UK L1 prototype revision 3 module Clive Barham, Sven Katvars and Steve Wotton

Contents

Clive Barham, Sven Katvars and Steve Wotton1Contents2Status register summary4Status register details5Register 0, General status5Register 1, 100baseTX register 05Register 2, 100baseTX register 165Register 3, 100baseTX register 15Register 4, Buffer remainder5Register 5, TTCrx L0 (L1ACC) counter5Register 7, L1 buffer row count, memories 0, 1 and 25Register 8, event counter low6
Status register summary4Status register details5Register 0, General status5Register 1, 100baseTX register 05Register 2, 100baseTX register 165Register 3, 100baseTX register 15Register 4, Buffer remainder5Register 5, TTCrx L0 (L1ACC) counter5Register 6, L1 buffer row count, memories 0, 1 and 25Register 7, L1 buffer row count, memories 3, 4 and 56
Status register details5Register 0, General status5Register 1, 100baseTX register 05Register 2, 100baseTX register 165Register 3, 100baseTX register 15Register 4, Buffer remainder5Register 5, TTCrx L0 (L1ACC) counter5Register 6, L1 buffer row count, memories 0, 1 and 25Register 7, L1 buffer row count, memories 3, 4 and 56
Register 0, General status5Register 1, 100baseTX register 05Register 2, 100baseTX register 165Register 3, 100baseTX register 15Register 4, Buffer remainder5Register 5, TTCrx L0 (L1ACC) counter5Register 6, L1 buffer row count, memories 0, 1 and 25Register 7, L1 buffer row count, memories 3, 4 and 56
Register 0, General status5Register 1, 100baseTX register 05Register 2, 100baseTX register 165Register 3, 100baseTX register 15Register 4, Buffer remainder5Register 5, TTCrx L0 (L1ACC) counter5Register 6, L1 buffer row count, memories 0, 1 and 25Register 7, L1 buffer row count, memories 3, 4 and 56
Register 1, 100baseTX register 0
Register 2, 100baseTX register 16
Register 4, Buffer remainder
Register 4, Buffer remainder
Register 5, TTCrx L0 (L1ACC) counter
Register 6, L1 buffer row count, memories 0, 1 and 25Register 7, L1 buffer row count, memories 3, 4 and 56
Register 7, L1 buffer row count, memories 3, 4 and 5
Register 9, event counter high
Register 10, parity error counters
Register 11, parity error counters
Register 12, Last but one transmitted word
Register 13, Last transmitted word
Register 14, TTCrx ID sensed
Register 15, egress flow control counters
Register 16+n, channel n status
Register 28-31, TTCrx register
Control register summary
Control register details
Register 0, read control
Register 1, read start address
Register 2, L0 emulator control
Register 3, TTC A channel pulser count
Register 4, TTC A channel pulser interval
Register 5, TTC encoder control
Register 6, TTC B channel data (low)
Register 7, TTC B channel data (high)
Register 16+n, channel n configuration register
Register 31, IP source address
JP pin assignments
Front panel LEDs
Usage notes
Setting up13
The configuration and control interface
Readout
Ethernet frame capture
Using the Dell PowerConnect 2716
The TTC encoder
Ethernet frame format
Data format

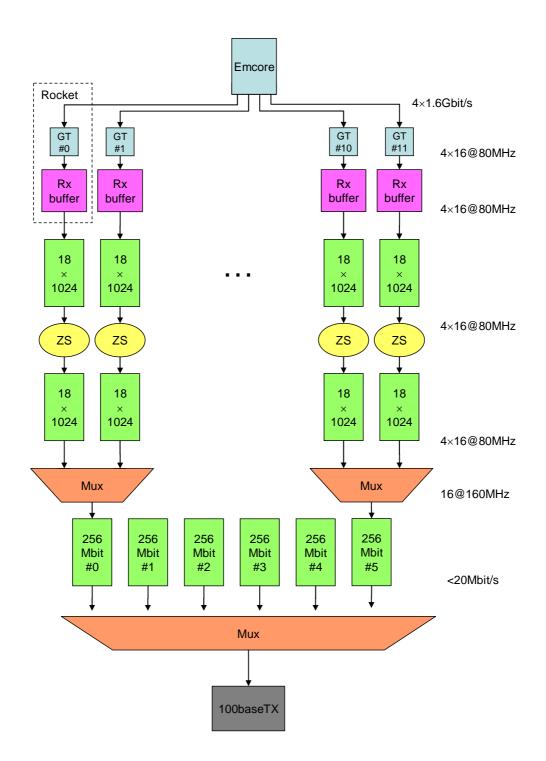


Figure 1 Dataflow and buffering

Status register summary

Register number	Description	
0	General status	
1	E100(0)	
2	E100(16)	
3	E100(1)	
4	Buffer remainder	
5	TTCrx L0 (L1ACC) count	
6	Buffer count 0-2	
7	Buffer count 3-5	
8	Event count low	
9	Event count high	
10	Parity error counters	
11	Parity error counters	
12	E100 GT CRC	
13	E100 GT CRC	
14	TTC ID sense	
15	Flow control counters	
16	In[0] status	
17	In[1] status	
18	In[2] status	
19	In[3] status	
20	In[4] status	
21	In[5] status	
22	In[6] status	
23	In[7] status	
24	In[8] status	
25	In[9] status	
26	In[10] status	
27	In[11] status	
28	TTC[0]	
29	TTC[1]	
30	TTC[2]	
31	TTC[3]	
·		

Status register details

Register 0, General status

Bit	Description	Notes
0	Global reset status	0 = not reset, $1 = $ reset
1	Global ready status	0 = ready, $1 = $ not ready
2	Top system clock DLL status	0 = not locked, 1 = locked
3	Bottom system clock DLL status	0 = not locked, 1 = locked
4	TTCrx ready status	0 = not ready, 1 = ready
8	SDRAM initialisation flag	0 = not ready, $1 = $ ready
9	Transmitter fault status	0 = OK, 1 = fault
10	100baseTX management status	0 = ready, $1 = $ not ready
11	Receiver signal detect status	0 = no signal, 1 = signal detected

Register 1, 100baseTX register 0

Bit	Description	Notes
150	100base TX MDI register 0	See manual

Register 2, 100baseTX register 16

Bit	Description	Notes
150	100base TX MDI register 16	See manual

Register 3, 100baseTX register 1

Bit	Description	Notes
150	100base TX MDI register 1	See manual

Register 4, Buffer remainder

Bit	Description	Notes
70	Word remainder of last used buffer row, 0-2	
158	Word remainder of last used buffer row, 3-5	

When reading data from the L1 buffers, the last occupied memory row may not be fully occupied with valid data. This register contains the number of valid 32-bit words in the last row containing valid data or 0 if the last row contains no valid data.

Register 5, TTCrx L0 (L1ACC) counter

Bit	Description	Notes
150	Number of L0 triggers seen	

Register 6, L1 buffer row count, memories 0, 1 and 2

Bit	Description	Notes
140	Number of complete rows written	1,2,3
1.	The register contains the number of completed memory rows for memories 0,	
	1 and 2. Partial rows are not counted so an additional row should always be	

read to ensure that all valid data are extracted.

2. Memories 0, 1 and 2 share the same memory controller so there is only one counter for the three memories.

3. Each memory contains data from two input channels.

Register 7, L1 buffer row count, memories 3, 4 and 5

Bit	Description	Notes
140	Number of complete rows written	1,2,3
1. The register contains the number of completed memory rows for memories 3,		
4 and 5. Partial rows are not counted so an additional row should always be		
read to ensure that all valid data are extracted.		
2 1	Mamorian 2 1 and 5 share the same mamo	my controllor on there is only one

- 2. Memories 3, 4 and 5 share the same memory controller so there is only one counter for the three memories.
- 3. Each memory contains data from two input channels.

Register 8, event counter low

Bit	Description	Notes
150	Number of events written, low word	1,2

1. The register contains the lower 16 bits of the event counter.

2. The event counter is only sensitive to the lower 6 input channels.

Register 9, event counter high

Bit	Description	Notes
70	Number of events written, high byte	1,2

1. The register contains the high 8 bits of the event counter.

2. The event counter is only sensitive to the lower 6 input channels.

Register 10, parity error counters

Bit	Description	Notes
70	Parity error counter	channel 0
158	Parity error counter	channel 1

Register 11, parity error counters

Bit	Description	Notes
70	Parity error counter	channel 2
158	Parity error counter	channel 3

Register 12, Last but one transmitted word

Bit	Description	Notes
150	Last but one word transmitted	GT transceiver RXD

Register 13, Last transmitted word

Bit	Description	Notes
150	Last word transmitted	GT transceiver RXD

Register 14, TTCrx ID sensed

Bit	Description	Notes
70	TTCrx ID sensed from pullup/downs	1

1. The value 0x41 is currently set for no particular reason.

Bit	Description	Notes
30	Events out of egress RAM	1
74	Events into egress RAM	1
118	Events out of egress multiplexer	1
1512	Events into egress multiplexer	1

Register 15, egress flow control counters

1. These 4 counters must normally take the same value and increment by one for each frame transmitted.

Register 16+n, channel n status

Bit	Description	Notes
0	Inhibit status	0 = not inhibited, $1 = $ inhibited
1	Loss of sync status	0 = synced, $1 =$ not synced
74	RX buffer overflow counter	Normally unchanging
118	RX clock correction counter	Normally counting
1512	ZS FIFO event counter	Increments per event

Register 28-31, TTCrx register

Bit	Description	Notes
70	Register value	See TTCrx manual
148	Register ID	See TTCrx manual
15	Read/write flag	0 = write, $1 =$ read

Control	register	summary
---------	----------	---------

Register number	Description	
0	DRAM read select	
1	DRAM read address	
2	L0 emulator control	
3	TTC A channel pulser count	
4	TTC A channel pulser interval	
5	TTC encoder control	
6	TTC B channel data (low)	
7	TTC B channel data (high)	
8		
9		
10		
11		
12		
13		
14		
15		
16	In[0] control	
17	In[1] control	
18	In[2] control	
19	In[3] control	
20	In[4] control	
21	In[5] control	
21	In[6] control	
23	In[7] control	
24	In[8] control	
25	In[9] control	
26	In[10] control	
27	In[11] control	
28		
29		
30		
31	IP source address	

Control register details

Register 0, read control

Bit	Description	Notes	
20	Memory select	1	
3	Transmission trigger	2	
74			
158	Number of rows requested	3	

1. There are 6 memories, numbered 0 to 5.

2. A **transition** from low to high triggers the transmission of the desired number of memory rows from the selected memory. Therefore the normal procedure would be to first update the selected memory and number of rows keeping bit 3 low, then write the same value to the register again with bit 3 high.

3. The number of rows transmitted will be one more than the number written to the register.

Register 1, read start address

Bit	Description	Notes
140	Row number of first row	1
15	Request all rows	Not implemented yet

1. Each group of requested rows starts from the beginning of the memory. To read more rows than can be done in a single transaction, update this register with the start row before triggering the transmission.

Register 2, L0 emulator control

Bit	Description	Notes
0	Emulator inhibit	0 = not inhibited, $1 = $ inhibited
1	LHCb/ALICE mode select	0 = LHCb, 1 = ALICE
128	Burst count request	

This register controls the L0 emulator which can generate events, or a burst of events, for each L0 trigger received via the TTCrx. Events can be either ALICE or LHCb format. When sent as a burst, the inter-event gap is the minimum allowed according to the LHCb specification.

Register 3, TTC A channel pulser count

Bit	Description	Notes
140	Pulse count	[0,32767]
15	Pulse train trigger	Trigger on low to high transition

Registers 3 and 4 control a pulser that is synchronous to the clk40 signal of the TTCrx. Do not expect the pulser to work properly if the TTCrx is not properly locked to the incoming TTC clock.

Register 4, TTC A channel pulser interval

Bit	Description	Notes
150	Pulse interval	[0,65535]

Bit	Description	Notes
0	B command trigger	Trigger on low to high transition
1	B mode	0=short, 1=long
2	Auto channel A pulse after calibration	0=disabled, 1=enabled
3	External A channel trigger enable	0=disabled, 1=enabled
4	External A channel trigger mode	0=edge, 1=clocked

Register 5, TTC encoder control

Register 6, TTC B channel data (low)

Bit	Description	Notes
150	D[150]	1
1 For short commands only D[7, 0] are significant		

1. For short commands only D[7..0] are significant.

Register 7, TTC B channel data (high)

Bit	Description	Notes
150	D[3116]	

Register 16+n, channel n configuration register

Bit	Description	Notes
0	Zero suppression enable	0 = not enabled, $1 = $ enabled
1	Channel inhibit	0 = not inhibited, $1 = $ inhibited
2	LHCb or ALICE mode	0 = LHCb, 1 = ALICE
3	Mode force flag	0 = header detection, $1 =$ force

This group of registers provide some control over the behaviour of the 12 input channels.

Unused channels are normally automatically sensed and inhibited on reset so the inhibit control is not normally necessary. However, the loss-of-synchronisation indicator uses the inhibit control bits in these registers to mask off the corresponding channels and therefore gives a more useful indication of a problem if unused channels are manually inhibited.

The default operation is to automatically sense whether the incoming data is LHCb or ALICE mode. To force a particular mode use bit 3 of these registers. Bit 2 then selects the desired mode. Bit 2 is ignored if bit 3 is zero.

Register 31, IP source address

Bit	Description	Notes
140	Id	2 low octets of IP source address
15	Update trigger	Trigger on high to low transition

The low 15 bits of this register are used to set the low 15 bits of the IP source address and serve also as a module serial number. The high 16 bits of the IP address are hardcoded in the FPGA firmware. This register is intended to be set automatically on reset of the C8051 microcontroller and the value should be set uniquely. However, the register can be modified through the configuration register if required. A low-to-high transition of bit 15 triggers the update.

JP pin assignments

Many of the signals on the monitor pins are for diagnostic use and are subject to change. The ttc_pulse signals however can be assumed to be stable.

JP (1)	Description	IO standard (2)
2-	ttc_a_channel-	LVDS out (3)
2+	ttc_a_channel+	LVDS out (3)
3–	ram_rdfifo_we[0]	LVCMOS25 out
3+	TXCLOCK_E100	LVCMOS25 out
4-	ttc_a_channel-	LVDS out
4+	ttc_a_channel+	LVDS out
5-	ttcrst	LVCMOS25 out
5+	reset	LVCMOS25 out
6-	ttc_b_channel-	LVDS out
6+	ttc_b_channel+	LVDS out
7–	ttc_pulse	LVCMOS25 out
7+	reset_in	LVCMOS25 out
8-	e100_txclkdv	LVCMOS25 out
8+	SERBCHAN_TTC	LVCMOS25 out
9–	cfg_ttc_auto_pulse	LVCMOS25 out
9+	mclk	LVCMOS25 out
10-	trigger_a_channel-	LVDS in
10+	trigger_a_channel+	LVDS in
11-	ttci2c_reset_i2c	LVCMOS25 out
11+	ttci2c_en	LVCMOS25 out
12-	ttci2c_ready	LVCMOS25 out
12+	ttci2c_active	LVCMOS25 out
13-	ttci2c_sda	LVCMOS25 out
13+	ttci2c_scl	LVCMOS25 out

1. The -+ symbols indicate the polarity when used for differential signalling. The left-hand pin of each pair is the positive side.

2. 2.5V signalling is used for all monitor pins.

3. On some boards these header pins are removed and the signal routed to the front-panel RJ-11 connector.

Front panel LEDs

Front panel LEDs are numbered 0,1,2 with 0 at the top of the module.

LED	Description
Green[0]	Always on
Green[1]	Top and bottom system clock DCMs locked.
Green[2]	Global ready status.
Yellow[0]	TTCrx L0 (L1ACC) trigger.
Yellow[1]	L1 buffer writing. Or of all buffers.
Yellow[2]	L1 buffer reading. Or of all buffers.
Red[0]	RX loss of sync. Or of all unmasked input channels.
Red[1]	TTCrx not ready.
Red[2]	TTCrx I2C ack error.

Usage notes

Setting up

The card is 6U VME but won't fit in an old standard VME crate because the card guides are too narrow. I think the VME64 standard has wider card guides and these should be OK. However, the card guides can be removed from the corresponding slot and the module secured with front panel screws. Alternatively, bench mount the board and use a 5V/5A power supply and a fan to cool the board. The fan is mandatory as both the FPGA and the optical receivers get hot.

The non-volatile memory for the FPGA configuration requires the Xilinx Parallel IV cable or USB cable. It is possible to download directly to the FPGA whenever the module is powered using the ordinary (Xilinx Palallel III) cable.

For the Ethernet use a second 100Mbit NIC in the PC so that the L1 board is isolated from the normal network. For a point-to-point connection a special NIC-to-NIC Ethernet cable is needed (the standard ones won't work because the TX and RX have to be crossed). Alternatively use a standard Ethernet switch with standard cables. A switch is also convenient for applications using multiple L1R3 boards.

The configuration and control interface

All configuration and control proceeds via the sending and receiving of messages on the USB interface. Messages are sent to the module to request an action and some request types result in the module sending a response message. Command messages have the following structure:

```
struct devicePacket_t
{
    unsigned char cmd;
    unsigned char dummy;
    unsigned short length;
    unsigned char uc[4];
    unsigned char RegisterId;
    unsigned char dummy2;
    unsigned short ConfigurationData;
};
```

The length field contains the length of the data part of the message in bytes and should always be 4 though is ignored at present as all messages sent to the module have the same fixed length. The cmd field contains the message type and these are briefly summarised below:

Туре	Description	Response
StatusRequest	Request status block	Yes
ResetRequest	Request system reset	Yes
ConfigurationData	Request configuration update	Yes
L1ResetRequest	L1 fast reset	No

The RegisterId and ConfigurationData fields are used only for

ConfigurationData commands and contain the configuration register ID and data respectively.

When the command requires a response, the returned message has the following structure:

```
struct devicePacket_t
{
    unsigned char cmd;
    unsigned char dummy;
    unsigned short length;
    unsigned short status[32];
};
```

The received cmd field will always contain the value

deviceHeader_t::Status. The returned status array contains the current values of the 32 16bit status registers. Any response resulting from a command must be read by the application before the next command request.

Readout

The board uses USB for configuration and control and the 100Mbit Ethernet for the data transmission.

A simple L1 Ethernet reader based on the same library used by Ethereal exists. It compiles under cygwin and maybe under VC++. It can be used as a model for other applications.

The board auto-senses the connected inputs on reset and auto-senses LHCb or ALICE mode so no configuration is required. After reset, the board is ready to receive triggers. System reset causes a complete reset (similar to power-up reset except that the FPGA firmware is not reloaded) and is fairly slow. A faster "L1 reset" resets only the buffer read and write pointers without wiping the L1 buffer contents.

After sending a burst of triggers, the data can be transmitted across the 100baseTX link. The amount of data that has been buffered can be determined by reading the buffer counter and event counter status registers. The general idea is that a block of data is requested via the USB interface by interacting with the read control registers. The 6 memory buffers (each containing data from two input channels) are read out individually. The chosen memory, the read start address and amount of data must first be set then the actual data transmission can be triggered. The transmission proceeds without any flow control so care must be taken not to request more rows than might overflow a NIC or kernel buffer. A typical readout sequence might therefore proceed as follows:

- 1) General reset
- 2) L1 (fast) reset
- 3) Wait 10ms
- 4) Enable triggers
- 5) Acquire events
- 6) Inhibit triggers
- 7) Read number of buffer rows written (status register 6,7)
- 8) Read number of events (status register 8,9)
- 9) Set read start address to beginning of buffer (write 0 to control register 1)
- 10) Select memory and number of rows to transmit (e.g. to request 10 rows from memory 2, write 0x0902 to control register 0)
- 11) Trigger the transmission by writing the same word with the trigger bit (bit 3) set (i.e. write 0x090a to control register 0)
- 12) Go to 9) and repeat until you have extracted all the data.
- 13) Go to 2).

Note that when using several boards at the same time, the data source can be distinguished by the IP source address which is supposed to be unique and which is normally configurable in firmware but can be changed through the configuration interface if required. Note that no sleeps should be needed at any time other than after the fast reset. Simultaneously receiving and transmitting events is not likely to work so it is important to ensure that triggers are inhibited before requesting data transmission.

Ethernet frame capture

The WinPcap Ethernet frame capture tools can be used to capture Ethernet frames from the L1 board and the Ethereal program is a convenient tool for debugging. As there is no flow control in the data transmission from the L1 boards and it is possible that Ethernet infrastructure will drop frames when congestion occurs, it is necessary that the frame capture application implements a retry mechanism when frames are lost by requesting the retransmission of frames. For maximum performance it is best to choose a small value of the read timeout parameter in the call to pcap_open(). A value of 10ms should be OK.

Each Ethernet frame contains 1024bytes (one row) of data from a memory buffer. Therefore the last frame with valid data might not be fully occupied since the frame size is not an integral number of event blocks when headers are taken into account. To simplify the extraction of the valid data without the application having to keep track of the number of events and readout mode a register is provided that keeps track of the number of valid words in the last occupied buffer. A value of zero in the register means that the entire last frame contains no valid data. A non-zero value means that there was at least some valid data in the last frame.

Using the Dell PowerConnect 2716

The switch needs to be configured in "managed mode" as some configuration settings must take non-default values.

The L1 cards use IP addresses in the range 192.168.2.16-192.168.2.21. The switch IP address (and NIC IP address) should use addresses on the same network. The default address of the Dell switch is 192.168.2.1 which is therefore OK.

The L1 card fast Ethernet port has auto-negotiation disabled and is set to 100Mbs, full-duplex. The network switch ports should be set similarly.

The "storm control" option must be disabled on all ports used for L1 traffic otherwise the switch may discard packets at high rate.

The TTC encoder

The module is capable of being a TTC source encoder. Both A and B channel LVDS outputs are provided that can be coupled via LVDS-to-ECL translators to the TTCvx module or similar.

The A-channel encoder can generate a stream of regularly spaced pulses. Consecutive pulses are supported. The pulser can be triggered in software or using an external LVDS input. The external input can be either edge triggered or level sensitive (clocked).

The B-channel encoder can generate any short or long command on the B-channel. A special mode is supported that automatically triggers the A-channel pulser when an LHCb calibration command is received on the B-channel. The delay between the

calibration command and A-channel pulse is set using the A-channel pulser interval. It is not possible to synchronise the B-channel commands to a particular bunch-crossing.

Ethernet frame format

Each Ethernet frame is formatted according to the C++ struct llframe_t and its sub-structs. The LHCb MEP header is padded with a few extra bytes. The standard MEP fields contain dummy values. Each frame encapsulates one row of memory containing the RICH data in the field llframe_t.uc[1024]. The complete frame is also padded with some extra bytes beyond the 1024 bytes of RICH data. These must be discarded when concatenating consecutive memory rows.

```
struct llframe t
ł
 ethernetHeader t ethernetHeader;
  ipHeader t ipHeader;
 mepHeader t mepHeader;
 union
    unsigned char uc[1024];
    unsigned ui[256];
  };
};
struct ethernetHeader t
{
 unsigned char destinationAddress[6];
 unsigned char sourceAddress[6];
 unsigned short type;
};
struct ipHeader t
ł
 unsigned char versionLength;
 unsigned char dsf;
 unsigned short length;
 unsigned short id;
 unsigned char flags;
 unsigned char fragmentOffset;
 unsigned char ttl;
 unsigned char protocol;
 unsigned short checksum;
 unsigned char sourceAddress[4];
 unsigned char destinationAddress[4];
};
struct mepHeader t
ł
 unsigned char mep[22];
};
```

Data format

After concatenation of the RICH data from the Ethernet frames the data are formatted according to one of the following structs in non-zero-suppressed mode. The byte ordering of the header and data words in the Ethernet buffer is such that the RICH data will appear correct when read and displayed as 32-bit words assuming that the processor uses Intel byte ordering.

```
struct l1LHCbData_t
{
    unsigned l1Header;
    unsigned l0Header[2];
    unsigned pixelData[32];
    unsigned l0Parity;
};
struct l1ALICEData_t
{
    unsigned l1Header;
    unsigned l0Header[2];
    unsigned pixelData[256];
    unsigned l0Parity;
};
```

The L0 headers, pixel data and parity trailer are transported unmodified from the PINT. Consult the PINT documentation for details. The L1 header word is formatted according to Table 1.

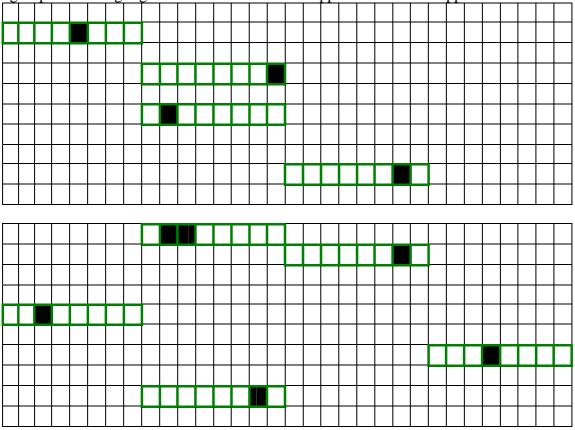
Bit	Description	Notes
31	Reserved	
3016	Event Id	
1513	Memory bank Id	
12	LHCb/ALICE flag	
11	Zero suppression flag	
100	Zero suppression word count	

Table 1 L1 header format

Non-zero-suppressed pixel HPD data

The format of the data block corresponding to one HPD is shown below for non-zero-suppressed data.

L1 header
L0[0]
L0[1]
Row 0
Row 1
Row 2
Row 3
Row 30
Row 31
Parity


Zero-suppressed pixel HPD data

The zero suppressed data will be encoded as a list of bytes having at least one bit set. For LHCb-mode data, 7 address bits are sufficient to uniquely identify a byte within an HPD. There for each non-zero byte can be encoded in a 16 bit word containing the 7 bits of address and 8 bits of data. This is not true in ALICE mode, in this case "fiducial" bytes are always present in the data block.

r						-	_	-	_			-	_		_		
31	30 29							9	8	7	6	5	4	3	2	1	0
L1 header																	
	L0[0]																
L0[1]																	
0	Address 1	Byte 1	0	Addre	ss	0				Ву	'te	0					
0	Address 3	Byte 3	0	Addre	ss	2				Ву	'te	2					
0	Address 5	Byte 5	0	Addre		Byte 4											
0	Address 7	Byte 7	0	Addre	SS	б				Ву	/te	б					
0			0														
0	Address n-1	Byte n-1	0	Addre	SS	n-2	2			Ву	/te	n-2	2				
0	Unused	Unused	0	Addre	ss	n				Ву	/te	n					
		Parit	УY														

Example of encoding of HPD data (LHCb mode)

The following two arrays represent the pattern of hits from two separate HPDs in an event. The full array is 32 by 32 pixels but only the first 10 rows of each are shown and the other rows contain no hit pixels in this hypothetical event. Rows are horizontal, columns are vertical (row,column)=(0,0) is at top left of each array. The groups of bits highlighted are those that would appear in the zero-suppressed format.

Assuming that the zero-suppression algorithm is applied to the first block but not the second the following data block shows the resulting encoding:

			T T																	9	8	7	6	5	4	3	2	1	0
													μ.		<u> </u>					9	0	/	6	3	4	3	Z	1	0
	L1 header																												
	-													L	0[1]														
0			0x0d																	С 0 ж	0x10								
0			0x22				0x40 0 0x15 0x													x02									
Parity																													
30 pad words																													
L1 header																													
														L	0[0]														
															0[1]														
													0×		5000	00				 									
													0×	٥02	0004	00													
													0×	٥٥٥	0000	00													
															0000														
															0000														
															0000														
															0000														
															0000														
)400														
															0000														
												22					- 0												
<u> </u>												22	2 wo		conta	Inin	gυ												
														- Pa	rity														