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Preface

This short guide gives numerical answers and hopefully helpful hints to all ques-
tions in the first edition of Modern Particle Physics. Comments are always wel-
come.

Course instructors can obtain fully-worked solutions in the Instructor’s Manual to
Modern Particle Physics (available from Cambridge University Press).

Mark Thomson, Cambridge, January 4th 2014
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1 Introduction

1.1 Answer: Of the sixteen vertices, the only valid Standard Model vertices are:
a), d), f), j), n) and o). It should be remembered that only the weak charged current
(W) interaction changes the flavour of the fermion.

1.2 Answer: Since the decay involves a change of flavour it can only be a weak
charged-current interaction (W±):

W
τ−

ντ

u

d

1.3 Hint: Try drawing Feynman diagrams for each process using the SM vertices
and think about charge, flavour and particle/antiparticle.

1.4 Answer: All other things being equal, strong decays will dominate over EM
decays, and EM decays will dominate over weak decays and with the appropriate
Feynman diagrams the order is a), b), c).

1.5 Hint: In the decay of the π0, which has a quark flavour wavefunction:

|π0〉 = 1√
2

(
uu + dd

)
,

the Feynman diagram can be considered as either annihilation of uu or dd. With
the exception of the branching ratio to e+e−, the predictions based on counting
vertices are in reasonable agreement with the observed ratios. It should be noted
that considering only the vertex factors, addresses only one of the contributions to
the matrix element squared, other factors may be just as important.

1.6 Hint: With the exception of b) there are two possible lowest-order diagrams.
In a) these are the s- and u-channel diagrams. In c), d) and e) there are s- and
t-channel diagrams.

1.7 Answer:
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2 Introduction

a) Ionisation and bremsstrahlung/pair production processes become equally likely
(in standard rock) when a = bE, i.e. Eµ = 714 GeV.

b) Integrating the energy loss equation from E = 100 GeV→ 0 GeV should give a
range L = 141 m.

1.8 Answer: The number of particles in a shower doubles every radiation length
of material traversed until the critical energy is reached, for a 500 GeV EM shower
the critical energy is (on average) reached after 16 radiation lengths, i.e. 5.6 cm of
Tungsten.

1.9 Answer: The momentum of the particle can be obtained from p cos λ =

0.3 BR and if the particle were a kaon, it would have a velocity βK = 0.73, which
would not give a Čerenkov signal and hence the particle is a pion.

1.10 Answer: To achieve a centre-of-mass energy of 14 TeV in a fixed-target
collision Ep = 1.05 × 105 TeV.

1.11 Answer: Using the values in the original text L = 6 × 1030 cm−2s−1.

Note that there is an updated and clearer version of the original problem.
At the LEP e+e− collider, which had a circumference of 27 km, the electron and
positron beams consisted of four equally spaced bunches in the accelerator. Each
bunch corresponded to a beam current of 1.0 mA. The beams collided head-on at
the interaction point, where the beam spot had an rms profile of σx ≈ 250 µm and
σy ≈ 4 µm, giving an effective area of 1.0 × 103 µm2. Calculate the instantaneous
luminosity and estimate the event rate for the process e+e− → Z, which has a cross
section of about 40 nb.



2 Underlying Concepts

2.1 Answer: To restore the correct dimensions a factor of ~ needs to be inserted,
giving τ = 3.3 × 10−25 s .

2.2 Answer: σ = 2.6 × 10−9 GeV−2 .

2.3 Hint: This problem can be solved using a number of approaches, the most
easy is to considering the reaction in the rest frame of the e+e− pair, namely the
frame in which the total momentum is zero.

2.4 Hint: Here the key equations are (in natural units):

E = γm , p = γmβ and E2 = p2 + m2 .

2.5 Hint: Remember that γ2 = 1/(1−β2) or equivalently γ2(1−β2) = 1, and use
the explicit energy-momentum Lorentz transformations

E′ = γ(E − βpz) , p′x = px , p′y = py and p′z = γ(pz − βE) .

2.6 Hint: Start fromm2
a = (E1 + E2)2 − (p1 + p2)2.

2.7 Answer:
a) mΛ = 1.115 GeV.

b) Accounting for relativistic time dilation the mean distance travelled will be

d = γβcτ ,

from which

τ = 0.35/4.47c = 2.6 × 10−10 s .

2.8 Hint: The lowest energy configuration is where all four final-state particles
are at rest in the centre-of-mass frame, then use the fact that the Lorentz invariant
quantity s is identical in all frames.

2.9 Answer: The momenta of the photons in the π0 rest frame can be boosted
into the laboratory frame giving the extreme values are cos θ = −1 and cos θ =
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4 Underlying Concepts
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2β2−1, where θ is the opening angle in the laboratory frame. The minimum opening
angle is θmin = 0.027 rad ≡ 1.5◦ .

2.10 Answer: m∆ =
√

s = 1.23 GeV .

2.11 Hint: The angular dependence arises from the chiral nature of the weak
interaction, which implies that the ντ is left-handed. The two cases are indicated
below. In the rest frame of the four-momentum of the π− are respectively given by:

p∗ = (E∗π, 0, p
∗
π sin θ∗, p∗π cos θ∗) and p∗ = (E∗π, 0, p

∗
π sin θ∗,−p∗π cos θ∗) .
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The Lorentz transformation can then be used to determine the dependence of Eπ
on θ∗ and the distribution can be found using

dN
dE±

=
dN

d(cos θ∗)
×

∣∣∣∣∣ dE±
d(cos θ∗)

∣∣∣∣∣−1
.

Answer: For the two different spin orientations

dN
dEπ

=
Eπ − Emin

Emax − Emin
and

dN
dEπ

=
Emax − Eπ

Emax − Emin
.

.

⌧�

E⇡

dN
dE⇡

⌧�

E⇡

dN
dE⇡

2.12 Hint: s + u + t = (p1 + p2)2 + (p1 − p3)2 + (p1 − p4)2.



5 Underlying Concepts

2.13 Answer:
√

s = 300 GeV.

2.14 Hint: Using four-vectors, this is a fairly straightforward problem. Write
p′ = k − k′ + p and squaring (the four-vectors).

2.15 Hint: Use

L̂x = ŷp̂z − ẑ p̂y , L̂y = ẑ p̂x − x̂ p̂z and L̂z = x̂ p̂y − ŷ p̂x ,

and
[
ẑ, p̂z

]
= i etc.

2.16 Hint: Show that [
Ŝ x, Ŝ y

]
= iŜ z ,

and

Ŝ2
= 1

4

(
σ2

x + σ2
y + σ2

z

)
= 3

4 I .

2.17 Answer:

T f i = 〈 f |Ĥ′|i〉 +
∑ 〈k|Ĥ′|i〉〈 f |Ĥ′|k〉

(Ek − Ei)
+

∑∑ 〈 f |Ĥ′|k〉〈k|Ĥ′| j〉〈 j|Ĥ′|i〉
(Ek − E j)(E j − Ei)

.



3 Decay Rates and Cross Sections

3.1 Answer: E2
µ = m2

µ + p2 = 110 MeV.

3.2 Hint: Write ma − E2 = E1 and square to eliminate E1, then rearrange to give
an expression for E2 and square again.

3.3 Answer: BR(K+ → π+π0) = 21 % .

3.4 Answer: The total number of events is given by

N =

∫
σL dt ,

therefore in five years of operation with 50 % lifetime, a total of 394000 e+e− →
HZ events would be accumulated.

3.5 Answer: σ = 8.9 × 10−8 GeV−2 × 0.1972 × 0.01 b = 34 pb .

3.6 Answer: The average number of interactions for the single neutrino travers-
ing the block is approximately 7 × 10−10 and therefore the interaction probability
is less than 10−9.

3.7 Hint: First consider the low energy limit of the four-vector product pa ·pb =

EaEb − pa · pb where, (as expected) the non-relativistic limit of the particle energy
and momentum are (in natural units)

E = γm = m
(
1 − β2

)−1/2 ≈ m(1 + 1
2β

2) = m + 1
2 mβ2 .

3.8 Hint: Here pa = (Ea, 0, 0, pa) and pb = (mb, 0, 0, 0).

3.9 Hint: First write
√

s−E∗1 = E∗2 and square to eliminate E∗2 and then eliminate
E∗1 by again squaring.

3.10 Hint: a) Differentiating E2
3 = p2

3 + m2
3 with respect to cos θ gives

2E3
dE3

d(cos θ)
= 2p3

dp3

d(cos θ)
. (3.1)

Then equate the expressions for the Mandelstam t variable written in terms of the
electron and proton four-momenta t = (p1 − p3)2 = (p2 − p4)2.
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7 Decay Rates and Cross Sections

✓ z
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(E1,p1)

(E3,p3)

(E4,p4)

b) From (3.37) of the main text,

dσ
dt

=
1

64πs p∗2i

|M f i|2 .

This can be related to the differential cross section in terms of solid angle using

dσ
dΩ

=
dσ
dt

dt
dΩ

=
1

2π
dt

d(cos θ)
dσ
dt

.



4 The Dirac Equation

4.1 Hint: The commutator of p̂2 with the x-component of L̂ = r̂ × p̂

L̂x = ŷp̂z − ẑ p̂y .

can be written [
p̂2, L̂x

]
=

[
p̂2

x + p̂2
y + p̂2

z , ŷ p̂z − ẑ p̂y
]

=
[
p̂2
y, ŷ p̂z

]
−

[
p̂2

z , ẑ p̂y
]

=
[
p̂2
y, ŷ

]
p̂z −

[
p̂2

z , ẑ
]

p̂y .

4.2 Hint: Use

u1(p) =
√

E + m


1
0
pz

E+m
px+ipy
E+m

 and u2(p) =
√

E + m


0
1

px−ipy
E+m−pz
E+m

 .

4.3 Hint: In matrix form γµpµ − m is given by

γµpµ − m = E


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

 − px


0 0 0 1
0 0 1 0
0 -1 0 0

-1 0 0 0

 − py


0 0 0 -i
0 0 i 0
0 i 0 0
-i 0 0 0

 − pz


0 0 1 0
0 0 0 -1

-1 0 0 0
0 1 0 0

 − mI

=


E − m 0 −pz −px + ipy

0 E − m −px − ipy pz

pz px − ipy −(E + m) 0
px + ipy −pz 0 −(E + m)

 .

4.4 Hint: Use the free particle spinor u1(p) and recall that for arbitrary spinors
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9 The Dirac Equation

ψ and φ, with spinor components ψi and φi, matrix multiplication gives,

ψγ0φ = ψ∗1φ1 + ψ∗2φ2 + ψ∗3φ3 + ψ∗4φ4

ψγ1φ = ψ∗1φ4 + ψ∗2φ3 + ψ∗3φ2 + ψ∗4φ1

ψγ2φ = −i(ψ∗1φ4 − ψ∗2φ3 + ψ∗3φ2 − ψ∗4φ1)

ψγ3φ = ψ∗1φ3 − ψ∗2φ4 + ψ∗3φ1 − ψ∗4φ2 .

For the final part of the question, note that a particle spinor u(p) can always be
expressed as a linear combination of the basis spinors u1(p) and u2(p):

u = α1u1 + α2u2 , with |α1|2 + |α2|2 = 1 .

4.5 Hint: Here we are looking for the general order of magnitude of the rela-
tive size of the upper and lower components. So for simplicity, consider a particle
travelling in the z-direction, which from the definition of u1 has

uA = N
(

1
0

)
, and uB = N

( p
E+m
0

)
.

4.6 Hint: Just consider the cases µ = ν = 0, µ = ν = k = 1, 2, 3 and µ , ν and
use the commutation relations.

4.7 Hint: Remember that ψ satisfies the Dirac equation iγν∂νψ = mψ.

4.8 Hint: Use γ0† = γ0, γk† = γk, γ0γ0 = I and γ0γk = −γkγ0.

4.9 Hint: In part b) consider the uγν× the Dirac equation and Dirac equation for
the adjoint spinor ×γνu

uγν(γ µpµ − m)u = 0 and u(γ µpµ − m)γνu = 0

and take the sum.

4.10 Hint: This can be demonstrated either by writing out the explicit form of
σ · p using the Pauli spin matrices or (more elegantly) by using the properties of
the matrices, namely σ2

k = 1 and σxσy = −σyσx.

4.11 Answer:
a) In the first interpretation (left diagram), the intial-state positive e− of energy +E
emits a photon of energy 2E. To conserve energy it is now a negative energy e− and
therefore propagates backwards in time. At the other vertex, the photon interacts
with a negative energy e−, which is propagating backwards in time and scattering
results in a positive energy e−.

b) In the Feynman-Stückelberg interpretation (right diagram), the intial-state pos-
itive e− of energy +E annihilates with a positive energy e+ to produce a photon



10 The Dirac Equation

of energy 2E. At the second vertex the photon produces an e+e− pair. All particles
propagate forwards in time.

γ(2E)

e−(−E)

e−(+E)

e−(−E)

e−(+E)

γ(2E)

e+(+E)

e−(+E)

e+(+E)

e−(+E)

4.12 Hint: In the Pauli-Dirac representation

β =

(
I 0
0 −I

)
and αi =

(
0 σi

σi 0

)
,

and since β contains the identity matrix it is clear that
[
ĥ,mβ

]
= 0 and therefore it

is only necessary to consider
[
ĥ,α · p̂

]
.

4.13 Answer: The action of the parity operator has the effect that p → −p
(reversing the direction of the particle), but leaves the orientation of the spin un-
changed in space, this transforming a RH particle into a LH particle travelling in
the opposite direction.

4.14 Hint: This is mostly an algebraic exercise to show that

ĈP̂u↑(θ, φ) = −eiφv↓(π − θ, π + φ) .

Note this overall (unobservable phase) could have been included in the original
definition of the v↓.

4.15 Hint: Start with the Dirac equation for the spinor u(p) and the correspond-
ing equation for the adjoint spinor u(p′):

(γ µpµ − m)u(p) = 0 and u(p′)(γ µp′µ − m) = 0 ,

giving

γ µpµu(p) = mu(p) and u(p′)γ µp′µ = mu(p′) .



5 Interaction by Particle Exchange

5.1 Hint: The two possible time-orderings are shown below. In the first a + b
annihilate into X and then X produces c + d. In the second time-ordering, the three
particles c + d + X̃ “pop out” of the vacuum and subsequently a + b + X̃ annihilate
into the vacuum.

a a

sp
ac

e

sp
ac

e

time time

i ij jf f
b

b

c

c

d

X
X̃

Vji

Vf j

d
Vji

Vf j

Following the same arguments as in the many text, you should find

M =
g2

(Ea + Eb)2 − (pa + pb)2 − m2
X

=
g2

q2 − m2
X

,

where (here) q2 = (pa + pb)2.

5.2 Hint: The lowest-order diagrams have just two QED eeγ interaction vertices.
Here there is a t-channel and an s-channel diagram.

5.3 Answer:

−iMt =
[
ε∗µ(p3)ieγ µu(p1)

]
·
[
− i(γ ρqρ + me)

q2 − me

]
· [v(p2)ieγνε∗ν(p4)

]
−iMu =

[
ε∗µ(p4)ieγ µu(p1)

]
·
[
− i(γ ρqρ + me)

q2 − me

]
· [v(p2)ieγνε∗ν(p3)

]
.

11



6 Electron-Positron Annihilation

6.1 Hint: Remember that γ µγν = −γνγ µ for µ , ν.

6.2 Hint: Remember that (γ5)2 = 1.

6.3 Hint: In the first part of the question, you may need to realise that pµpνγ µγν

is a symmetric tensor and that it can be written as 1
2 pµpν(γ µγν + γνγ µ).

6.4 Hint: In the Dirac-Pauli representation, the relevant matrices are

Ŝ k = 1
2 Σ̂k = 1

2

(
σk 0
0 σk

)
, γk =

(
0 σk

−σk 0

)
, γ0 =

(
I 0
0 −I

)
and γ5 =

(
0 I
I 0

)
,

where k = 1, 2, 3 and Ŝ k are the components of the spin operator for a Dirac spinor.

6.5 Answer: Because s-channel QED cross sections decrease as 1/s, as the
centre-of-mass energy increases, higher instantaneous luminosities are required to
obtain a reasonable event rate, Rate = σL.

6.6 Hint: This question is a fairly straightforward but requires care with the
algebra. Firstly, it should be noted that α2 + β2 + γ2 = 1. Secondly, by definition
Ŝ n|1,+1〉θ = +|1,+1〉θ, where Ŝ n = n · Ŝ and, without loss of generality n taken to
lie in the xz plane.

Ŝ n = n · Ŝ = sin θŜ x + cos θŜ z .

The operator Ŝ n can be written in terms of operators in terms of the |s,m〉 states
using the angular momentum ladder operators,

Ŝ + = Ŝ x + iŜ y and Ŝ + = Ŝ x − iŜ y .

6.7 Hint: This is a fairly involved question, but with the exception of part c)
it is just algebra. In part c) it should be realised that the parity operator reverses
the momentum of a particle (a vector quantity) but leaves the spin (an axial-vector
quantity) unchanged, and therefore has the effect P̂u↑(E,p) = u↓(E,−p). This can
be utilised here to obtain the possible muon currents from the electron currents
(once the different masses have been accounted for), since in the centre-of-mass
frame, the initial- and final-state electron and muon momenta are equal and oppo-
site.

12



13 Electron-Positron Annihilation

6.8* Hint: In part a), note that gµν is a symmetric tensor and thus

γ µγµ = g µνγ
µγν

= 1
2gµν

(
γ µγν + γνγ µ

)
.

6.9* Hint: Start from [
ψγ µγ5φ

]†
= [ψ†γ0γ µγ5φ]† .

6.10* Hint: The QED matrix element for the Feynman diagram shown below is

M f i =
Qfe2

q2

[
v(p2)γ µu(p1)

]
gµν

[
u(p3)γνv(p4)

]
.

p1

p4p2

γ

p3

e+

e−

f

f

µ ν

Noting the order in which the spinors appear in the matrix element (working back-
wards along the arrows on the fermion lines), the spin-summed matrix element
squared is given by∑

spins

|M f i|2 =
Q2

f e4

q4 Tr
(
[/p2 − me]γ µ[/p1 + me]γν

)
Tr

(
[/p3 + mf]γµ[/p4 − mf]γν

)
.

Then, remember that the trace of an odd number of gamma-matrices is zero.

6.11* Hint: The spin averaged matrix element squared for the s-channel process
e+e− → ff is given in (6.63) of the main text:

〈|M f i|2〉s = 2
Q2

f e4

(p1 ·p2)2

[
(p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3) + m2

f (p1 ·p2)
]
.

6.12* Answer: The two lowest-order Feynman diagrams for the Compton scat-
tering process e−(p) + γ(k) → e−p′ + γ(k′) are shown below. In both diagrams the
vertex with the incoming photon is labelled µ.

From the QED Feynman rules, the matrix element for the s-channel diagram is
given by

Ms = −e2ε∗µ(k)εν(k′) u(p′)
[
γν

/p + /k + m

(p + k)2 − m2
e
γ µ

]
u(p) ,



14 Electron-Positron Annihilation

p

k

k′
e

p + k

p′

e−

γ

γ

e−

µ ν

p

k

k′

e p − k

p′

e−

γ

γ

e−

ν

µ

where q = k + p and the slashed notation has been used. Similarly, the matrix
element for the second diagram is

Mt = −e2ε∗µ(k)εν(k′) u(p′)
[
γµ

/p − /k + m

(p − k)2 − m2
e
γν

]
u(p) .

For the spin sums, you will need to use the completeness relation for photons (see
Appendix D) and after some manipulation:

〈|M|2〉 =
e4

4

∑
r=1,2

∑
r′=1,2

{
ur′(p′)

[
γν Γ+γ

µ + γ µ Γ−γν
]
ur(p)

} × {
ur′(p′)

[
γνΓ+γµ + γµ Γ−γν

]
ur(p)

}†
,

where

Γ± =
/p + /k + m

(p + k)2 − m2
e
.



7 Electron-Proton Elastic Scattering

7.1 Hint: Using the expression for κ

(γ + 1)(1 − κ2) = (γ + 1) − β2γ2

(γ + 1)
.

7.2 Note: This question should be ignored - unless a particular limit is taken
finding a general solution is non-trivial and involves a lot of uninteresting algebra.

7.3 Answer: a) Elastically scattered electrons would have an energy of 373.3 GeV,
consistent with the observed value. b) Q = 541 MeV.

7.4 Hint: You will need to use the expansion sin qr ' qr − 1
3! (qr)3 + ... and use∫

4πr2ρ(r) dr = 1 and
∫

4πr2r2ρ(r) dr = 〈R2〉 .

7.5 Answer: Using the gradient at Q2 = 0 of Figure 7.8a gives the rms charge
radius of the proton of approximately 0.8 fm.

7.6 Answer:

GM(Q2 = 0.292 GeV2) ' 1.26 and GE(Q2 = 0.292 GeV2) ' 0.52 .

7.7 Answer: This is quite involved and the exact answers obtained will depend
on how the interpolation between different data points is performed. The cross sec-
tion values corresponding to Q2 = 500 MeV2 can be found from Equation (7.32)
which can be rearranged to give a quadratic equation in E1

2mp(1 − cos θ)E2
1 − Q1(1 − cos θ)E1 − mpQ2 = 0 .

Hence for each of the values of θ, shown in the plot, the corresponding value of
E1 for Q2 = 500 MeV2 can be obtained, enabling the cross sections to be read off

from the lines, these can then be compared to the expected Mott cross section for a
point-like charge. A plot of the ratio of the measured (interpolated) cross section to

15



16 Electron-Proton Elastic Scattering

dσ/dΩ0 plotted against tan2(θ/2) should be approximately linear with an intercept
of c and gradient m, where The form factors can be obtained from

m = 2τ
[
GM(Q2)

]2
and c =

[
GE(Q2)

]2
+ τ

[
GM(Q2)

]2

(1 + τ)
.

where τ = Q2/4m2
p = 0.142. The analysis of the data should give

GM(Q2 = 0.5 GeV2) ' 0.99 and GE(Q2 = 0.5 GeV2) ' 0.41 ,

roughly in the expected ratio of 2.79.

7.8 Answer:
1/a = λ =

√
0.71 GeV2 = 0.84 GeV .



8 Deep Inelastic Scattering

8.1 Answer:

τ = 1/Γ ≈ 1 GeV−1 ≡ 6.6 × 10−25 s .

8.2 Hint: In part b) there is only one independent variable in elastic scattering,
the differential cross sections in terms of dQ2 and dΩ are related by

dσ
dQ2 =

∣∣∣∣∣ dΩ

dQ2

∣∣∣∣∣ dσ
dΩ

= 2π
∣∣∣∣∣d(cos θ)

dQ2

∣∣∣∣∣ dσ
dΩ

.

8.3 Hint: In part a) first change variables from dΩ = 2πd(cos θ) using

Q2 = −q2 = 2E1E3(1 − cos θ) ,

and then relate
d2σ

dE3 dΩ
to

d2σ

dE3 dQ2 ,

remembering that E1 is the fixed initial-state electron energy. Finally change vari-
ables from ν to x using

x =
Q2

2mpν
.

Parts b) and c) should be relatively straightforward but part d) requires some thought.
Given that we wish to measure the structure functions at x = 0.2 and Q2 = 2 GeV2,
the electron energies E1 and E3 are constrained via

E1 − E3 =
Q2

2Mx
and E1E3 =

Q2

4 sin2 θ/2
.

Here it helps to think in terms of graphical solutions of on a plot of E3 versus
E1. The experimental limitations, E1 < 20 GeV and E3 > 2 GeV, then lead to
constraints on the scattering angle θ.

Answer:

θmax = 21.3◦ .

17



18 Deep Inelastic Scattering

The experimental strategy is to choose several values of θ between approximately
5◦ and 20◦, and for each angle, measure the reduced cross section,

d2σ

dE3 dΩ
× 4E2

1 sin4 θ/2

α2 cos2 θ/2
=

[
F2

ν
+

2F1

mp
tan2 θ

2

]
,

and plot this versus tan2 θ/2. This should give a straight line (since ν is fixed here)
with slope 2F1/mp and intercept F2/ν. Each θ value requires a different beam en-
ergy given by solving

E1(E1 − 5.33) =
Q2

4 sin2 θ/2

8.4 Answer: If quarks were spin-0 particles, there would be no magnetic con-
tribution to this QED scattering process. Consequently Fep

1 (x), which is associated
with the sin2 θ/2 angular dependence, would be zero.

8.5 Answer: 2 .

8.6 Answer: You should find

fd/ fu ' 0.52 ,

which is consistent with the result quoted in Chapter 8.

8.7 Answer: The measured value can be interpreted as∫ 1

0
(u(x) − d(x)) dx =

3
2

[0.24 − 0.33 ± 0.03] = −0.14 ± 0.05 ,

demonstrating that there is a deficit of u quarks relative to d quarks in the proton,
as can be seen in the global fit to a wide range of data shown in Figure 8.17.

8.8 Answer: For the event shown in the text θ ≈ 150◦, and

Q2 ' 3 × 104 GeV2 and x ' 0.7 .



9 Symmetries and the Quark Model

9.1 Hint: For compactness, writing x = iα · Ĝ, the required expression can be
written (

1 +
x
n

)n
= 1 + n

x
n

+
1
2!

n(n − 1)
( x
n

)2
+

1
3!

n(n − 1)(n − 2)
( x
n

)3
+ ...

In the limit n→ ∞ terms such as n(n − 1)(n − 2)/n3 → 1.

9.2 Hint: For a infinitesimal rotation of the x and y axes

x→ x′ = x cos ε + y sin ε ' x − εy
y→ y′ = y cos ε − x sin ε ' y + εx .

Under this coordinate transformation, wavefunctions transform as

ψ(x, y, z)→ ψ′(x, y, z) = ψ(x + εy, y − εx, z)

= ψ(x, y, z) + yε
∂ψ

∂x
− xε

∂ψ

∂y
.

9.3 Hint: We have asserted that SU(2) flavour symmetry is an exact symmetry of
the strong interaction. One consequence is that isospin and the third component of
isospin is conserved in strong interactions. Furthermore, from the point of view of
the strong interaction the ∆−, ∆0, ∆− and ∆++ are indistinguishable. The amplitudes
for the above decays can be written as

M(∆→ πN) ∼ 〈πN|Ĥstrong|∆〉 ,
which in the case of an exact SU(2) light quark flavour symmetry can be written as

M(∆→ πN) ∼ A〈φ(πN)|φ(∆)〉 ,
where A is a constant and φ represents the isospin wavefunctions. Here 〈φ(πN)|φ(∆)〉
expresses conservation of isospin in the interaction. The question therefore boils
down to determining the isospin values for the states involved. For example, the
decay ∆− → π−n corresponds to

φ
(

3
2 ,−3

2

)
→ φ (1,−1)φ

(
1
2 ,− 1

2

)
.

The decay rate will depend on the isospin of the combined π−n system. Since I3
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20 Symmetries and the Quark Model

is an additive quantum number the third component of the combined π−n system
is −3/2 and this implies that the total isospin must be at least 3/2. But since the
total isospin lies between |1− 1/2| < I < |1 + 1/2|, the isospin of the π−n system is
uniquely identified as

φ(π−n) = φ (1,−1)φ
(

1
2 ,−1

2

)
= φ

(
3
2 ,− 3

2

)
.

Consequently the amplitude for the decay is given by

M(∆− → π−n) ∼ A〈φ(π−n) | φ(∆−)〉 = A
〈
φ
(

3
2 ,− 3

2

)
|φ

(
3
2 ,−3

2

)〉
= A .

The isospin assignments for the other decays can be obtained using the isospin
ladder operator T̂+.

9.4 Answer: Since the colour quantum numbers of the quarks has nothing to do
with spin, the colour singlet states are still

1√
3

(rr̄ + gḡ + bb̄) and
1√
6

(rgb − grb + gbr − bgr + brg − rbg) .

Hence, due to colour confinement, we still expect to see mesons containing a quark
and an antiquark and baryons containing three quarks. For the mesons we would
expect to see nonets (with the total angular momentum equal to L) with

JP = 0+, 1−, 2+, 3−, . . . nonets .

For baryons made from spin-0 quarks, the wavefunction would become

ψ = φflavour ξcolour ηspace .

and the overall wavefunction ψwould be totally symmetric under quark interchange
since quarks are now bosons. In this model, the baryon multiplets would be

JP = 0+, 1−, 2+, 3−, . . . singlets .

9.5 Hint: The underlying process is the QED annihilation process qq → e+e−,
where the matrix element can be expressed as

M(qq→ e+e−) ∼ 〈e+e−|Q̂q|qq〉 = AQq ,

where A is assumed to be a constant and Qq is the charge of the annihilating quark-
pair. For the φ which is a pure ss state, the matrix element

M(φ→ e+e−) ∼ 〈e+e−|Q̂q|ss〉 = AQs = −1
3 A .

For the ρ0 with wavefunction
∣∣∣ρ0,=

〉
1√
2
(uu − dd), the phases of the two compo-

nents are important and the total amplitude depends on the coherent sum of the
contributions from the decays of the uu and dd.

9.6 Answer: The meson mass formulae works well for all of the mesons in
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the question, with the exception of the η′, where the prediction of approximately
350 MeV is very different from the measured mass of 958 MeV. However it should
be noted that the η′ is a flavour singlet state and in principle it could mix with
flavourless purely gluonic bound states and given the special nature of the η′, it is
not surprising that the simple mass formula does not work.

9.7 Answer: Using

md = mu = 0.365 GeV , ms = 0.540 GeV and A′ = 0.026 GeV3 ,

the predicted masses are: m∆ = 1.241 GeV, mΣ∗ = 1.385 GeV, mΞ∗ = 1.533 GeV
and mΩ = 1.687 GeV, which are in good agreement with the measured values.

9.8 Answer: This is a difficult question that requires some insight.

a) If the SU(3) flavour symmetry were exact, the Λ(uds) and Σ0(uds) baryons would
have the same mass – they don’t. The situation is similar to the that of the neutral
mesons, where the quark flavour wavefunctions for the π0 and η can be obtained
from the operation of the ladder operators on the six states around the ”edges” of
the octet. The physical states are linear combinations of these states. How treat
this ambiguity is not a priori obvious. Following the discussion of the light meson
states, one expects that the u and d quarks in the uds baryon wavefunction obey an
exact SU(2) flavour symmetry. Making this assumption the Σ0(dds) wavefunction
can be obtained directly from that of the Σ−(dds), which has the same form as that
of the proton, giving

|Σ0↑〉 ∝ 2d↑u↑s↓−d↑u↓s↑−u↓d↑s↑+ cyclic combinatorics .

Note that in this wavefunction the d quarks appear in symmetric spin states - this
fact can be used to construct the orthogonal wavefunction for the Λ:

|Λ↑〉 ∝ d↑u↓s↑−u↓d↑s↑+ cyclic combinatorics

b) Following the above arguments the total spin of the ud system assume that the
ud quarks in the Λ and Σ0 are either in a spin-0 or spin-1 state, sud = 0 or sud = 1.
This allows the scalar products to be determined from the total spin of the three
quark system:

S = Su + Sd + Ss .

The resulting masses are predicted to be

sud = 0 : m(Λ) = 1.124 GeV

sud = 1 : m(Σ0) = 1.187 GeV ,

In reasonable agreement with the observed values of m(Λ) = 1.116 GeV and
m(Σ0) = 1.193 GeV.
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9.9 Answer: Using the given magnetic moments:

µu = (+1.68 ± 0.01)µN = +
2mp

3mu
µN ⇒ mu = 0.39mp ' 370 MeV ,

µd = (−1.04 ± 0.02)µN = − mp

3md
µN ⇒ md = 0.32mp ' 300 MeV ,

µs = (−0.673 ± 0.02)µN = − mp

3ms
µN ⇒ ms = 0.50mp ' 465 MeV .

9.10 Hint: If the colour did not exist, baryon wavefunctions would be con-
structed from

ψ = φflavour χspin ηspace .

For the L = 0 baryons, the spatial wavefunction is symmetric and the requirement
that the overall wavefunction is anti-symmetric implies that the combination of
φflavour × χspin must be anti-symmetric under the interchange of any two quarks.
The linear combination

ψ = αφSχA + βφAχS

is clearly anti-symmetric under the interchange of quarks 1 ↔ 2 and for the right
choice of α and β is anti-symmetric under the interchange of any two quarks. By
finding α and β the ”nucleon” wavefunctions can be obtained.

Answer: Taking mu ∼ md,
µn

µp
=
µu

µd
= −2 .

This colourless model, therefore, does not predict the observed ratio of magnetic
moments of the proton and neutron.



10 Quantum Chromodynamics (QCD)

10.1 Answer: In the absence of colour, the overall wavefunction has the follow-
ing degrees of freedom:

ψ = φflavour χspin ηspace .

The overall wavefunction must be anti-symmetric under the interchange of any two
quarks (since they are fermions). For the a state with zero orbital angular momen-
tum (` = 0), the spatial wavefunction is symmetric. The flavour wavefunction sss
is clearly symmetric under the interchange of any two quarks. Therefore, the re-
quired overall anti-symmetric wavefunction would imply a totally anti-symmetric
spin wavefunction, however, there is no totally anti-symmetic spin wavefunction
for the combination of three spin-half particles (2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2). Hence,
without an additional degree of freedom, in this case colour, the Ω− would not
exist.

10.2 Answer: q∞ ≈ 200 MeV .

10.3 Answer:

〈|C|2〉 =
1
4

2∑
i, j,k,l=1

|C(i j→ kl)|2

=
3
16

.

10.4 Answer: The NRQCD potential between two quarks can be expressed as

Vqq(r) = +C
αS

r
,

where C is the appropriate colour factor, consideration of the colour exchange pro-
cesses involved then gives

〈V12
qq 〉 = −2αS

3r
.

Hence, in the non-relativistic limit, the QCD potential between any two quarks in
a baryon is attractive.

23



24 Quantum Chromodynamics (QCD)

10.5 Answer: There are diagrams involving: i) the scattering of quarks and anti-
quarks, ii) the scattering of a quark/antiquark and a gluon and iii) the scattering of
gluons, where the anti-quarks/quarks can either be from the valance or sea content
of the proton and antiproton.

10.6 Hint: Remember to assume that the jets are effectively massless, E2 =

p2
T + p2

z and neglect the masses of the quarks p2
1 = 0 etc. The rest is just algebra.
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10.7 Hint: First obtain an expression for the Jacobian (it terms of pT rather than
p2

T):

J =
∂(x1, x2,Q2)
∂(y3, y4, pT)

=

∣∣∣∣∣∣∣∣∣∣
∂x1
∂y3

∂x1
∂y4

∂x1
∂pT

∂x2
∂y4

∂x2
∂y4

∂x2
∂pT

∂Q2

∂y3

∂Q2

∂y4

∂Q2

∂pT

∣∣∣∣∣∣∣∣∣∣
Multiplying out the terms in the determinant leads to

J = −2pTx1x2 .

The next step is to transform from Q2 → q2 = −Q2 and from pT → p2
T.

10.8 Answer: Assuming that uV (x) = 2dV (x) then

d2σ
pp
DY =

4πα2

81sx1x2
{17dV (x1)dV (x2)+

9dV (x1)S (x2) + 9S (x1)dV (x2) + 10S (x1)S (x2)}dx1dx2 .

Answer: b) For pp collisions, the Drell-Yan cross section is

d2σ
pp
DY =

4πα2

81sx1x2
{9dV (x1)S (x2) + 9S (x1)dV (x2) + 10S (x1)S (x2)}dx1dx2

Hint: c) Remember that ŝ = x1x2s and lines of constant ŝ define hyperbolae in the
{x1, x2} plane.

10.9 Hint: The PDFs for the π+(ud) can be written in terms of valance and sea
quark distributions:

uπ
+

(x) = uπ
+

V (x) + S π
+

(x) ≡ uπV (x) + S π(x)

d
π+

(x) = d
π+

V (x) + S π
+

(x) ≡ d
π

V (x) + S π(x)

dπ
+

(x) = S π
+

(x) ≡ S π(x)

uπ
+

(x) = S π
+

(x) ≡ S π(x) ,

where the symbols with a superscript π implicitly refer to the PDFs for the π+. Then
assuming isospin symmetry, e.g. the down-quark PDF in the π−(du) is identical to
the up-quark PDF in the π+.



11 The Weak Interaction

11.1 Hint: Consider conservation of angular momentum, parity and the symme-
try of the π0π0 wavefunction (indetical bosons).

11.2 Hint: Conservation of angular momentum implies that

JD + Jπ + ` = L + Snn

1 = L + Snn (11.1)

where Snn = 0 or 1, is the total spin of the neutron-neutron system. Since the final
state consists of identical fermions the overall wavefunction of the neutron-neutron
system must be anti-symmetric

ψspace × ψspin : anti-symmetric .

11.3 Answer:

a) P = F · v : scalar - scalar product of two vectors ;
b) F : vector;
c) G = r × F: axial-vector - cross product of two vectors ;
d) Ω = ∇ × v : axial-vector - cross product of two vectors (even if one is a

vector operator) ;
e) magnetic flux, φ =

∫
B · dS : pseudo-scalar - scalar product an axial vector

(B) with a vector ;
f) divergence of the electric field strength, ∇ · E : scalar - scalar product of

two vectors .

11.4 Answer: For for either a pure scalar interaction or pure pseudoscalar in-
teraction, the chiral combinations that contribute to the annihilation process are
LL → LL, LL → RR, RR → LL and RR → RR. For an S − P interaction, the only
non-zero contribution to the amplitude comes from RR→ LL.

11.5 Answer: i) Here the V − A for of the interaction projects out LH particle
states and RH antiparticle states. Hence in the decay τ− → π−ντ, the neutrino is
produced in a LH chiral state. Since the neutrino is almost massless, it is highly

26



27 The Weak Interaction

⌧�

⇡�⌫⌧

relativistic and the chiral and helicity states are the same. Hence the neutrino must
be produced in a LH helicity state and the allowed spin combination is:
ii) Here the V + A for of the interaction projects out RH particle states and LH
antiparticle states. Hence in the decay τ− → π−ντ, the neutrino would now be
produced in a RH chiral state:

⌧�

⇡� ⌫⌧

11.6 Answer: The expression for the decay rate in this case is

Γ =
4π

32π2m2
π

p 〈|M f i|2〉 =
G2

X f 2
π

8π
p2 .

Therefore, to lowest order, the predicted ratio of the π− → e−νe to π− → µ−νµ
decay rates is

Γ(π− → e−νe)
Γ(π− → µ−νµ)

=
p2

e

p2
µ

=

 (m2
π − m2

e)
(m2

π − m2
µ)

2

= 5.49 .

11.7 Answer: From the result derived in the text for pion decay, the predicted
ratio of the two leptonic decays of the charged kaon is

Γ(K− → e−νe)
Γ(K− → µ−νµ)

=

me(m2
K − m2

e)

mµ(m2
K − m2

µ)

2

= 2.55 × 10−5 .

11.8 Answer: a) The lowest-order quark-level Feynman diagrams are:

u

s

W
K+

νµ

µ+

W
K+

u

d

π0

π+

u

s

u

u

WK+

π+

π+

π−

u
d

u
d

d
u

s

u

b) The numerical answer you obtain will depend on the assumptions made. Making
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the assumption that fK ≈ fπ (both are pseudo scalar mesons) and putting in the
numbers

τK+ ≈ 0.05τπ+

= 1.3 × 10−9 s

This is a factor 10 shorter than the measured value of τK+ = 1.2×10−8 s because the
K+ decay rate is suppressed by a factor of tan2 θC = 0.053 (see Chapter 14) relative
to the π+ decay rate; in charged kaon decay the weak decay vertex is s → u,
whereas for pion decay it is d→ u.

11.9
Answer: fπ ≈ 0.135 GeV , and thus fπ ∼ mπ.

11.10 Answer: e) Taking fπ = mπ,

Γ(τ− → π−ντ) = 2.93 × 10−13 GeV .

f) BR(τ− → π−ντ) =
Γ(τ−→π−ντ)

Γτ
= 11.9 % , in fair agreement with the measured

value of 10.83 ± 0.06 %.



12 The Weak Interactions of Leptons

12.1 Hint: Don’t forget colour.

12.2 Hint: If this were the only Feynman diagram contributing to the process
νee− → νee−, following the derivation of Chapter 12.2.1 would give

σCC(νee− → νee−) =
G2

Fs
π

.

It should be noted that this neglects the NC Z-exchange diagram and that M →
MCC +MNC , which has the effect to reduce the νee− → νee− cross section through
negative interference.

12.3 Answer: The probability of an interaction is

P = σCC(νee− → νee−)[cm2] × ne[cm−2] < 10−15 .

12.4 Hint: BEquating (12.34) and (12.20) gives

G2
F

π
sx

[
d(x) + (1 − y)2u(x)

]
=

G2
F

2π
s
[
(1 − y)Fνp

2 + xy2Fνp
1 + xy

(
1 − y

2

)
Fνp

3

]
2xd(x) + 2x(1 − y)2u(x) = (1 − y)Fνp

2 + xy2Fνp
1 + xy

(
1 − y

2

)
Fνp

3

2x(d(x) + u(x)) − 4xyu(x) + 2xy2u(x) = Fνp
2 + y(xFνp

3 − Fνp
2 ) + y2(xFνp

1 ) .

12.5 Answer: You should find that the parton model with Qu = +2/3 and Qd =

−1/3 predicts:

FeN
2 /FνN

2 = 1
2 (Q2

u + Q2
d) = 5

18 = 0.278,

consistent with the measured value of 0.29 ± 0.02.

12.6 Answer: xs(x) = 5
6 FνN

2 − 3FeN
2 .

12.7 Answer: The data are plotted in the figure below, along with a linear fit
(χ2-minimization). The linear fit has χ2 = 0.48 for one degree of freedom, and
therefore the data are consistent with the hypothesis that he cross section depends
linearly on the degree of positron polarisation. The fit results indicate that the cross
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30 The Weak Interactions of Leptons

section is expected to be zero for P(e+) = −1 when the positrons are all left-handed.
Consequently the data support the hypothesis that the weak charged current only
couples to RH antiparticles and thus has the form V − A. Add the weak charged
current been of the form V + A a negative slope with intercept at P(e+) = +1 would
have been observed.
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13 Neutrinos and Neutrino Oscillations

13.1 Hint: Assuming the mass eigenstates propagate with equal velocity, β1 =

β2 = β, and T = L/β.

13.2 Hint: First note that

∆m2[GeV2] = 10−18∆m2[eV2] and L[m] = 103L[km] .

To convert from natural units L[GeV−1] to SI units L[m] the expression in brackets
needs to be multiplied by the factor GeV/(~c) .

13.3 Hint: The expression for P(νe → νe) can be obtained from equation (13.24)
by making the replacing in the sub-scripts µ → e. You will also need to use the
complex number identity

|z1 + z2 + z3|2 ≡ |z1|2 + |z2|2 + |z3|2 + 2Re{z1z∗2 + z1z∗3 + z2z∗3} .

13.4 Hint: In part e) assume θ12 ≈ 35◦, θ23 ≈ 45◦ and θ13 ≈ 10◦ and ∆13 ≈ ∆23.
For a terrestrial experiment the sin ∆12 term results in oscillations over very large
distances. Consider a beam neutrino experiment, similar to MINOS with a peak
beam energy of 3 GeV. The first oscillation maximum from the ∆23 term will occur
at

∆23 =
π

2
⇒ L = 1500 km .

But at this distance

∆12

∆23
=

∆m2
12

∆m2
32

≈ 0.033

⇒ ∆12 = 0.033
π

2
= 0.05 .

Answer: For these assumptions, P(νe → νµ) − P(νe → νµ) ≈ 0.03.

Note: It should be noted that the above treatment uses the vacuum oscillation for-
mula and neglects ”matter effects”.
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32 Neutrinos and Neutrino Oscillations

13.5 Hint: b) Under the above redefinition of the phases of the fermion fields:

U →
 cos θei(δ1+θ′e−θ′1) sin θe

i
(
δ1+δ2

2 −δ+θ′e−θ′2
)

− sin θe
i
(
δ1+δ2

2 +δ+θ′µ−θ′1
)

cos θei
(
δ2+θ′µ−θ′2

)
 .

All complex phases can be eliminated if the following four conditions are satisfied

θ′1 − θ′e = δ1 and θ′2 − θ′e =
δ1 + δ2

2
− δ , (13.1)

θ′1 − θ′µ =
δ1 + δ2

2
+ δ and θ′2 − θ′µ = δ2 . (13.2)

Now choose θ′e = 0, which is equivalent to writing all the phases relative to the
phase of the electron.

13.6 Hint: In both cases the double angle formula sin 2θ = 2 sin θ cos θ is used.
For the second identify, it is easiest to start from

sin2 2θ23 cos4 θ13 + sin2 2θ13 sin2 θ23 =4 sin2 θ23 cos2 θ23 cos4 θ13

+ 4 sin2 θ13 cos2 θ13 sin2 θ23 .

13.7 Hint: In Figure 13.20 the distance L0 in L0/Eνe , is the average distance to
many reactors weighted by expected flux. The variety of actual distances, smears
out the calculated form of the oscillation probability, with the smearing becoming
more notable at small values of E, or equivalently large values of L0/Eνe . The first
oscillation minimum occurs at L/E < 30 km but is not clearly resolved. The second
oscillation minimum is clearly defined at

L0/Eνe ≈ 50 km MeV−1 = 50000 km GeV−1 .

Determining the angle θ12 requires care. The amplitude of the oscillations (esti-
mated from the first oscillation maximum and the well-resolved second oscilla-
tion minimum) is about 0.4. Without experimental effects this would be equal to
cos4 θ13 sin2 2θ12. However, the sharpness of the oscillation structure is smeared out
due to the reactors being at a variety of distances from the experiment. The effect
of this smearing can be estimated. According to the survival probability formula,
the peak at L/E = π should correspond to a survival probability of cos4 θ13 ' 0.95.
The measured survival probability is about 0.75, due to the smearing out of the
peak due to the ranges of L to the different reactors.

13.8 Hint: The interpretation of the MINOS data is relatively straightforward as
the distance from the source of the beam to the far detector is fixed, L = 735 km
and the energy of the neutrino is relatively well measured.

13.9 Note: Part d) of question 13.9 should be ignored - it is poorly worded. The
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intention was to consider the case where the decay products of the pion were close
to being perpendicular to the direction of the boost. Close to θ∗ ∼ π/2 the transverse
momentum is approximately p∗ and the longitudinal momentum is primarily due
to the Lorentz boost.
Answer: a) p∗ =

m2
π−m2

µ

2mπ
.

Hint: c) Flipping the sign of β, gives the Lorentz transformation from the labora-
tory frame to the pion rest frame. Consideration of EE∗ gives the desired relation.

Hint: e) Here were are working in the small angle limit where

cos θ) ≈
(
1 − θ

2

2

)
.

In addition, assume that Eν � mπ such that γ � 1,

β =

(
1 − 1

γ2

)1
2 ≈ 1 − 1

2γ2 .

Answer: f) The neutrino energies for a set of pion beam energies are tabulated
below for θ = 0◦ and θ = 2.5◦: The effect of going away from the beam axis is

Eπ Eν at θ = 0◦ Eν at θ = 2.5◦

1.0 GeV 0.43 GeV 0.39 GeV
1.5 GeV 0.65 GeV 0.53 GeV
2.0 GeV 0.86 GeV 0.62 GeV
2.5 GeV 1.08 GeV 0.67 GeV
3.0 GeV 1.29 GeV 0.68 GeV
3.5 GeV 1.50 GeV 0.68 GeV
4.0 GeV 1.72 GeV 0.67 GeV
4.5 GeV 1.93 GeV 0.65 GeV
5.0 GeV 2.15 GeV 0.62 GeV

to produce a “narrow-band” beam, where most the neutrino energy depends only
very weakly on the energy of the decaying pion producing the neutrino.



14 CP Violation and Weak Hadronic
Interactions

14.1 Answer: The diagrams have the form. The two lowest-order Feynman dia-

grams for the K0 → π+π− and K0 → π0 π0 decays are:

K0

π+

π−

d

u

s u

d d

V∗us

Vud

K0
Vud

u

d

π0

π0

d

V∗us
s

u

d

In the two flavour approximation, the matrix elements for all diagrams in this ques-
tions are proportional to

M ∝ |Vus| |Vud| ≈ sin θC cos θC .

14.2 Answer: From consideration of the CKM matrix alone,

Br(B0 → D− π+) : Br(B0 → π+ π−) : Br(B0 → J/ψK0)

= |Vcb|2|Vud|2 : |Vub|2|Vud|2 : |Vcb|2|Vcs|2
= 1.6 × 10−3 : 1.5 × 10−5 : 1.6 × 10−3 .

14.3 Answer: On the basis of the CKM matrix alone, one would expect

Γ(D0 → K+π−)
Γ(D0 → K−π+)

≈ |Vcd|2|Vus|2
|Vud|2|Vcs|2

=
0.2252 · 0.2252

0.9742 · 0.9732 = 3 × 10−3 ,

explaining most of the difference in the observed decay rates.

14.4 Answer:

W = B−(bu) , X = D0(cu) , Y = K−(su) and Z = π0(uu) .

14.5 Answer:
a)

Nfree
2 = 4 , Nfree

3 = 9 and Nfree
4 = 16 .
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b)

Nreal
2 = 1 : Nphase

2 = 3 , Nreal
3 = 3 : Nphase

3 = 6 and Nreal
4 = 6 : Nphase

4 = 10 .

c)

Nreal
2 = 1 : Nphase

2 = 0 , Nreal
3 = 3 : Nphase

3 = 1 and Nreal
4 = 6 : Nphase

4 = 3 .

d) CP violation arises from at least one complex phase in the mixing matrix, and
therefore CP violation can arise in quark mixing for three or more generations, but
not for two generations.

14.6 Hint: In both cases the flavour change is uu→ ss.

14.7 Hint: Remember that ε is a small parameter, which allows certain approxi-
mations to be made.

14.8 Answer:

VudVusmu : : VcdVcsmc : VtdVtsmt = 0.07 GeV : 0.33 GeV : 0.06 GeV .

14.9 Hint: This is a tricky problem. The first part is more obvious if one starts
from the required solution and works backwards. You will also need to remember
that

∆m − i
2∆Γ = λ+ − λ− =

[
(M12 − i

2Γ12)(M∗12 − i
2Γ∗12)

] 1
2 .

The second part of the question uses the measured properties of the neutral kaon
system to extract information about the effective Hamiltonian. The angle φ, defined
by ε = |ε|eiφ, was measured by CPLEAR

φ = arg ε = (43.19 ± 0.73)◦ ,

this can be used to infer that Im {M12} � Im {Γ12}.

14.10 Hint: The relation

|ε| ∝ Aut Im (VudV∗usVtdV∗ts) +Act Im (VcdV∗csVtdV∗ts) +Att Im (VtdV∗tsVtdV∗ts) ,

can be manipulated into the form

|ε| = aη(1 − ρ + b + c)

⇒ η(1 − ρ + constant) = constant ,

which is the equation of a hyperbola in the (ρ, η) plane.
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14.11 Hint: From the earlier question

∆m = m(BH) − m(BL) ≈
∑
q,q′

G2
F

3π2 f 2
BmB|VqdV∗qbVq′dV∗q′b|mqmq′ .

14.12 Answer: β∗ = 0.063 .

14.13 Hint: First convince yourself that the laboratory frame energy of the B
mesons does not depend strongly on the decay angle in the centre-of-mass frame.
Thus

d =
p′

m
τc = 197 µm .

14.14 Answer: The length of the shortest side of the unitarity triangle shown
Figure 14.25 is

x = 0.43 ± 0.06 ,

giving only a weak constraint on ρ and η.

ρ
0 0.5 1

η

0

0.5

1



15 Electroweak Unification

15.1 Hint: Just consider diagrams involving the exchange of either a γ, Z or W.
For there first and last parts of the question there are two diagrams.

15.2 Hint: Think about the handedness of the νµνµ.

15.3 Answer: The individual partial decay widths are proportional to:

µ : c2
V + c2

A = 0.2516 , d : c2
V + c2

A = 0.3725 and u : c2
V + c2

A = 0.2861 ,

and therefore

Rµ =
Γ(Z→ µ+µ−)

Γ(Z→ hadrons)

=
0.2516

9 · 0.3725 + 6 · 0.2861
= 0.496 ≈ 1

20
.

15.4 Answer: The spin-averaged matrix element squared (averaging over the
two spin states of the electron since the neutrino is left-handed) for the NC scatter-
ing process is

〈|M f i|2〉 =
1
2
g4

Zs2

m4
Z

[
4(cνL)2(ce

L)2 + 4(cνL)2(ce
R)2 1

4 (1 + cos θ∗)2
]

=
1
2
g4

Zs2

m4
Z

[
(ce

L)2 + (ce
R)2 1

4 (1 + cos θ∗)2
]
.

The NC cross section is

σ ≈ 2meEνG2
F

π
× 0.09 .

15.5 Hint: In the process σ(νee− → νee−), both charged-current and neutral-
current diagrams contribute and can interfere.
Consequently the spin-averaged matrix element for this mixed NC and CC weak
interaction is

〈|M|2NC+CC〉 =
1
2

[
(MCC

LL +MNC
LL )2 + (MNC

LR )2
]
.

You will also need to use the relation gZ/mZ = gW/mW.
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Z

e−

νe

e−

νe

gZ

gZ

W

e−

νe

νe

e−

gW

gW

Answer:

σ(νµe− → νµe−) : σ(νee− → νee−) : σ(νµe− → νeµ
−) = c2

L + 1
3 c2

R : (1 + cL)2 + 1
3 c2

R : 1

= 0.09 : 0.55 : 1 .



16 Tests of the Standard Model

16.1 Answer:
a)

Γee = 0.03371ΓZ and Γhadrons = 0.6992 ΓZ .

b)

Nν =
498
167

= 2.98 ,

consistent with the claim that there are three light neutrino generations.

16.2 Hint: Start from

dσ
dΩ

= κ
[
a(1 + cos2 θ) + 2b cos θ

]
,

where a and b are constants related to the couplings to the Z, and κ is a normalisa-
tion factor.

16.3 Answer: sin2 θW = 0.2317 ± 0.0012 .

16.4 The e+e− Stanford Linear Collider (SLC), operated at
√

s = mZ with left-
and right-handed longitudinally polarised beams. This enabled the e+e− → Z→ ff
cross section to be measured separately for left-handed and right-handed electrons.

Assuming that the electron beam is 100 % polarised and that the positron beam is
unpolarised, show that the left-right asymmetry ALR is given by

ALR =
σL − σR

σL + σR
=

(ce
L)2 − (ce

R)2

(ce
L)2 + (ce

R)2 = Ae ,

where σL and σR are respectively the measured cross sections at the Z resonance
for LH and RH electron beams.

Hint: The matrix-elements for the different helicity combinations in the process
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⇡�

p⌧✓⇤

⌧�R

⇡�

p⌧✓⇤

⌧�L

⌫⌧ ⌫⌧

e+e− → Z→ µ+µ− are given by equations (16.9)- (16.12)

|MRL→RL|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cµR)2(1 + cos θ)2 ,

|MRL→LR|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cµL)2(1 − cos θ)2 ,

|MLR→RL|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cµR)2(1 − cos θ)2 ,

|MLR→LR|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cµL)2(1 + cos θ)2 ,

where |PZ(s)|2 = 1/[(s − m2
Z)2 + m2

ZΓ2
Z] and RL→ LR refers to a e−Re+

L → µ−Lµ
+
R.

16.5 Hint: In the limit
√

s � mτ, the matrix-elements for the different helicity
combinations in the process e+e− → Z → τ+τ− are given by equations (16.9)-
(16.12) as in the previous question (with the replacement µ→ τ).

16.6 Hint: To obtain the pion energy distributions in the laboratory frame, con-
sider the decay in the tau rest frame (as shown below) and boost to the laboratory
frame.
Answer:Aτ = −Pτ = 0.14 and sin2 θW = 0.233 .

16.7 Hint: The first three diagrams (CC03) involve the production of two W
bosons The remaining seven diagrams, all arise from pair production of quarks
or leptons through Z or γ exchange with a W radiated from one of the final state
particles.

W

Z/γ

d

e−

e+

d

u

νµ

µ−

16.8 Hint: There is a t-channel and a u-channel diagram.

16.9 Answer: BR(W→ qq′) = 68.1 ± 1.2 % .
Note: In calculating the error, you will need to assume that the backgrounds are
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relatively small, so that the uncertainties on the event counts are given by Poisson
errors.

16.10 Answer: The jet pairing most consistent with being from the process
e+e− →W+W− has

(13)(24) : m13 = (84.8 ± 9.3) GeV and m24 = (82.6 ± 5.9) GeV .

16.11 Hint: Either show that

p∗ =
1

2mt

√[
(m2

t − (mW + mb)2
] [

m2
t − (mW − mb)2

]
,

and then note that mb � mW, or from the outset neglect the b mass.



17 The Higgs Boson

17.1 Hint: Show that the matrix element for the t-channel process e+e− →
W+

LW−
L scales as

M2 ∝
(

EW

mW

)4

.

17.2 Hint: The partial derivatives with respect to each of the four components of
the spinor ψi are

∂LD

∂∂(∂µψi)
= iψγ µ and

∂LD

∂ψi
= −mψ ,

17.3 Hint: Show that the with the gauge transformation Fµν′ = Fµν .

17.4 Hint:

L = − 1
4 (∂ µAν − ∂νAµ)(∂µAν − ∂νAµ) − j µAµ

= − 1
4 (∂ µAν)(∂µAν) − 1

4 (∂νAµ)(∂νAµ) + 1
4 (∂ µAν∂νAµ) + 1

4 (∂νAµ)(∂µAν) − j µAµ
= − 1

2 (∂ µAν)(∂µAν) + 1
2 (∂νAµ)(∂µAν) − j µAµ

= − 1
2 (∂νAµ)(∂νAµ) + 1

2 (∂νAµ)(∂µAν) − j µAµ .

17.5 Answer: Introducing odd powers of the field φ into the Higgs potential
would break the underlying gauge invariance of the Lagrangian, which is the whole
point of introducing the Higgs mechanism in the first place.

17.6 Hint: There are no tricks here, just go through the algebra.

17.7 Hint: The original Lagrangian is

L = (Dµφ)∗(Dµφ) = (∂µφigBµφ)∗(∂ µφigBµφ)

= (∂µφ∗)(∂ µφ) + ig(∂µφ∗)Bµφ − ig(∂ µφ)Bµφ∗ + g2BµBµφφ∗ .

Then consider the effect of

φ(x)→ φ′(x) = eigχ(x)φ(x) and Bµ → B′µ = Bµ − ∂µχ(x) .
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17.8 Hint: To find the eigenvalues solve:

MX =

(
g2

W −gWg
′

−gWg
′ g′2

)
X = λX ,

where M is the mass matrix.

17.9 Hint: The interaction terms in the Lagrangian arise from

(Dµφ)†(D µφ) = 1
2 (∂µh)(∂ µh) + 1

8g
2
W(W (1)

µ + iW(2)
µ )(W (1)µ − iW (2)µ)(v + h)2

+ 1
8 (gWW(3)

µ − g′Bµ)(gWW(3)µ − g′Bµ)(v + h)2

= 1
2 (∂µh)(∂ µh) + 1

8g
2
W(W (1)

µ + iW(2)
µ )(W (1)µ − iW (2)µ)(v + h)2

+ 1
8 (g2

W + g′2)Z µZµ(v + h)2 .

Answer: gHZZ = 1
2

gW
cos θW

mZ .

17.10 Hint: For the decay H→W+W− the matrix element is

H
W+ W�p2 = (E,p)p3 = (E,�p)

z

M f i = −gWmWgµν ε
µ(p2)∗ εν(p3)∗ .

17.11 Answer:

Z

e−

e+

H

Z

W

W

e−

e+

νe

H

νe

17.12 Answer: Taking mH = 126 GeV, v = 246 GeV, ΓH = 0.004 GeV, α =

1/128, mb = 5 GeV:

σ0
e+e− : σ0

µ+µ− : σQED =
m2

em2
b

16πv4Γ2
H

:
m2
µm2

b

16πv4Γ2
H

:
16πα2

27m2
H

= 2.2 × 10−12 GeV−2 : 9.5 × 10−8 GeV−2 : 7.1 × 10−9 GeV−2 .



A Appendix A Errata

p 56: Question 2.8: The reaction should (of course) read:

p + p→ p + p + p + p .

p 57: the factor of 1
4 in the last line of Question 2.16 should be removed, i.e. Find

the eigenvalue(s) of the operator Ŝ2
= (Ŝ 2

x+Ŝ 2
y+Ŝ 2

z ), and deduce that the eigenstates
of Ŝ z are a suitable representation of a spin-half particle.

p 78: the mass of the pion in Question 3.1 should be 140 MeV, not 140 GeV.

p146: In the matrix in the footnote B22 → B21.

p177: Question 7.2 should be ignored. There was an error in my original solution,
whereby finding a closed form was relatively straightforward - it isn’t!

p231: there is a typo in the equation at the bottom of the page:
1
2

[
S2 − S1

2 − S1
2
]
→ 1

2

[
S2 − S2

1 − S2
2

]
.

p312: In Figure 12.5, the arrows on the u and νµ are the wrong-way around, only
left-handed chiral states participate in the weak charged-current.

p341: There is a typo (p1 → p2) in Equation (13.13), which should read

∆φ12 = (E1 − E2)
[
T −

(
E1 + E2

p1 + p2

)
L
]

+

m2
1 − m2

2

p1 + p2

 L .

This typo is repeated in question 13.1.

p362: In question 13.2, there is a spurious 4 in the denominator of the argument of
the sin2(...) in the second equation, it should read

sin2(2θ) sin2
(
∆m2[GeV2]L[GeV−1]

4Eν[GeV]

)
→ sin2(2θ) sin2

(
1.27

∆m2[eV2]L[km]
Eν[GeV]

)
.

The expression in the main text is correct.

p363: Part d) of question 13.9 should be ignored - it is poorly worded. The intention
was to get the student to consider the case where the decay products of the pion
were close to being perpendicular to the direction of the boost. Close to θ∗ ∼ π/2
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45 Errata

the transverse momentum is approximately p∗ and the longitudinal momentum is
primarily due to the Lorentz boost.

p427: The last matrix element should readM2
LR notM2

RR.

p458: Question 16.7 should read µ−νµud.

p498: Question 17.8 the expression for the fields should read:

Aµ =
g′W (3)

µ + gWBµ√
g2

W + g′2
and Zµ =

gWW (3)
µ − g′Bµ√
g2

W + g′2
,


