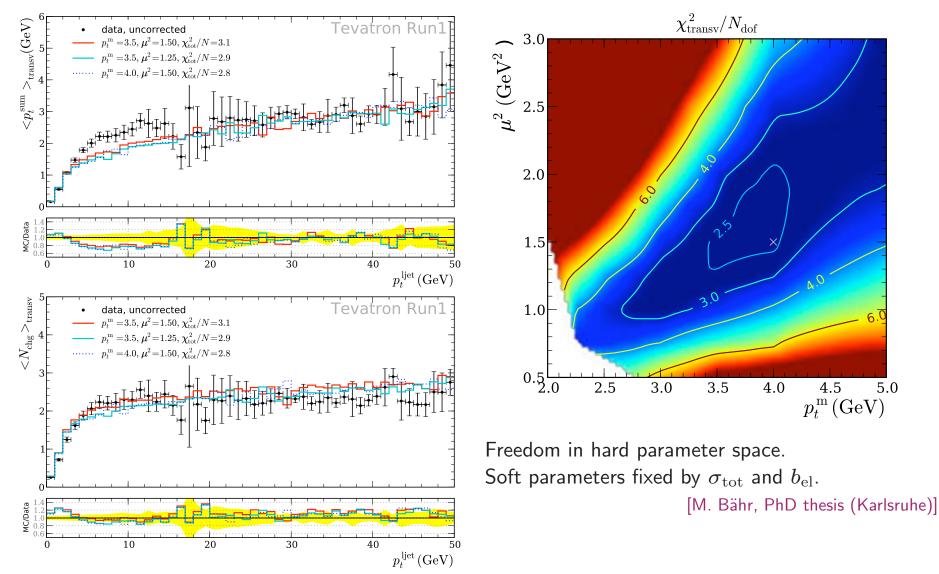
This is the production version of the Herwig++ particle properties database. This replaces the storage of particle properties as a text file to improve maintainance and accessiblity.

This is the version of the database which was used to generate the particle properties for Herwig++ version 2.1. The baryon properties were not taken from the database for this release.

The database currently contains 487 particles and 6872 decay modes.

The information is available in a number of forms

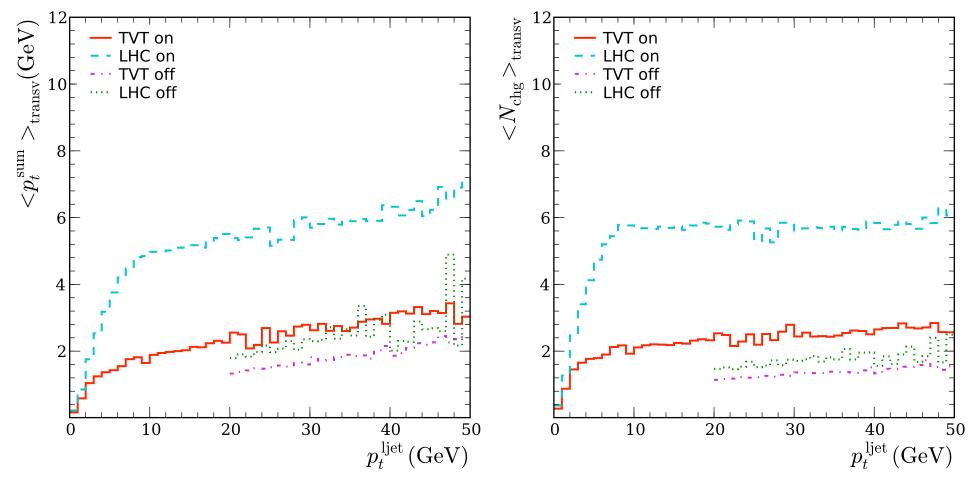
- The particles <u>numerically listed</u> according to the <u>PDG code</u>
- The particles <u>listed</u> according to the multiplets taken from the <u>PDG</u>
- The <u>decayers</u>
- The Width Generators
- The Mass Generators
- The <u>references</u>
- Generate the input files for event generation


The contents of the database can be altered by following the links in the particle table or particle descriptions or by selecting an option below

- Add or modify a particle: 0
- Add a decay mode for particle with id: 0

#### http://www.ippp.dur.ac.uk/~richardn/particles/

# Underlying event


#### Fit of new soft component model to TVT Run 1 data.



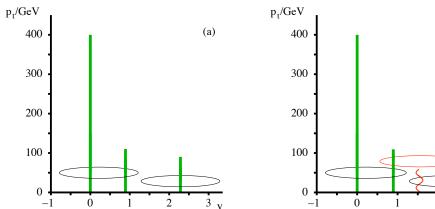
LHC Phenomenology

#### IOP HEPP 2009

# Underlying event at LHC



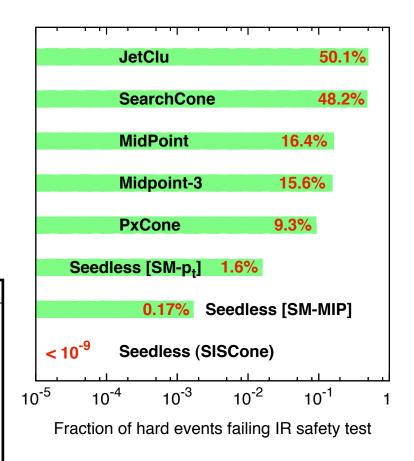
[M. Bähr, PhD thesis (Karlsruhe)]


# Jet algorithms

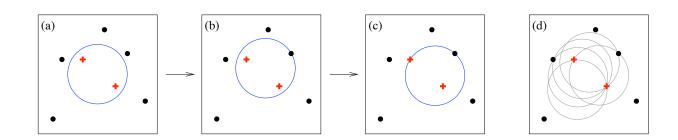
## **Cones vs Recombination**

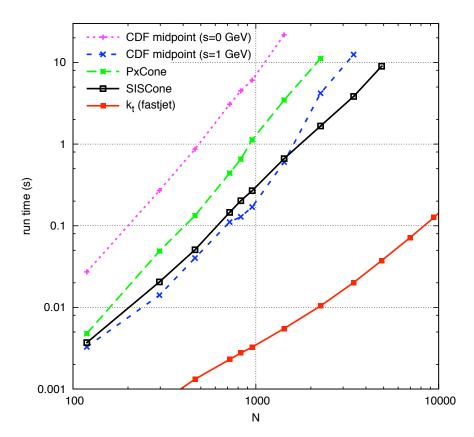
- Cone algorithms
  - Intuitive, clear jet structure
  - Complicated; problems with IR safety
  - Solved by SISCone Salam, Soyez
- Recombination algorithms (k<sub>T</sub> etc.)
  - Simple, IR safe
  - Slow; messy jet structure
  - Solved by FastJet & anti-k<sub>T</sub> Cacciari, Salam, Soyez

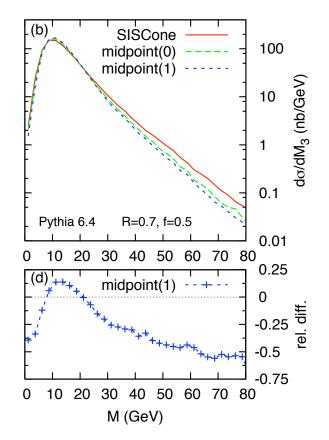
# Cone algorithms


(b)




#### Midpoint


#### Midpoint + soft


| Algorithm           | Туре                                          | IR unsafe |
|---------------------|-----------------------------------------------|-----------|
| JetClu              | Seeded, no midpoints                          | 2h+1s [9] |
| SearchCone          | Seeded, search cone [21], midpoints           | 2h+1s [1] |
| MidPoint            | Seeded, midpoints (2-way)                     | 3h+1s [1] |
| MidPoint-3          | Seeded, midpoints (2-way, 3-way)              | 3h+1s     |
| PxCone              | Seeded, midpoints $(n$ -way), non-standard SM | 3h+1s     |
| Seedless $[SM-p_t]$ | Seedless, SM uses $p_t$                       | $4h+1s^a$ |
| Seedless [SM-MIP]   | Seedless, SM merges identical protojets       | $4h+1s^b$ |
| Seedless [SISCone]  | Seedless, SM of algorithm 3                   | no        |

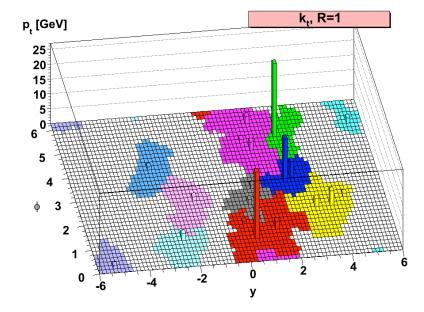


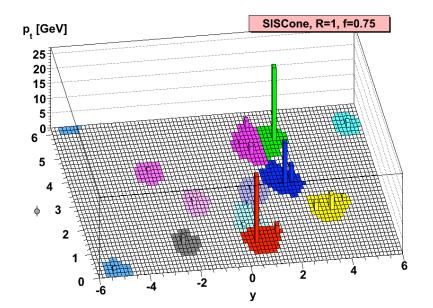
### **SISCone**

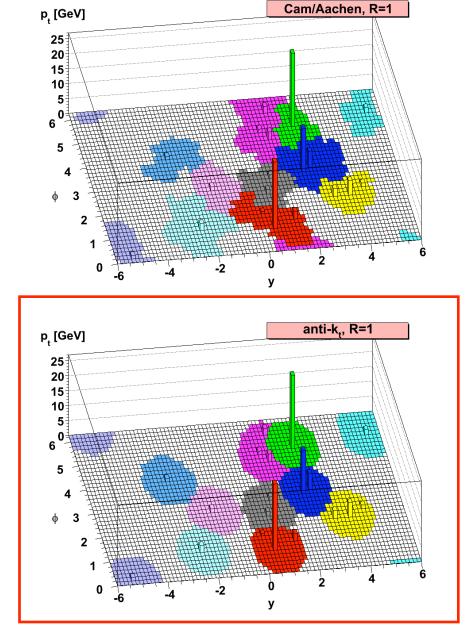







IOP HEPP 2009


# **Recombination algorithms**


• 
$$d_{ij} = \min\{k_{Ti}^p, k_{Tj}^p\}\Delta R_{ij}/R, \quad d_{iB} = k_{Ti}^p$$
  
 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$   
• p>0 - k\_T/Durham  
• p=0 - Cambridge-Aachen

▶ p<0 → anti-k<sub>T</sub>

## Anti-k<sub>T</sub> algorithm







IOP HEPP 2009

# **Beyond Standard Model**

# Phenomenological MSSM

• Assume (at weak scale):

Djouadi, Kneur, Moultaka

- → No SUSY  $\mathcal{Q} \dot{\mathcal{P}} \rightarrow$  real parameters
- No tree-level FCNC 
   sfermion masses
   and trilinears diagonal

   A structure
   A structure
   A structure
   A structure
   A structure
   A structure
- Ist & 2nd generation sfermion universality
- This leave 20 MSSM (+5 SM) parameters (+sign  $\mu$ )
- Computing power and techniques are now available to explore this huge parameter space!

Profumo, Yaguna Berger, Gainer, Hewett, Rizzo AbdusSalam, Allanach, Feroz, Hobson, Quevedo

- AbdusSalam et al. adopt a strictly Bayesian approach
  - Flat or log prior distributions of sfermion masses (range 100 GeV - 4 TeV)
  - Gaussian errors for observables and SM parameters
     Output is relative likelihood and Bayesian evidence
- Nested sampling method computes these efficiently Skilling; Feroz & Hobson
  - Computing resources feasible (~16 CPU-yr)
- Similar approach applied to cMSSM

de Austri, Feroz, Hobson, Roszkowski, Trotta

# pMSSM parameters

| Parameter                                                               | Description                                  | Nat prior fit | Log prior fit |
|-------------------------------------------------------------------------|----------------------------------------------|---------------|---------------|
| $M_1$                                                                   | Bino mass                                    | -2947.1       | -250.01       |
| $M_2$                                                                   | Wino mass                                    | -1297.0       | -3017.3       |
| $M_3$                                                                   | Gluino mass                                  | -2397.1       | -641.94       |
| $m_{\tilde{e}_L} = m_{\tilde{\mu}_L}$                                   | $1 \text{st}/2 \text{nd}$ gen. $L_L$ slepton | 1039.7        | 174.42        |
| $m_{	ilde{	au}_L}$                                                      | 3rd gen. $L_L$ slepton                       | 2640.3        | 993.17        |
| $m_{\tilde{e}_R} = m_{\tilde{\mu}_R}$                                   | $1 \text{st}/2 \text{nd}$ gen. $E_R$ slepton | 2301.2        | 200.73        |
| $m_{	ilde{	au}_R}$                                                      | 3rd gen. $E_R$ slepton                       | 3747.8        | 3529.8        |
| $m_{\tilde{u}_L} = m_{\tilde{d}_L} = m_{\tilde{c}_L} = m_{\tilde{s}_L}$ | $1 \text{st}/2 \text{nd}$ gen. $Q_L$ squark  | 877.88        | 164.67        |
| $m_{\tilde{t}_L} = m_{\tilde{b}_L}$                                     | $3$ rd gen. $Q_L$ squark                     | 2300.6        | 2321.4        |
| $m_{\tilde{u}_R} = m_{\tilde{c}_R}$                                     | $1 \text{st}/2 \text{nd}$ gen. $U_R$ squark  | 3026.9        | 1514.8        |
| $m_{\tilde{t}_R}$                                                       | 3rd gen. $U_R$ squark                        | 2617.7        | 2904.7        |
| $m_{\tilde{d}_R} = m_{\tilde{s}_R}$                                     | $1 \text{st}/2 \text{nd}$ gen. $D_R$ squark  | 1368.3        | 328.61        |
| $m_{\tilde{b}_R}$                                                       | 3rd gen. $D_R$ squark                        | 1053.9        | 1267.8        |
| $A_t$                                                                   | top quark trilinear                          | -1962.6       | 650.69        |
| $A_b$                                                                   | b-quark trilinear                            | -3540.9       | 5727.0        |
| $A_{\tau}$                                                              | au-quark trilinear                           | 4724.6        | 3196.4        |
| $A_e = A_\mu$                                                           | $\mu$ -quark trilinear                       | 2153.8        | 2950.8        |
| $m_{H_1}$                                                               | up-type Higgs doublet                        | 2548.3        | 3445.0        |
| $m_{H_2}$                                                               | down-type Higgs doublet                      | 882.31        | 668.83        |
| aneta                                                                   | Higgs vevs ratio                             | 5.2           | 21.0          |
| $m_t$                                                                   | top quark mass                               | 173.37        | 175.31        |
| $m_Z$                                                                   | Z-boson mass                                 | 91.186        | 91.190        |
| $m_b(m_b)^{\overline{MS}}$                                              | b-quark mass                                 | 4.164         | 4.25877       |
| $1/\alpha_{em}(m_Z)^{MS}$                                               | e-coupling constant                          | 127.95        | 127.91        |
| $\alpha_s(m_Z)^{\overline{MS}}$                                         | s-coupling constant                          | 0.11678       | 0.11609       |
| $\operatorname{sign}(\mu)$                                              | sign of Higgs mixing                         | -1            | -1            |

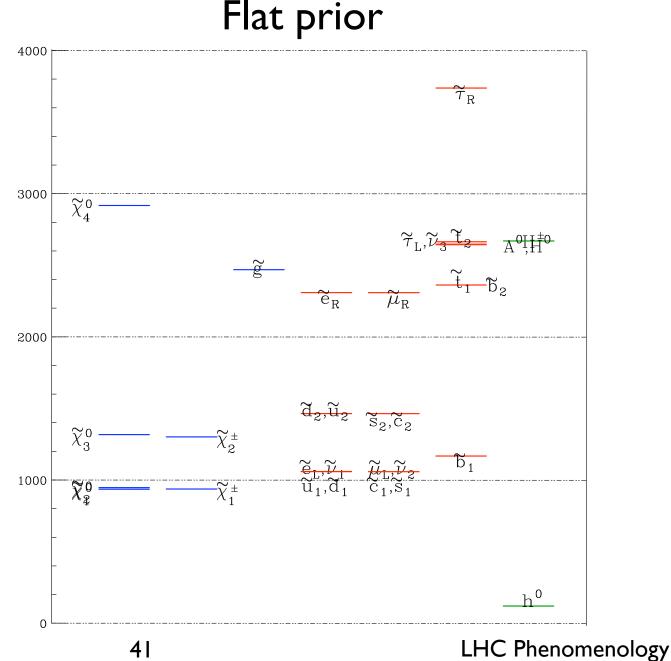
IOP HEPP 2009

## Input observables

|                                                                 |                                        |                  | $ \mathbf{O}^{meas}$ - $\mathbf{O}^{fit} $ / $\sigma^{meas}$ |
|-----------------------------------------------------------------|----------------------------------------|------------------|--------------------------------------------------------------|
| Observable                                                      | Measurement                            | Fit (flat prior) | 0 1 2 3                                                      |
| m <sub>w</sub> [GeV]                                            | $\textbf{80.399} \pm \textbf{0.025}$   | 80.37092         |                                                              |
| Г <mark>z [GeV]</mark>                                          | $\textbf{2.4952} \pm \textbf{0.00251}$ | 2.49520          |                                                              |
| $\sin^2 \theta_{lep}^{eff}$                                     | $\textbf{0.2324} \pm \textbf{0.0012}$  | 0.23140          |                                                              |
| $\delta$ (g-2) $_{\mu}$ $	imes$ 10 <sup>10</sup>                | $\textbf{30.20} \pm \textbf{9.02}$     | 7.15359          |                                                              |
| R <sup>0</sup>                                                  | $\textbf{20.767} \pm \textbf{0.025}$   | 20.76085         |                                                              |
| R <sub>b</sub>                                                  | $0.21629 \pm 0.00066$                  | 0.21605          |                                                              |
| R <sub>c</sub>                                                  | $0.1721 \pm 0.0030$                    | 0.17222          |                                                              |
| A <sub>e</sub>                                                  | $\textbf{0.1513} \pm \textbf{0.0021}$  | 0.14799          |                                                              |
| A <sub>b</sub>                                                  | $\textbf{0.923} \pm \textbf{0.020}$    | 0.93487          |                                                              |
| A <sub>c</sub>                                                  | $\textbf{0.670} \pm \textbf{0.027}$    | 0.66831          |                                                              |
| A <sup>b</sup> <sub>FB</sub>                                    | $\textbf{0.0992} \pm \textbf{0.0016}$  | 0.10376          |                                                              |
| A <sup>c</sup> <sub>FB</sub>                                    | $\textbf{0.0707} \pm \textbf{0.035}$   | 0.07418          |                                                              |
| <b>BR(b</b> $\rightarrow$ s $\gamma$ ) $\times$ 10 <sup>4</sup> | $\textbf{3.55} \pm \textbf{0.42}$      | 3.63154          |                                                              |
| $\mathbf{R}_{\mathbf{BR}(\mathbf{B}_{u} \rightarrow \tau \nu)}$ | 1.11± 0.32                             | 0.99864          |                                                              |
| R <sub>A M<sub>B</sub></sub>                                    | $\textbf{1.15} \pm \textbf{0.40}$      | 0.98640          |                                                              |
| Δ <sub>0^-</sub>                                                | $\textbf{0.0375} \pm \textbf{0.0289}$  | 0.07636          |                                                              |
| $Ω_{CDM} \mathbf{h^2}$                                          | $\textbf{0.1143} \pm \textbf{0.0200}$  | 0.09923          |                                                              |
|                                                                 | 39                                     | )                | LHC Phenomenolo                                              |

IOP HEPP 2009

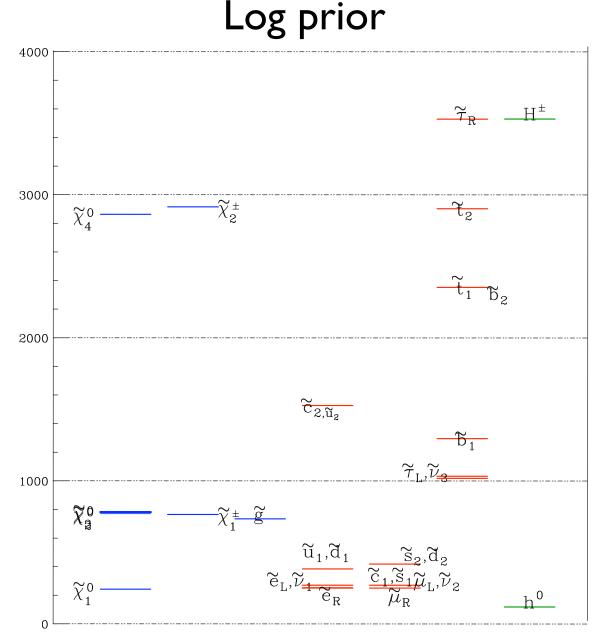
## Input observables


|                                                               |                            |                 | $10^{meas}$ - $0^{fit}$ l / $\sigma^{meas}$ |
|---------------------------------------------------------------|----------------------------|-----------------|---------------------------------------------|
| Observable                                                    | Measurement                | Fit (log prior) | 0 1 2 3                                     |
| m <sub>w</sub> [GeV]                                          | 80.399 ± 0.025             | 80.40175        |                                             |
| Г <mark><sub>z</sub> [GeV]</mark>                             | $\pmb{2.4952 \pm 0.00251}$ | 2.49637         |                                             |
| $sin^2 \theta_{lep}^{eff}$                                    | $0.2324 \pm 0.0012$        | 0.23136         |                                             |
| $\delta(\textbf{g-2})_{\mu} 	imes \textbf{10}^{10}$           | <b>30.20</b> ± <b>9.02</b> | 26.73551        |                                             |
| R <sup>0</sup>                                                | $20.767 \pm 0.025$         | 20.75968        |                                             |
| R <sub>b</sub>                                                | $0.21629 \pm 0.00066$      | 0.219617        |                                             |
| R <sub>c</sub>                                                | $0.1721 \pm 0.0030$        | 0.17225         |                                             |
| A <sub>e</sub>                                                | $0.1513 \pm 0.0021$        | 0.14830         |                                             |
| A <sub>b</sub>                                                | $0.923 \pm 0.020$          | 0.93488         |                                             |
| A <sub>c</sub>                                                | $0.670 \pm 0.027$          | 0.68508         |                                             |
| A <sup>b</sup> <sub>FB</sub>                                  | 0.0992 ± 0.0016            | 0.10399         |                                             |
| A <sup>c</sup> <sub>FB</sub>                                  | 0.0707 ± 0.035             | 0.07436         |                                             |
| $\text{BR(b} \rightarrow \text{s} \gamma\text{)} \times 10^4$ | 3.55 ± 0.42                | 3.42260         |                                             |
| R <sub>BR(B<sub>u</sub>→τ<sub>V</sub>)</sub>                  | 1.11± 0.32                 | 0.99952         |                                             |
| R <sub>A M<sub>B</sub></sub>                                  | 1.15 ± 0.40                | 0.99873         |                                             |
| Δ <sub>0^-</sub>                                              | $0.0375 \pm 0.0289$        | 0.07480         |                                             |
| $\Omega_{CDM}h^2$                                             | $0.1143 \pm 0.0200$        | 0.13443         |                                             |
| )                                                             | ۵(                         | )               |                                             |

IOP HEPP 2009

40

### Best fit spectra


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nat prior | Log prior |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| $	ilde{e}_L,	ilde{\mu}_L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1062      | 271       |
| $	ilde{e}_R,	ilde{\mu}_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2310      | 251       |
| $	ilde{	au}_L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2651      | 1033      |
| $	ilde{	au}_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3740      | 3530      |
| $ \begin{array}{c} \tilde{e}_L, \tilde{\mu}_L \\ \tilde{e}_R, \tilde{\mu}_R \\ \tilde{\tau}_L \\ \tilde{\tau}_R \\ \tilde{u}_1, \tilde{c}_1 \\ \tilde{\tau}_R \\ \tilde{u}_L \\ \tilde{\tau}_R $ | 1059      | 384       |
| $	ilde{u}_2,	ilde{c}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3067      | 1527      |
| $ \begin{array}{c} \widetilde{u}_2, \widetilde{c}_2 \\ \widetilde{t}_1 \\ \widetilde{z} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2361      | 2354      |
| $t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2665      | 2903      |
| $	ilde{d}_1, 	ilde{s}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1060      | 383       |
| $	ilde{d}_2, 	ilde{s}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1465      | 419       |
| $\tilde{b}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1169      | 1296      |
| $     \begin{array}{r} \tilde{b}_{2} \\ \chi_{1}^{0} \\ \chi_{2}^{0} \\ \chi_{3}^{0} \\ \chi_{4}^{0} \\ \chi_{4}^{\pm} \\ \chi_{1}^{\pm} \\ \chi_{2}^{\pm} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2367      | 2351      |
| $\chi_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 936       | 243       |
| $\chi^0_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 947       | 770       |
| $\chi_3^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1317      | 781       |
| $\chi_4^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2918      | 2864      |
| $\chi_1^{\pm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 937       | 765       |
| $\chi_2^{\pm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1301      | 2916      |
| $A_0, H_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2671      | 3529      |
| $TT\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2673      | 3531      |
| $\tilde{g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2470      | 735       |
| $	ilde{ u}_{1,2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1058      | 255       |
| $\tilde{\nu}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2645      | 1018      |
| $ \begin{array}{c} H^{-} \\ \tilde{g} \\ \tilde{\nu}_{1,2} \\ \tilde{\nu}_{3} \\ h \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121       | 119       |

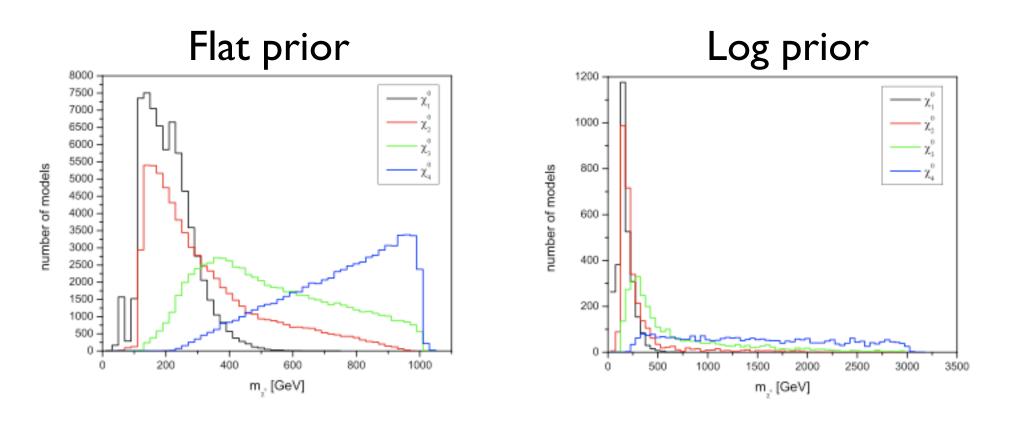


IOP HEPP 2009

### Best fit spectra

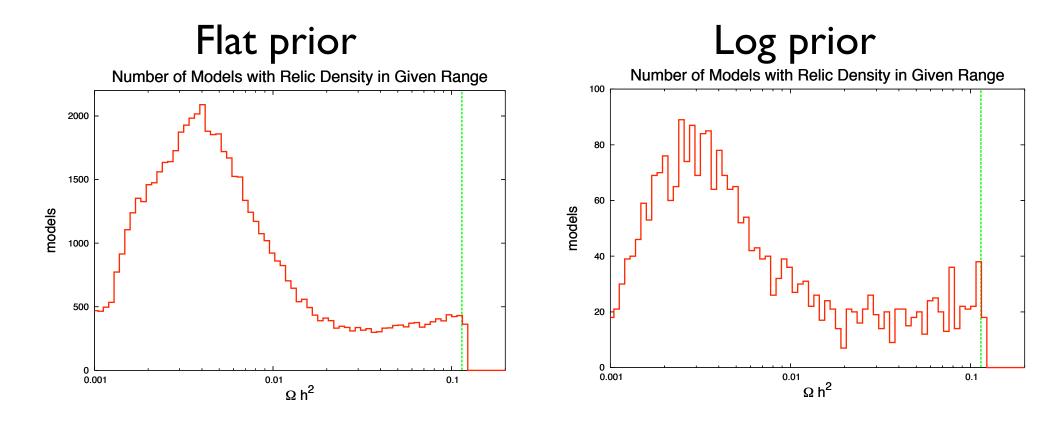
|                                                                                                                                                                                                                                               | Nat prior | Log prior |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| $	ilde{e}_L,	ilde{\mu}_L$                                                                                                                                                                                                                     | 1062      | 271       |
| $  \tilde{e}_R, \tilde{\mu}_R$                                                                                                                                                                                                                | 2310      | 251       |
| $	ilde{	au}_L$                                                                                                                                                                                                                                | 2651      | 1033      |
| $\begin{array}{c c} \tilde{\tau}_L \\ \tilde{\tau}_R \end{array}$                                                                                                                                                                             | 3740      | 3530      |
| $	ilde{u}_1, 	ilde{c}_1$                                                                                                                                                                                                                      | 1059      | 384       |
| $	ilde{u}_2,	ilde{c}_2$                                                                                                                                                                                                                       | 3067      | 1527      |
| $	ilde{t}_1$                                                                                                                                                                                                                                  | 2361      | 2354      |
| $	ilde{t}_2$                                                                                                                                                                                                                                  | 2665      | 2903      |
| $	ilde{d}_1, 	ilde{s}_1$                                                                                                                                                                                                                      | 1060      | 383       |
| $	ilde{d}_2, 	ilde{s}_2$                                                                                                                                                                                                                      | 1465      | 419       |
| $	ilde{b}_1$                                                                                                                                                                                                                                  | 1169      | 1296      |
| $\begin{array}{c c} \tilde{b}_{1} \\ \hline \tilde{b}_{2} \\ \hline \chi_{1}^{0} \\ \hline \chi_{2}^{0} \\ \hline \chi_{3}^{0} \\ \hline \chi_{4}^{0} \\ \hline \chi_{4}^{\pm} \\ \hline \chi_{1}^{\pm} \\ \hline \chi_{2}^{\pm} \end{array}$ | 2367      | 2351      |
| $\chi_1^0$                                                                                                                                                                                                                                    | 936       | 243       |
| $\chi^0_2$                                                                                                                                                                                                                                    | 947       | 770       |
| $\chi_3^0$                                                                                                                                                                                                                                    | 1317      | 781       |
| $\chi_4^0$                                                                                                                                                                                                                                    | 2918      | 2864      |
| $\chi_1^{\pm}$                                                                                                                                                                                                                                | 937       | 765       |
| $\chi_2^{\pm}$                                                                                                                                                                                                                                | 1301      | 2916      |
| $A_0, H_0$                                                                                                                                                                                                                                    | 2671      | 3529      |
|                                                                                                                                                                                                                                               | 2673      | 3531      |
| $\tilde{g}$                                                                                                                                                                                                                                   | 2470      | 735       |
| $\tilde{ u}_{1,2}$                                                                                                                                                                                                                            | 1058      | 255       |
| $\tilde{ u}_3$                                                                                                                                                                                                                                | 2645      | 1018      |
| $ \begin{array}{c} H^{\pm} \\ \tilde{g} \\ \tilde{\nu}_{1,2} \\ \tilde{\nu}_{3} \\ h \end{array} $                                                                                                                                            | 121       | 119       |



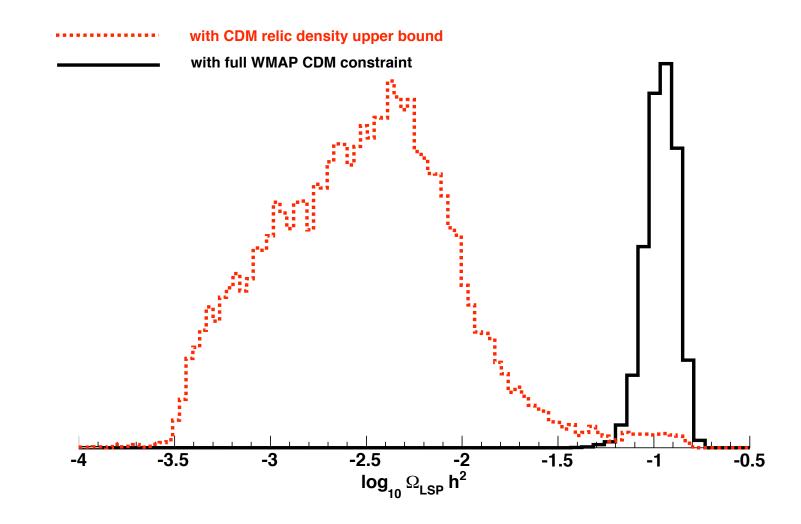

IOP HEPP 2009

42

- Berger et al. adopt a more statistical approach
  - ➡ Flat or log prior distributions ~10<sup>7</sup> points/models
  - Allowed intervals for observables, central values for SM parameters
     Models simply accepted or rejected
- Less prior dependence found (but not Bayesian analysis)


• C.f. earlier work (flat prior only) by Profumo & Yaguna

### Neutralino masses




• N.B. Different scales

# **Relic LSP density**



In most models LSP only a small fraction of dark matter!



• Similar result from AbdusSalam et al. if they relax WMAP constraint

## Conclusions

- Many powerful new techniques and tools
  - NLO wish-list will soon be completed
  - MCs matched to NLO and multijets
  - Fast, IR-safe, practical jet algorithms
  - Powerful parameter space searches
- Why the sudden surge in progress?
  - LHC attracts clever young people to phenomenology!