AMSB Phenomenology

Alan Barr Cambridge SUSY Working Group

• Analysis of a test AMSB model

• Find
$$\pi^{\pm}$$
 from $\chi_1^{\pm} \rightarrow \chi_1^0 \pi^{\pm}$

• Calculation of $m(\chi_1^+) - m(\chi_1^0)$

Alan Barr

AMSB Model

- Characteristic neardegeneracy of χ_1^{0} (LSP) and χ_1^{+} masses
- $\Delta m < m(\pi)$
 - Long lived χ_1^+
 - 'cannonball'
- $\Delta m > 1 \text{ GeV}$
 - multi-hadron decay

- Our Model:
 - RPC
 - $-\tan\beta = 10$
 - $m_{3/2} = 36 \text{ TeV}$
 - $m_0 = 500 \text{ GeV}$
 - $-\mu + ve$
- Giving:
 - $m(\chi^+) = 99.0 \text{ GeV}$
 - $m(\chi^0) = 98.4 \text{ GeV}$
 - $-\Delta m = 631 \text{ MeV}$
 - $c\tau = 360 \,\mu m$

Examine model with $c\tau \Rightarrow$ vertexing

nrr

MC Simulation

- HERWIG6.1
 - 2 parton \rightarrow 2 sparticle
 - min p_T of 300 GeV
 - 130,000 events @ 4.5 pb
 = 29 fb⁻¹ ≈ 3 years low luminosity
 - Underlying event simulation
 - SM background
 - QCD \rightarrow t t-bar
 - min p_T of 300 GeV
 - 580,000 @ 21 pb = 27 fb⁻¹
 - Total time for generation:
 - ~ 6 hours on HPCF

Detector Simulation

Sample Event (signal π 's coloured)

- ATLFAST2.21
 - Detector resolutions:
 - p_T
 - Impact parameters, $d_0 z_0$
 - calorimeter
 - multiple scattering
 - B-Field
 - Missing E_T

Signature: low p_T pions, in events with large missing p_T

• •

Catching the π 's...

- Isolation in η-φ – 0 or 1 R_{ij}< 0.15 – remove jets No other
- charged track consistent with $m_{ij} < 0.7 \text{ GeV}$ - remove K_s &

resonances

$$P_{\rm ij} \equiv \sqrt{\left(\Delta\phi\right)^2 + \left(\Delta\eta\right)^2}$$

 m_{ij} = invariant mass assuming $m_i = m_j = m(\pi)$

Alan Barr

•

•

Vertexing

Enforcing maximum impact parameter (despite chargino lifetime)

Impact Parameter Resolution

- ATLFAST models impact parameter error as sum of:
 - narrow gaussian (tracker resolution)
 - wide gaussian (multiple scattering)

Cuts Summary

- $E_T(miss) > 500 \text{ GeV}$
- Exactly 2 pions with
 - $p_{T}(\pi) > 0.7 \text{ GeV}$
 - $|\eta(\pi)| < 2.0$
 - 0 or 1 other track within η - ϕ of 0.15
 - no other track with combined invariant mass < 0.6 GeV
 - $d_0(\pi) < 0.04 \text{ cm}$
 - $z_0(\pi) < 0.03 \text{ cm}$

- Uses trigger objects:
 - $E_{\rm T}$ (miss)
 - Jets
 - Isolated e / μ / γ
- But $E_T(miss) > 500 \text{ GeV}$
 - Jets/leptons from previous
 decays ⇒ trigger for all of
 ~2k events which passed
 cuts
- Overall Efficiency (Cuts + Trigger) 2k / 130k

 $\epsilon \approx 1.5 \%$

Mass Reconstruction

$$M_{\mathrm{T2}} \equiv \frac{\mathrm{Min}}{\mathbf{p}^{(1)} + \mathbf{p}^{(2)} = \mathbf{p}_{\mathrm{T}}} \left[\max\left\{ m_{\mathrm{T}} \left(\mathbf{p}_{\mathrm{T}}^{\pi(1)}, \mathbf{p}^{(1)} \right), m_{\mathrm{T}} \left(\mathbf{p}_{\mathrm{T}}^{\pi(1)}, \mathbf{p}^{(1)} \right) \right\} \right] \qquad \text{(Lester, Summers)}$$
$$m_{\mathrm{T}}^{2} \left(\mathbf{p}_{\mathrm{T}}^{\pi(1)}, \mathbf{p}_{\mathrm{T}}^{\tilde{\chi}(1)} \right) \equiv m(\pi)^{2} + m(\tilde{\chi}_{1}^{0})^{2} + 2\left(E_{\mathrm{T}}^{\pi} E_{\mathrm{T}}^{\tilde{\chi}} - \mathbf{p}_{\mathrm{T}}^{\pi} \cdot \mathbf{p}_{\mathrm{T}}^{\tilde{\chi}} \right)$$

- Upper edge of M_{T2} - m_{LSP} measures $m(\chi_1^+) - m(\chi_1^0)$
- Little tt background
- Insensitive to calorimeter resolution

Absolute mass

LSP mass measurable to 12% by measuring other kinematic endpoints (Paige et. al.) e.g.

$$- \mathbf{M}_{\mathbf{l}\mathbf{l}} \text{ from } \widetilde{\chi}_{2}^{0} \rightarrow \widetilde{l} \rightarrow \widetilde{\chi}_{1}^{0}$$

$$- \ M_{bb} \ from \ \widetilde{g} \rightarrow \widetilde{b} \rightarrow \widetilde{\chi}^{\scriptscriptstyle 0}_{\scriptscriptstyle 1}$$

• May be able to improve m_{LSP} measurement

Summary

• So Far:

- Chargino decay may be observable at ATLAS
- Variable M_{T2} useful for measuring $m(\chi_1^+) m(\chi_1^0)$
- Future:
 - More realistic underlying event
 - Other SUSY particles (sleptons etc)

Alan Barr

- Better measurement of overall mass scale
- Other SM background?
- Suggestions:

- ?