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Beyond the Standard Model

Many possible extensions to the Standard Model, known
collectively as models Beyond the Standard Model (BSM).

Motivated by a number of arguments:

the hierarchy problem, dark matter, massive neutrinos,
string theory,...?

Many of these models contain

1) New particles within the reach of the LHC,

2) A dark matter candidate.
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Spin
With the popularity of supersymmetric (SUSY) BSM
models, it has become even more important to develop
methods to deduce the spin of any new particles
produced.

If new particles with the expected charge and/or colour
properties are produced, we must still have evidence
that they have the correct spin before they can be
declared to be SUSY-partners.

Models such as Universal Extra Dimensions (UED) and
Little Higgs with T-parity (LHT) can both have
experimental signatures which could be mistaken for
SUSY.
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UED
A UED model has at least 1 extra compactified spatial
dimension into which all gauge fields can propagate
giving Kaluza-Klein towers.

With 1 extra dimension, y, a Z2 orbifold is used to get
chiral fermions.

We express 5D fields as a Fourier expansion in y:

F (x, y) = F0(x) +
∞∑

n=1

Fn(x) cos
(ny
R

)
+ F ′

n(x) sin
(ny
R

)

where R is the radius of the extra dimension.

KK-parity from broken conservation of momentum in
extra dimensions: (−1)n.
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Little Higgs
In Little Higgs models, the Higgs is a Pseudo-Nambu-
Goldstone Boson.
This offers an alternative mechanism to break
electroweak symmetry without fine-tuning.

The minimal extension is the Littlest Higgs model:

Global SU(5) broken to SO(5)
[SU(2) × U(1)]2 subgroup of SO(5) is then gauged.

Collective symmetry breaking avoids one-loop
quadratic divergences.

T-parity introduced to overcome electroweak
constraints.
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Decays via a W
Consider the following decay of a new particle, C:

C

q
A

`±

ν`

B±

W±

1

where B and A are also new particles.

These may occur in the MSSM, UED or LHT models.
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Decays via a W
The possibilities for the spin assignments are:

q̃L

q
χ̃0

`±

ν`

χ̃±

W±

1

in the MSSM.

C

q A

`±

ν`

B±

W±

1

C

q A

`±

ν`

B±

W±

1

C

q A

`±

ν`

B±

W±

1

SFF FSS FSV

C

q A

`±

ν`

B±

W±

1

C

q A

`±

ν`

B±

W±

1

FVS FVV

S = scalar F = fermion V = Vector
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Caveat

In this initial study, we consider the simpler form of the
SVV vertex: gµν

and of the VVV vertex:
gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν .

This will be the case in a number of models, but more
complicated forms are possible.
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`− and `+

Process 1

Process 2

C

u A

`−

ν̄`

B−

W−

1

C

d A

`+

ν`

B+

W+

1

These have different
spin correlations.

C

ū A

`+

ν`

B+

W+

1

C

d̄ A

`−

ν̄`

B−

W−

1
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m2
q`

C

q A

`±

ν`

B±

W±

1

In this chain, the only observable
particles are the quark and the
lepton.

Their invariant mass is

mq` =
√

(pq + p`)2

and we can treat the SM particles as massless so

mq` =
√

2pq.p`
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Angles
Explicitly the angular dependence of this quantity is given
as

m2
q` =

1

4X
m2

B(1−X)
(
k1(1− cos θ cosψ)

+k2(cos θ − cosψ) −2
√
Y sin θ sinψ cosφ

)

where
θ is angle between q and A in rest frame of B,
ψ is angle between A and ` in rest frame of W
and φ is angle between these two planes

k1 = 1 + Y − Z, k2 =
√
k2
1 − 4Y

X = m2
B/m

2
C , Y = m2

W /m2
B, Z = m2

A/m
2
B

C

q A

`±

ν`

B±

W±

1
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Distributions
For convenience, we work with

m̂2
q` =

4X

m2
B(1−X)

m2
q`

and plot

1

Γ

dΓ

dm̂
=

dP

dm̂

where Γ is the total decay rate for the chain and m̂ is
shorthand for m̂q`.

The exact analytical results are in hep-ph/0609296
(except for FVV which are too long).
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Distributions
For the FSS chain, C

q A

`±

ν`

B±

W±

1

dP1,2

dm̂
=

3m̂

2k3
2





k1k2 − 2Y log
(

k1+k2

k1−k2

)

0 ≤ m̂2 ≤ 2k−12

1
16(6k1 − 2k2 − m̂2)− 2Y log

(
2(k1+k2)�

m2

)

2k−12 ≤ m̂2 ≤ 2k+
12

where k±12 = k1 ± k2.
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Masses
Studied the mass spectra (in GeV/c2) at the following
Snowmass Benchmark points:

C B A

SPS 1a 537 378 96
SPS 2 1533 269 79
SPS 9 1237 876 175

SPS 1a and SPS 2 are mSUGRA benchmark points,
while SPS 9 is an anomaly-mediated SUSY breaking
point.
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SPS 2 (for example)
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The black dotted line in the left plot shows the curve with no
spin correlations.
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SPS 9 (for example)
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The black dotted line in the left plot shows the curve with no
spin correlations.
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P+ and P−
However, in an experiment we cannot tell the difference
between {u, `−} and {d̄, `−}. These are both

{ jet, `− }.

Similarly for `+ events.

The observable distributions are:

dP−

dm̂
= rd∗

dP1

dm̂
+ rū∗

dP2

dm̂
dP+

dm̂
= ru∗

dP2

dm̂
+ rd̄∗

dP1

dm̂
.

rd∗ and rū∗ add to 1 and represent the relative numbers of
`− chains beginning with d∗s and ū∗s. Similarly for ru∗ , rd̄∗ .
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P+ and P−
Unfortunately, the fractions rq,q̄ reintroduce some model
dependence, but the different spectra here cover a wide
range of possibilities.

HERWIG gives:

Spectrum rd∗ rū∗ ru∗ rd̄∗

SPS 1a 0.860 0.140 0.469 0.531
SPS 2 0.900 0.100 0.911 0.089
SPS 9 0.998 0.002 0.072 0.928

The extreme values at SPS 9 are due to large µ
enhancing the effect of large tan β.
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SPS 2 (for example)
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and SPS 9
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Asymmetry

Form asymmetry from ∓ distributions: A∓ =
dP

−

d

�

m
−

dP+

d

�

m
dP

−

d

�

m
+

dP+

d
�

m
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A
∓
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Asymmetry

FVV

FVS

FSV

FSS

SFF

A
∓

m̂q`

21.510.50

0.1

0.05

0

−0.05

−0.1

−0.15

SPS 9

Smaller asymmetries here, but the original distributions
were more striking at this point.
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Cascade Decay
Previously this type of study was performed for the following
cascade decay of a quark partner:

q∗
L

qL

lnear

lfar

γ∗

Z∗

l∗

1

Final state is now q `+ `− and ‘A’.
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Cascade Decay Chains
There are 6 possibilities:

qL

lnear

lfar

1

qL

lnear

lfar

1

qL

lnear

lfar

1

SFSF FVFV FSFS

qL

lnear

lfar

1

qL

lnear

lfar

1

qL

lnear

lfar

1

FVFS FSFV SFVF
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For Example, lnearlfar

We now have 3 observable particles, so 3 independent
invariant mass combinations.
The m2

ll distributions for SPS 1a masses and UED masses
(R−1 = 800GeV,ΛR = 20) are:

dP

d

�

m2
ll

SFVF

FSFV

FVFS

FSFS

FVFV

SFSF

10.80.60.40.20

2.5

2

1.5

1

0.5

0

SFVF

FSFV

FVFS

FSFS

FVFV

SFSF

10.80.60.40.20

2.5

2

1.5

1

0.5

0

m̂2

ll
m̂2

ll
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jet + l±

At SPS 1a:

SFVF

FSFV

FVFS

FSFS

FVFV

SFSFdP
dm̂2

jl−

m̂
2

jl−

10.80.60.40.20

2

1.5

1

0.5

0

SFVF

FSFV

FVFS

FSFS

FVFV

SFSFdP
dm̂2

jl+

m̂
2
jl+

10.80.60.40.20

2

1.5

1

0.5

0

jet + `− jet + `+
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jet `+ `−

Also have m̂jll (not independent):

SFVF

FSFV

FVFS

FSFS

FVFV

SFSFdP(1+2)/2

dm̂2
jll

m̂
2

jll
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0.5

0

SFVF

FSFV

FVFS

FSFS
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SFSFdP(1+2)/2

dm̂2
jll

m̂
2

jll

0.0250.020.0150.010.0050

2.5
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1.5

1

0.5

0

SPS 1a UED-type
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Discrimination
Given a set of N invariant mass data points {m̂i}, the
statement that a model T is R times more likely than a
model S can be written

R =
p(T |{m̂i})
p(S|{m̂i})

or equivalently by Bayes’ Theorem

R =
p({m̂i}|T )p(T )

p({m̂i}|S)p(S)
.

As each event is independent, this is just

R
p(S)

p(T )
=

∏N
i=1 p(mi|T )

∏N
j=1 p(mj |S)

=
N∏

i=1

p(mi|T )

p(mi|S)
.
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Discrimination
This product can be rewritten as

R
p(S)

p(T )
= exp

(
N∑

i=1

log
p(mi|T )

p(mi|S)

)
.

In the limit of large N ,
∑
→
∫

:

N∑

i=1

log
p(m̂i|T )

p(m̂i|S)
∼ N

∫
log

(
p(m̂|T )

p(m̂|S)

)
p(m̂) dm̂

where p(m̂) is the density function for m.
Without data, we have to assume one of our models to be
true. We use p(m̂|T ) so we are considering “if T is true, how
likely are we to mistake it for S”.
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Discrimination

log

(
R
p(S)

p(T )

)
∼ N

∫
log

(
p(m̂|T )

p(m̂|S)

)
p(m̂|T ) dm̂

where the right hand side is N times the so-called
Kullback-Leibler distance, KL(T, S).

In an experimental situation, it is more likely that we know
the value of R we seek, and want to know how many events
N this requires:

N ∼ logR+ log p(S)/p(T )

KL(T, S)
.

We will assume no prior bias for a particular model, so set
p(S) = p(T ) for all S, T .
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W -Chain
If we now substitute the P− W -chain distribution at SPS 2
for example, with R = 1000:

S

T

N SFF FSS FSV FVS FVV
SFF ∞ 1220 125 1007 2166
FSS 1608 ∞ 89 638 1292
FSV 121 75 ∞ 155 130
FVS 1027 619 177 ∞ 6530
FVV 2267 1240 146 6537 ∞

We expect to get∞ on the diagonal, otherwise would
let a model be R times more likely than itself.

For R = 20 (95% confidence) instead, multiply by
log 20/ log 1000 ' 0.43.
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W -Chain
Here are the numbers for the P− W -chain distribution at
SPS 9 (R = 1000):

S

T

N SFF FSS FSV FVS FVV
SFF ∞ 90 41 85 87
FSS 83 ∞ 36 790 1686
FSV 28 31 ∞ 49 42
FVS 69 742 54 ∞ 7451
FVV 73 1605 47 7555 ∞

FVV

FVS

FSV

FSS

SFFdP
−

dm̂q`

m̂q`

21.510.50

1.2

1

0.8

0.6

0.4

0.2

0

But this analysis only treats the P− events. Can repeat for
P+ curves separately, but even better to combine.
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Combined Numbers
We consider both P− and P+ at once by using

KLcomb(T, S) = K̂L−(T, S) + K̂L+(T, S)

where ̂s are used as the distributions are normalised first
according to the relative number of events.

If f± is fraction of total events with an `±

K̂L±(T, S) =

∫
log

(
f± p(m̂±|T±)

f± p(m̂±|S±)

)
f± p(m̂±|T+) dm̂

= f± KL±(T, S)

The number of P− and P+ events in a given data sample

will be known – here we estimate what it will be using
HERWIG:

Spectrum f− f+

SPS 1a 0.43 0.57
SPS 2 0.32 0.68
SPS 9 0.33 0.67
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Combined Numbers
At SPS 2, we get for both distributions together

Ntotal SFF FSS FSV FVS FVV
SFF ∞ 1388 312 521 837
FSS 1554 ∞ 261 590 1160
FSV 304 220 ∞ 375 375
FVS 507 577 415 ∞ 6416
FVV 819 1127 417 6415 ∞

compared with
N− SFF FSS FSV FVS FVV

SFF ∞ 1220 125 1007 2166

FSS 1608 ∞ 89 638 1292

FSV 121 75 ∞ 155 130

FVS 1027 619 177 ∞ 6530

FVV 2267 1240 146 6537 ∞

and

N+ SFF FSS FSV FVS FVV

SFF ∞ 1484 1064 425 649

FSS 1531 ∞ 2909 569 1106

FSV 1055 2549 ∞ 1128 3267

FVS 409 559 1131 ∞ 6365

FVV 630 1081 3280 6358 ∞
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Cascade Decays
Nll SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 60486 23 148 15608 66

FVFV 60622 ∞ 22 164 6866 62

FSFS 36 34 ∞ 16 39 266

FVFS 156 173 11 ∞ 130 24

FSFV 15600 6864 25 122 ∞ 76

SFVF 78 73 187 27 90 ∞

Number of events
necessary for
R = 1000 at
SPS 1a.

SFVF

FSFV

FVFS

FSFS

FVFV

SFSF

10.80.60.40.20

2.5

2

1.5

1

0.5

0

↑ m̂ll

Njl+ SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 1059 205 1524 758 727

FVFV 1090 ∞ 404 3256 4363 1746

FSFS 278 554 ∞ 418 741 2183

FVFS 799 6435 882 ∞ 2742 510

FSFV 749 4207 507 1212 ∞ 413

SFVF 813 1821 751 2415 1888 ∞
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3D Kullback-Leibler
These numbers were obtained by treating all the
distributions separately.

However, we can also combine information of all 3
distributions by changing

mi → mi = (mjl+,mjl−,mll)

Each point gives us a point in 3D phase space.
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SPS 1a (for example)
Nll SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 60486 23 148 15608 66

FVFV 60622 ∞ 22 164 6866 62

FSFS 36 34 ∞ 16 39 266

FVFS 156 173 11 ∞ 130 24

FSFV 15600 6864 25 122 ∞ 76

SFVF 78 73 187 27 90 ∞

← mll distribution

mll, mjl+ and mjl− →

Nall SFSF FVFV FSFS FVFS FSFV SFVF

SFSF ∞ 455 21 47 348 55

FVFV 474 ∞ 21 54 1387 55

FSFS 33 34 ∞ 13 39 188

FVFS 55 67 10 ∞ 54 19

FSFV 341 1339 25 45 ∞ 66

SFVF 62 64 143 19 79 ∞
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Conclusions
I Spin studies are very important in the LHC era.

I Decays of new particles via W bosons can be useful in
spin determination.

I Cascade decays can be used to extract spin
information from a number of distributions.

• Invariant mass distributions have discriminatory
power
• Asymmetry plots provide more information.

I The Kullback-Leibler distance is an excellent tool to
determine which processes are feasible for this method
and which are not.
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Asymmetry
And their asymmetry:
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