Chapter Introduction | |
E02ACF | Minimax curve fit by polynomials |
E02ADF | Least-squares curve fit, by polynomials, arbitrary data points |
E02AEF | Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list) |
E02AFF | Least-squares polynomial fit, special data points (including interpolation) |
E02AGF | Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points |
E02AHF | Derivative of fitted polynomial in Chebyshev series form |
E02AJF | Integral of fitted polynomial in Chebyshev series form |
E02AKF | Evaluation of fitted polynomial in one variable from Chebyshev series form |
E02BAF | Least-squares curve cubic spline fit (including interpolation) |
E02BBF | Evaluation of fitted cubic spline, function only |
E02BCF | Evaluation of fitted cubic spline, function and derivatives |
E02BDF | Evaluation of fitted cubic spline, definite integral |
E02BEF | Least-squares cubic spline curve fit, automatic knot placement |
E02CAF | Least-squares surface fit by polynomials, data on lines |
E02CBF | Evaluation of fitted polynomial in two variables |
E02DAF | Least-squares surface fit, bicubic splines |
E02DCF | Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid |
E02DDF | Least-squares surface fit by bicubic splines with automatic knot placement, scattered data |
E02DEF | Evaluation of fitted bicubic spline at a vector of points |
E02DFF | Evaluation of fitted bicubic spline at a mesh of points |
E02GAF | L_{1}-approximation by general linear function |
E02GBF | L_{1}-approximation by general linear function subject to linear inequality constraints |
E02GCF | L_{infty}-approximation by general linear function |
E02RAF | Padé-approximants |
E02RBF | Evaluation of fitted rational function as computed by E02RAF |
E02ZAF | Sort two-dimensional data into panels for fitting bicubic splines |