Using Spin to Distinguish Models at the LHC

Jennifer Smillie Cambridge

IPPP, Durham

2 November, 2006

Using Spins at the LHC – p. 1

This talk is based on

JHEP 10 (2005) 069 JS & Bryan Webber

JHEP 08 (2006) 055 Christiana Athanasiou, Chris Lester, JS & Bryan Webber

hep-ph/0609296

Using Spins at the LHC – p. 2

JS

Outline

Spin Beyond the Standard Model

- **b** Decay of a q' via a W
- **\triangleright** Cascade Decay of a q'
- The Kullback-Leibler distance

Beyond the Standard Model

Many possible extensions to the Standard Model, known collectively as models Beyond the Standard Model (BSM).

Motivated by a number of arguments:

the hierarchy problem, dark matter, massive neutrinos, string theory,...?

Many of these models contain

1) New particles within the reach of the LHC,

2) A dark matter candidate.

Spin

- With the popularity of supersymmetric (SUSY) BSM models, it has become even more important to develop methods to deduce the spin of any new particles produced.
- If new particles with the expected charge and/or colour properties are produced, we must still have evidence that they have the correct spin before they can be declared to be SUSY-partners.
- Models such as Universal Extra Dimensions (UED) and Little Higgs with T-parity (LHT) can both have experimental signatures which could be mistaken for SUSY.

A UED model has at least 1 extra compactified spatial dimension into which all gauge fields can propagate giving Kaluza-Klein towers.

With 1 extra dimension, y, a \mathbb{Z}_2 orbifold is used to get chiral fermions.

• We express 5D fields as a Fourier expansion in y:

$$F(x,y) = F_0(x) + \sum_{n=1}^{\infty} F_n(x) \cos\left(\frac{ny}{R}\right) + F'_n(x) \sin\left(\frac{ny}{R}\right)$$

where R is the radius of the extra dimension.

• KK-parity from broken conservation of momentum in extra dimensions: $(-1)^n$.

Little Higgs

- In Little Higgs models, the Higgs is a Pseudo-Nambu-Goldstone Boson.
 This offers an alternative mechanism to break electroweak symmetry without fine-tuning.
- The minimal extension is the Littlest Higgs model: Global SU(5) broken to SO(5) $[SU(2) \times U(1)]^2$ subgroup of SO(5) is then gauged.
- Collective symmetry breaking avoids one-loop quadratic divergences.
- T-parity introduced to overcome electroweak constraints.

Decays via a W

Consider the following decay of a new particle, C:

where *B* and *A* are also new particles.

These may occur in the MSSM, UED or LHT models.

Decays via a ${\cal W}$

The possibilities for the spin assignments are:

in the MSSM.

Decays via a ${\cal W}$

The possibilities for the spin assignments are:

Caveat

• In this initial study, we consider the simpler form of the SVV vertex: $g_{\mu\nu}$

and of the VVV vertex: $g^{\mu\nu}(k-p)^{\rho} + g^{\nu\rho}(p-q)^{\mu} + g^{\rho\mu}(q-k)^{\nu}.$

This will be the case in a number of models, but more complicated forms are possible.

In this chain, the only observable particles are the quark and the lepton.

Their invariant mass is

$$m_{q\ell} = \sqrt{(p_q + p_\ell)^2}$$

and we can treat the SM particles as massless so

$$m_{q\ell} = \sqrt{2p_q.p_\ell}$$

Angles

Explicitly the angular dependence of this quantity is given as

$$m_{q\ell}^{2} = \frac{1}{4X} m_{B}^{2} (1-X) \left(k_{1} (1-\cos\theta\cos\psi) + k_{2} (\cos\theta-\cos\psi) - 2\sqrt{Y}\sin\theta\sin\psi\cos\phi \right)$$

where

 θ is angle between q and A in rest frame of B, ψ is angle between A and ℓ in rest frame of Wand ϕ is angle between these two planes

$$k_1 = 1 + Y - Z$$
, $k_2 = \sqrt{k_1^2 - 4Y}$

$$X=m_B^2/m_C^2,\,Y=m_W^2/m_B^2,\,Z=m_A^2/m_B^2$$

Distributions

For convenience, we work with

$$\widehat{m}_{q\ell}^2 = \frac{4X}{m_B^2(1-X)} m_{q\ell}^2$$

and plot

$$\frac{1}{\Gamma}\frac{\mathrm{d}\Gamma}{\mathrm{d}\widehat{m}} = \frac{\mathrm{d}P}{\mathrm{d}\widehat{m}}$$

where Γ is the total decay rate for the chain and \hat{m} is shorthand for $\hat{m}_{q\ell}$.

The exact analytical results are in hep-ph/0609296 (except for FVV which are too long).

Distributions

For the FSS chain,

$$\frac{\mathrm{d}P_{1,2}}{\mathrm{d}\widehat{m}} = \frac{3\widehat{m}}{2k_2^3} \begin{cases} k_1k_2 - 2Y\log\left(\frac{k_1+k_2}{k_1-k_2}\right) & 0 \le \widehat{m}^2 \le 2k_{12}^- \\ \frac{1}{16}(6k_1 - 2k_2 - \widehat{m}^2) - 2Y\log\left(\frac{2(k_1+k_2)}{\widehat{m}^2}\right) \\ 2k_{12}^- \le \widehat{m}^2 \le 2k_{12}^+ \end{cases}$$

where $k_{12}^{\pm} = k_1 \pm k_2$.

Masses

Studied the mass spectra (in GeV/c²) at the following Snowmass Benchmark points:

	C	B	A
SPS 1a	537	378	96
SPS 2	1533	269	79
SPS 9	1237	876	175

SPS 1a and SPS 2 are mSUGRA benchmark points, while SPS 9 is an anomaly-mediated SUSY breaking point.

SPS 2 (for example)

The black dotted line in the left plot shows the curve with no spin correlations.

SPS 9 (for example)

The black dotted line in the left plot shows the curve with no spin correlations.

P_+ and P_-

However, in an experiment we cannot tell the difference between $\{u, \ell^-\}$ and $\{\overline{d}, \ell^-\}$. These are both

{ jet, ℓ^- }.

Similarly for ℓ^+ events.

P_+ and P_-

However, in an experiment we cannot tell the difference between $\{u, \ell^-\}$ and $\{\overline{d}, \ell^-\}$. These are both

{ jet, ℓ^- }.

Similarly for ℓ^+ events.

The observable distributions are:

$$\begin{aligned} \frac{\mathrm{d}P_{-}}{\mathrm{d}\widehat{m}} &= r_{d^{*}}\frac{\mathrm{d}P_{1}}{\mathrm{d}\widehat{m}} + r_{\bar{u}^{*}}\frac{\mathrm{d}P_{2}}{\mathrm{d}\widehat{m}} \\ \frac{\mathrm{d}P_{+}}{\mathrm{d}\widehat{m}} &= r_{u^{*}}\frac{\mathrm{d}P_{2}}{\mathrm{d}\widehat{m}} + r_{\bar{d}^{*}}\frac{\mathrm{d}P_{1}}{\mathrm{d}\widehat{m}} \end{aligned}$$

 r_{d^*} and $r_{\bar{u}^*}$ add to 1 and represent the relative numbers of ℓ^- chains beginning with d^*s and \bar{u}^*s . Similarly for r_{u^*} , $r_{\bar{d}^*}$.

P_+ and P_-

Unfortunately, the fractions $r_{q,\bar{q}}$ reintroduce some model dependence, but the different spectra here cover a wide range of possibilities.

HERWIG gives:

Spectrum	r_{d^*}	$r_{ar{u}}*$	r_{u^*}	$r_{ar{d}^*}$
SPS 1a	0.860	0.140	0.469	0.531
SPS 2	0.900	0.100	0.911	0.089
SPS 9	0.998	0.002	0.072	0.928

• The extreme values at SPS 9 are due to large μ enhancing the effect of large $\tan \beta$.

SPS 2 (for example)

and SPS 9

Asymmetry

Form asymmetry from \mp distributions: $A^{\mp} = \frac{\frac{dP_{-}}{d\hat{m}} - \frac{dP_{+}}{d\hat{m}}}{\frac{dP_{-}}{d\hat{m}} + \frac{dP_{+}}{d\hat{m}}}$

SPS 1a

SPS 2

Asymmetry

Smaller asymmetries here, but the original distributions were more striking at this point.

Outline

Spin Beyond the Standard Model

- Decay of a q' via a W
- **\triangleright** Cascade Decay of a q'
- The Kullback-Leibler distance

Cascade Decay

Previously this type of study was performed for the following cascade decay of a quark partner:

Final state is now $q \ell^+ \ell^-$ and 'A'.

Cascade Decay Chains

There are 6 possibilities:

For Example, $l^{near}l^{far}$

We now have 3 observable particles, so 3 independent invariant mass combinations. The m_{ll}^2 distributions for SPS 1a masses and UED masses ($R^{-1} = 800 \text{GeV}, \Lambda R = 20$) are:

$jet + l^{\pm}$

At SPS 1a:

jet $\ell^+ \ell^-$

Also have \hat{m}_{jll} (not independent):

Outline

Spin Beyond the Standard Model

- Decay of a q' via a W
- **>** Cascade Decay of a q'
- The Kullback-Leibler distance

Given a set of N invariant mass data points $\{\hat{m}_i\}$, the statement that a model T is R times more likely than a model S can be written

$$R = \frac{p(T|\{\widehat{m}_i\})}{p(S|\{\widehat{m}_i\})}$$

Given a set of N invariant mass data points $\{\hat{m}_i\}$, the statement that a model T is R times more likely than a model S can be written

 $R = \frac{p(T|\{\widehat{m}_i\})}{p(S|\{\widehat{m}_i\})}$

or equivalently by Bayes' Theorem

 $R = \frac{p(\{\widehat{m}_i\}|T)p(T)}{p(\{\widehat{m}_i\}|S)p(S)}.$

As each event is independent, this is just

$$R \frac{p(S)}{p(T)} = \frac{\prod_{i=1}^{N} p(m_i|T)}{\prod_{j=1}^{N} p(m_j|S)} = \prod_{i=1}^{N} \frac{p(m_i|T)}{p(m_i|S)}.$$

This product can be rewritten as

$$R \frac{p(S)}{p(T)} = \exp\left(\sum_{i=1}^{N} \log \frac{p(m_i|T)}{p(m_i|S)}\right).$$

This product can be rewritten as

$$R \frac{p(S)}{p(T)} = \exp\left(\sum_{i=1}^{N} \log \frac{p(m_i|T)}{p(m_i|S)}\right).$$

In the limit of large N, $\sum \rightarrow \int$:

$$\sum_{i=1}^{N} \log \frac{p(\widehat{m}_i|T)}{p(\widehat{m}_i|S)} \sim N \int \log \left(\frac{p(\widehat{m}|T)}{p(\widehat{m}|S)}\right) \ p(\widehat{m}) \ \mathrm{d}\widehat{m}$$

where $p(\hat{m})$ is the density function for m. Without data, we have to assume one of our models to be true. We use $p(\hat{m}|T)$ so we are considering "if T is true, how likely are we to mistake it for S".

 $\log\left(R\,\frac{p(S)}{p(T)}\right) \sim N\,\int\,\log\left(\frac{p(\widehat{m}|T)}{p(\widehat{m}|S)}\right)\,p(\widehat{m}|T)\,\mathrm{d}\widehat{m}$

where the right hand side is N times the so-called Kullback-Leibler distance, KL(T, S).

$$\log\left(R\;\frac{p(S)}{p(T)}\right) \sim N \int \;\log\left(\frac{p(\widehat{m}|T)}{p(\widehat{m}|S)}\right)\;p(\widehat{m}|T)\;\mathrm{d}\widehat{m}$$

where the right hand side is N times the so-called Kullback-Leibler distance, KL(T, S).

In an experimental situation, it is more likely that we know the value of R we seek, and want to know how many events N this requires:

$$N \sim \frac{\log R + \log p(S)/p(T)}{\operatorname{KL}(T,S)}$$

We will assume no prior bias for a particular model, so set p(S) = p(T) for all S, T.

W-Chain

If we now substitute the P_{-} *W*-chain distribution at SPS 2 for example, with R = 1000:

S					
FVS FVV					
1007 2166					
638 1292					
155 130					
<mark>∞</mark> 6530					
6537 🗙					
1					

- We expect to get ∞ on the diagonal, otherwise would let a model be R times more likely than itself.
- For R = 20 (95% confidence) instead, multiply by $\log 20 / \log 1000 \simeq 0.43$.

W-Chain

Here are the numbers for the P_- *W*-chain distribution at SPS 9 (R = 1000):

But this analysis only treats the P_{-} events. Can repeat for P_{+} curves separately, but even better to combine.

Combined Numbers

We consider both P_{-} and P_{+} at once by using

 $\mathrm{KL}_{comb}(T,S) = \widehat{\mathrm{KL}}_{-}(T,S) + \widehat{\mathrm{KL}}_{+}(T,S)$

where s are used as the distributions are normalised first according to the relative number of events.

If f_{\pm} is fraction of total events with an ℓ^{\pm}

$$\widehat{\mathrm{KL}}_{\pm}(T,S) = \int \log\left(\frac{f_{\pm} p(\widehat{m}^{\pm} | T^{\pm})}{f_{\pm} p(\widehat{m}^{\pm} | S^{\pm})}\right) f_{\pm} p(\widehat{m}^{\pm} | T^{+}) \,\mathrm{d}\widehat{m}$$
$$= f_{\pm} \,\mathrm{KL}_{\pm}(T,S)$$

Combined Numbers

We consider both P_{-} and P_{+} at once by using

$\mathrm{KL}_{comb}(T,S) = \widehat{\mathrm{KL}}_{-}(T,S) + \widehat{\mathrm{KL}}_{+}(T,S)$

where s are used as the distributions are normalised first according to the relative number of events.

The number of P_{-} and P_{+} events in a given data sample will be known – here we estimate what it will be using HERWIG:

Spectrum	f_{-}	f_+
SPS 1a	0.43	0.57
SPS 2	0.32	0.68
SPS 9	0.33	0.67

Combined Numbers

At SPS 2, we get for both distributions together

$N_{\rm total}$	SFF	FSS	FSV	FVS	FVV
SFF	∞	1388	312	521	837
FSS	1554	∞	261	590	1160
FSV	304	220	∞	375	375
FVS	507	577	415	∞	6416
FVV	819	1127	417	6415	∞

compared with

N_{-}	SFF	FSS	FSV	FVS	FVV		N_{+}	SFF	FSS	FSV	FVS	FVV
SFF	∞	1220	125	1007	2166		SFF	∞	1484	1064	425	649
FSS	1608	∞	89	638	1292	and	FSS	1531	∞	2909	569	1106
FSV	121	75	∞	155	130	anu	FSV	1055	2549	∞	1128	3267
FVS	1027	619	177	∞	6530		FVS	409	559	1131	∞	6365
FVV	2267	1240	146	6537	∞		FVV	630	1081	3280	6358	∞

Cascade Decays

N_{ll}	SFSF	FVFV	FSFS	FVFS	FSFV	SFVF
SFSF	∞	60486	23	148	15608	66
FVFV	60622	∞	22	164	6866	62
FSFS	36	34	∞	16	39	266
FVFS	156	173	11	∞	130	24
FSFV	15600	6864	25	122	∞	76
SFVF	78	73	187	27	90	∞

Number of events necessary for R = 1000 at SPS 1a.

N_{jl+}	SFSF	FVFV	FSFS	FVFS	FSFV	SFVF
SFSF	∞	1059	205	1524	758	727
FVFV	1090	∞	404	3256	4363	1746
FSFS	278	554	∞	418	741	2183
FVFS	799	6435	882	∞	2742	510
FSFV	749	4207	507	1212	∞	413
SFVF	813	1821	751	2415	1888	∞

Т

3D Kullback-Leibler

These numbers were obtained by treating all the distributions separately.

However, we can also combine information of all 3 distributions by changing

$$m_i \rightarrow \underline{m}_i = (m^{jl+}, m^{jl-}, m^{ll})$$

Each point gives us a point in 3D phase space.

SPS 1a (for example)

N_{ll}	SFSF	FVFV	FSFS	FVFS	FSFV	SFVF
SFSF	∞	60486	23	148	15608	66
FVFV	60622	∞	22	164	6866	62
FSFS	36	34	∞	16	39	266
FVFS	156	173	11	∞	130	24
FSFV	15600	6864	25	122	∞	76
SFVF	78	73	187	27	90	∞

 $m_{ll}, m_{jl+} \text{ and } m_{jl-} \rightarrow$

 $\leftarrow m_{ll}$ distribution

N_{all}	SFSF	FVFV	FSFS	FVFS	FSFV	SFVF
SFSF	∞	455	21	47	348	55
FVFV	474	∞	21	54	1387	55
FSFS	33	34	∞	13	39	188
FVFS	55	67	10	∞	54	19
FSFV	341	1339	25	45	∞	66
SFVF	62	64	143	19	79	∞

Conclusions

- Spin studies are very important in the LHC era.
- Decays of new particles via W bosons can be useful in spin determination.
- Cascade decays can be used to extract spin information from a number of distributions.
 - Invariant mass distributions have discriminatory power
 - Asymmetry plots provide more information.
- The Kullback-Leibler distance is an excellent tool to determine which processes are feasible for this method and which are not.

Asymmetry

And their asymmetry:

