

MINOS Technology for the ILC Muon Chambers ?

Mark Thomson University of Cambridge

THIS TALK:

- The MINOS detector
- MINOS scintillator system
- Performance
- Conclusion

MINOS : Basic I dea

Measure ratio of neutrino energy spectrum in far detector (oscillated) to that in the near detector (unoscillated)

Partial cancellation of systematics

Mark Thomson, Cambridge

MINOS Far Detector

(will only describe Far Detector in this short talk)

8m octagonal steel & scintillator tracking calorimeter

- 2 sections, 15m each
- 5.4 kton total mass
- 55%/√E for hadrons
- 23%/√E for electrons

Magnetized Iron (B~1.5T)

484 planes of scintillator

One Supermodule of the Far Detector... Two Supermodules total.

Detector Elements

- ***** Steel-Scintillator sandwich : SAMPLING CALORIMETER
- ★ Each plane consists of a 2.54 cm steel +1 cm scintillator
- ★ Each scintillator plane divided into 192 x 4.1cm wide strips
- ***** Alternate planes have orthogonal strip orientations (U and V)

*

 \star

Scintillator/Fibres

MINOS FarDet during installation

Readout/Multiplexing

Light Detection:

- Hamamatsu 16 pixel PMTs R5900-00-M16
- ★ QE ~ 15 %
- ***** Strips read out at both ends
- ★ Readout by VA chip (IDEAS ASA)

Optical Multiplexing:

- ★ 8 fibres connected to each pixel
- Different multiplexing pattern for both detector sides
- ***** Ambiguities removed in software

Performance

Light Output Efficiency Cross-talk Noise Timing/Timing Calibration Detector Calibration Detector Performance

Light Output

Light at PMT depends on:

- +Path-length in strip
- +Attenuation in WLS fibre
 - +30 % self-absorbtion of green light $\lambda \sim 1m$
 - +Most important component : 70 % λ ~ 7m
- +Attenuation in clear fibres : $\lambda \sim 10m$
- +Optical connection efficiency

Typically 8-10 PEs/strip for a normal incidence MIP

<u>Note:</u> in addition to WLS in strip, on average ~0.8m WLS in pigtail and ~3m Clear fibre

Achieve very high efficiency (>99%)

- biggest loss due to readout deadtime

Efficiency for double-ended hit ~ 90 %

- PE statistics

Cross-talk

Optical cross-talk measured in test setup and in data
Depends on PMT pixel and fibre in bundle of 8

"For a typical cosmic muon approx 25 % chance of cross-talk hit"

Noise some numbers:

Radioactivity : 6 Hz (per stripend) PMT Dark count rate : ~350 Hz per PMT Spontaneous emmission from WLS fibres : ~ 50 Hz (stripend) ~ 1-5 Hz per meter of WLS

For more info : NIMA 545 (2005) 145-155

Timing Resolution

Timing resolution determined by decay time of Y-11 fluor in WLS fibre ~8ns

Resolution of 2.4 ns achieved for data cosmics
Limitted by convolution of exponential decay, PE statistics and electronics threshold

Timing Calibration

Use cosmic muons:

Remove electronics and fibre length offsets

One use of timing

***** Use times at the two end of strip to find distance along strip

e.g. U Strip

Calibration I

I) LED LIGHT INJECTION:

Light from calibration fibers illuminating ends of fibers from the scintillator where they are bundled

- + Linearity of electronics
- + Short-term drift of calibration
- + PMT gains (low led light level : 1 PE)
- + Check optical integrity

II) Cosmic Muons (VERY POWERFUL):

- + 1000 muons/strip/month [half mile underground]
- + Determine strip-to-strip MIP response
- + Determine overall calibration

*****Confident that we will achieve MINOS goal of 2 %

Calibration II : Test Beam

Response measured in CERN test beam using a MINI-MINOS

60 MIPs/GeV

Electrons

22%/√E

Concluding Comments

***** MINOS detectors are performing very well

* Extremely robust detector operation

MINOS style muon chambers for ILC ?

- Even with relatively thin scintillator (1cm) + modest QE get very high MIP efficiency
- + what about timing requirements ?
- + what about aging ? (no evidence yet)
- + other issues ?
- Looks like a very promising technological choice...

