Using Spins to Distinguish Models at the LHC

Jennifer Smillie, Cambridge

Planck 06

J. Smillie, Planck 06 – p. 1

Each Standard Model (SM) particle has

 a tower of excited Kaluza- * one supersymmetric part-Klein (KK) modes
 ner

$$q_L \leftrightarrow q_{L_n}^*, \ l \leftrightarrow l_n^*$$

 $q_L \leftrightarrow \tilde{q}_L, \ l \leftrightarrow \tilde{l}$

Each Standard Model (SM) particle has

- a tower of excited Kaluza- * one supersymmetric part-Klein (KK) modes
 ner
 - $q_L \leftrightarrow q_{L_n}^*, \ l \leftrightarrow l_n^* \qquad \qquad q_L \leftrightarrow \tilde{q}_L, \ l \leftrightarrow \tilde{l}$

The spin of the corresponding particle

• is the same as the SM \star <u>differs</u> by 1/2 to the SM

Each Standard Model (SM) particle has

- a tower of excited Kaluza- * one supersymmetric part-Klein (KK) modes
 ner
 - $q_L \leftrightarrow q_{L_n}^*, \ l \leftrightarrow l_n^* \qquad \qquad q_L \leftrightarrow \tilde{q}_L, \ l \leftrightarrow \tilde{l}$

The spin of the corresponding particle

• is the same as the SM \star differs by 1/2 to the SM

A typical mass spectrum is

- very degenerate
- ★ less degenerate

Each Standard Model (SM) particle has

- a tower of excited Kaluza- * one supersymmetric part-Klein (KK) modes
 ner
 - $q_L \leftrightarrow q_{L_n}^*, \ l \leftrightarrow l_n^* \qquad \qquad q_L \leftrightarrow \tilde{q}_L, \ l \leftrightarrow \tilde{l}$

The spin of the corresponding particle

• is the same as the SM \star differs by 1/2 to the SM

A typical mass spectrum is

very degenerate
 * less degenerate

Model has a \mathbb{Z}_2 symmetry:

• KK-parity * R-parity

UED versus SUSY

Level 1 UED modes and R-parity conserving SUSY have common key experimental signatures:

- New particles are produced in pairs,
- events will have missing energy,

so we must find a way to differentiate between these two models.

UED versus SUSY

Level 1 UED modes and R-parity conserving SUSY have common key experimental signatures:

- New particles are produced in pairs,
- events will have missing energy,

so we must find a way to differentiate between these two models.

SPIN

We will try to extract information about the spin of the particles produced at the Large Hadron Collider (LHC).

JS & Bryan Webber [JHEP 10 (2005) 069]

Spin

Alan Barr showed that there was an observable difference in the invariant mass distributions of SUSY and the case with no spins in the following decay:

Spin

Alan Barr showed that there was an observable difference in the invariant mass distributions of SUSY and the case with no spins in the following decay:

We compare these with the same distributions for the UED decay:

 $q l^{\text{near}}$

We define the $q l^{near}$ invariant mass as

$$(\widehat{m}_{ql}^{\text{near}})^2 \propto (p_q + p_l^{\text{near}})^2 \simeq 2p_q.p_l^{\text{near}}$$

neglecting SM particle masses. It is normalised to take values between 0 and 1.

The invariant mass distribution is $\frac{1}{\Gamma} \frac{d\Gamma}{d\hat{m}} = \frac{dP}{d\hat{m}}$.

 $q l^{\text{near}}$

We define the $q l^{near}$ invariant mass as

$$(\widehat{m}_{ql}^{\text{near}})^2 \propto (p_q + p_l^{\text{near}})^2 \simeq 2p_q.p_l^{\text{near}}$$

neglecting SM particle masses. It is normalised to take values between 0 and 1.

The invariant mass distribution is $\frac{1}{\Gamma} \frac{d\Gamma}{d\hat{m}} = \frac{dP}{d\hat{m}}$.

We must consider $l^{\text{near}} = l^{-}$ and $l^{\text{near}} = l^{+}$ separately.

 $q \ l^{
m near}$

For the SPS1_a SUSY mass spectrum we find the following invariant mass distributions for case 1 and 2 respectively.

solid = UED spins dashed = SUSY spins

$q \; l^{ m near}$

However, the UED curves are mass-dependent. Here are the distributions for case 1 with a SUSY mass spectrum again, and a UED mass spectrum.

solid = UED spins

dashed = SUSY spins

jl

In reality, we can only hope to measure jet and lepton combinations.

These are given by:

$$\frac{\mathrm{d}P}{\mathrm{d}m_{jl^+}} = f_q \left(\frac{\mathrm{d}P_2}{\mathrm{d}m_{ql}^{\mathrm{near}}} + \frac{\mathrm{d}P_1}{\mathrm{d}m_{ql}^{\mathrm{far}}} \right) + f_{\bar{q}} \left(\frac{\mathrm{d}P_1}{\mathrm{d}m_{ql}^{\mathrm{near}}} + \frac{\mathrm{d}P_2}{\mathrm{d}m_{ql}^{\mathrm{far}}} \right)$$

for jl^+ , and

V

$$\frac{\mathrm{d}P}{\mathrm{d}m_{jl^-}} = f_q \left(\frac{\mathrm{d}P_1}{\mathrm{d}m_{ql}^{\mathrm{near}}} + \frac{\mathrm{d}P_2}{\mathrm{d}m_{ql}^{\mathrm{far}}} \right) + f_{\bar{q}} \left(\frac{\mathrm{d}P_2}{\mathrm{d}m_{ql}^{\mathrm{near}}} + \frac{\mathrm{d}P_1}{\mathrm{d}m_{ql}^{\mathrm{far}}} \right)$$

for jl^- .
We estimate $f_q \simeq 0.7$.

 jl^{\pm}

This gives the following jl^+ and jl^- distributions for the SPS 1a spectrum.

solid = UED spins

dashed = SUSY spins

jl Asymmetry

Chains

However,

J. Smillie, Planck 06 – p. 11

Chains

However,

are not the only possible spins in the chain. For example,

Chains

In fact there are 6 such possibilities:

For Example, $l^{near}l^{far}$

Plot invariant mass distribution as before, now for all 6 chains. The m_{ll}^2 distributions for SPS 1a masses and UED masses ($R^{-1} = 800 \text{GeV}, \Lambda R = 20$) are:

[C. Athanasiou, C. G. Lester, JS & B. R. Webber: hep-ph/0605286]

Discrimination

We calculate number of events N needed to disfavour S with respect to T by a factor R:

 $\frac{1}{R} = \frac{p(S)p(N \text{ events from } T|S)}{p(T)p(N \text{ events from } T|T)}$

This leads to, in the limit of large N,

$$N \sim rac{\log R + \log rac{p(S)}{p(T)}}{\operatorname{KL}(T,S)}$$
,

where

$$\operatorname{KL}(T,S) = \int_{m} \log\left(\frac{p(m|T)}{p(m|S)}\right) p(m|T) \mathrm{d}m$$

is the Kullback-Leibler distance.

Discrimination

We use this to give a quantitative measure of how different these distributions are:

	SFSF	FVFV	FSFS	FVFS	FSFV	SFVF	
SFSF							
FVFV	Assuming model on the left,						
FSFS	calculate the minimum number of events						
FVFS	needed for the left model to be R times						
FSFV	more likely than the top model						
SFVF							

Discrimination

We use this to give a quantitative measure of how different these distributions are:

	SFSF	FVFV	FSFS	FVFS	FSFV	<u>SFVF</u>
SFSF	∞	60486	23	148	15608	66
FVFV	60622	∞	22	164	6866	62
FSFS	36	34	∞	16	39	266
FVFS	156	173	11	∞	130	24
FSFV	15600	6864	25	122	∞	76
SFVF	78	73	187	27	90	∞

 \widehat{m}_{ll}^2 distributions at (SPS 1a)

Number of events, assuming FSFS is true, such that FSFS is 1000 times more likely than other model.

Conclusions

We have studied decays of a q* in a UED model and q̃ in the MSSM with full spin dependence, using invariant mass distributions. We found we can hope to distinguish them using jl[±].

Conclusions

- We have studied decays of a q^* in a UED model and \tilde{q} in the MSSM with full spin dependence, using invariant mass distributions. We found we can hope to distinguish them using jl^{\pm} .
- We have extended this to cover all possible spin assignments in the chain.

Conclusions

- We have studied decays of a q^* in a UED model and \tilde{q} in the MSSM with full spin dependence, using invariant mass distributions. We found we can hope to distinguish them using jl^{\pm} .
- We have extended this to cover all possible spin assignments in the chain.
- We have calculated lower bounds on the number of events necessary to distinguish models for all the possible invariant mass combinations.

Production

We calculated production matrix elements for all UED $2 \rightarrow 2$ strong processes and added these to HERWIG to calculate (in pb):

Masses	Model	$\sigma_{\rm all}$	σ_{q^*}	$\sigma_{ar{q}^*}$	f_q
UED	UED	252	163	83	0.66
UED	SUSY	28	18	9	0.65
SPS 1a	UED	487	239	103	0.70
SPS 1a	SUSY	55	26	11	0.70

SUSY processes from existing routines in HERWIG.