Neutrino Physics in the UK

Mark Thomson

With thanks to: Alfons Weber, Dave Wark, Ken Long, Ruben Saakyan, Steve Biller

PPAP Community Meeting, 5/7/2010

Mark Thomson

Theoretical Context

Neutrino Oscillations: Current Knowledge

- **★** Neutrino/Lepton-mixing sector parameterised by
 - three neutrino masses $\{m_1, m_2, m_3\}$
 - three mixing angles $\{m{ heta}_{12},m{ heta}_{23},m{ heta}_{13}\}$
 - a CP violating complex phase $\,\delta\,$

★ Current neutrino oscillation results provide information on mass-squared differences and the mixing angles, e.g. global fit (Valle, Neutrino 2010):

 In addition bounds from fits to cosmological data (WMAP + ΛQCD, Komatsu et al. 2010, Hannestad et al. 2010)

 $\sum m_{\nu} < 1.3 \,\mathrm{eV}$

⁽⁺² in case of Majorana neutrinos)

What's Hot? The mixing angles...

★ Currently most burning issue is θ_{13}

- currently only know $heta_{13}$ is "small", $\sin^2 2 heta_{13} \lesssim 0.15$
- need to know $heta_{13}$ to estimate size of CP violating effects in lepton sector

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• knowledge of $heta_{13}$ essential to determine future neutrino programme

- ***** In addition, all mixing angles interesting in their own right
 - hints of a flavour symmetry, e.g. $\sin^2 2 heta_{13} \sim 0$ $\sin^2 2 heta_{23} \sim 1$
 - current data (beware size of uncertainties) consistent with tri-bimaximal

$$U_{\rm HPS} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$
 Harrison, Perkins, Scott

$$\underbrace{I_{\rm HPS} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}}_{0.35 \ 0.40 \ 0.35 \ 0.40 \ 0.45 \ 0.50 \ 0.55 \ 0.60 \ 0.65 \ 0.60 \ 0.65 \ 0.00 \ 0.02 \ 0.04 \ 0.06 \$$

The UK Experimental Programme

- Current long-baseline experiments
- R&D for future neutrino oscillation experiments
- Neutrinoless Double Beta Decay

Current Long Baseline Experiments

MINOS

Overview

- **\star** Long baseline neutrino oscillation experiment based on a V_{μ} beam
- **★** Beam operational since 2005 now routinely operating at design perf.
- ★ Main physics goals:
 - Precise (5%) measurement of $|\Delta m_{32}^2|$ from V_{μ} disappearance
 - Precision tests of oscillation hypothesis (vs. decay/decoherence)
 - Sensitivity to $\sin^2 2\theta_{13} \sim 0.1$ from search for v_e appearance

•

MINOS: Recent Results

★ Several world leading results (each with major UK contributions), e.g.

MINOS: Recent Results cont.

- **★** At end 2009, switched to reversed horn current to produce \overline{v}_{μ} beam
 - Allows measurement of oscillation parameters for anti-neutrinos
 - UK led initiative + measurement is unique to MINOS
 - First results (based on relatively small data) sample:

- ★ Tension between neutrino and anti-neutrino results: ~5 % chance prob.
 - Generating a lot of interest
 - Most likely a statistical fluctuation
 - But it is a genuinely new measurement...

MINOS: Impact of Cuts

- **★** MINOS was drastically cut by the PPGP and PPAN prioritisation
 - originally at 8-9 FTE
 - now at 4.7 FTE and will drop to 1 FTE in 12/13
- **★**All groups hit badly RAL and Sussex almost eliminated
- ★Main losses
 - DAQ effort (a UK responsibility) transferred to Fermilab
 - No further MC production in UK (was up to 50%)
 - Calibration effort (a UK responsibility)
 - PDRA analysis effort
- **★**Some mitigation via STFC/Fermilab strategic partnership:
 - STFC funds 3 PDRAs at 50%
 - Transfer of MINOS knowledge to LBNE (see later)
- ★ Future of MINOS
 - MINOS will run until October 2011
 - MINOS is planning 2-4x10²⁰ PoT of anti-neutrinos
 - this would be end of data taking for UK (maybe end of MINOS ND continues as part of Minerva)
 - Final combined analysis through to 2013

<u>Overview</u>

- **★** First off-axis long baseline neutrino oscillation experiment
- **\star** Intense V_{μ} beam (ultimately 0.75 MW)
- ★ Main physics goals:
 - Discovery of V_e appearance $\implies heta_{13}$
 - Opens up possibility of studying CP in neutrino sector
 - $\sin^2 2\theta_{13} \sim 0.01$ Order of magnitude improvement on current limit
 - Precision measurements of V_{μ} disappearance
 - Is θ_{23} really maximal?
 - $\sin^2 2\theta_{23} \sim 0.01$ Order of magnitude improvement on current limit
- **★** Potential for major breakthroughs...

T2K: UK Contribution

Two major capital contributions

- ***** Near Detector (ND280)
 - ECAL
 - Electronics
 - DAQ
 - Final ECAL modules due to be installed by end of Summer
- ***** Beamline components
 - Target and beam dump design
 - Target window, remote handling
 - Beam dump design
 - All beam components working flawlessly
 - UK is now a world-leader in high intensity target design
 - **★** Total UK contribution to construction, including RG effort, £14.4M
 - essentially on budget
 - money spent before prioritisation...

T2K: Status

★ Beam commissioned in first half of 2010

- Operated upto 70 kW
- From November restart at 100 kW
- Gradual increase to design intensity

- ★ Neutrino events seen in both near (ND280) and far (Super-K) detectors
 - ND280 used to characterise background in FD based on detailed event

★ T2K moving into exploitation phase

T2K: Impact of Cuts

- **★** Over last few years the numbers of PDRAs have been significantly reduced
- ★ Current effort
 - I2 PDRAs (not all STFC funded, not all working 100 % on T2K)
 - 20 Academics
 - I6 Students
- **★** With current effort challenging to continue to lead physics analyses and
 - to meet operational responsibilities
 - Detector commissioning
 - DAQ and detector operations
 - Calibration

Main Concern (?)

- ***** The future...
- **★** Anticipated JPARC beam line upgrade to 1.7 MW (middle of decade)
 - possible route to CP violation in neutrino sector
 - requires new target area of UK expertise
 - The UK FJNE (Future JPARC Neutrino Project) programme was killed
 - R&D proposal for liquid Argon detector R&D also killed (see later)

Future Neutrino Oscillation Experiments

➡ Targeting CP Violation

Future Long Baseline Programme

- **★** Ability to observe CP violation depends on θ_{13}
 - CP violating effects enter as $U_{e3} = \sin \theta_{13} e^{-i\delta}$
 - If θ_{13} is small "conventional" neutrino beams not sufficient

★ "Conventional" = SuperBeam, i.e. MW proton beam – challenging...

Updated θ_{13} Timeline

 $\star \theta_{13}$ is the focus of a number of experiments:

- Long-baseline (off-axis): T2K, NOvA
- Reactor: Double Chooz, Daya Bay, RENO

★If $\sin^2 2\theta_{13} > 0.01$ should know by ~2016

The next generation (?): Super-Beams

The next-to-next generation: Neutrino Factory

- **★** The neutrino factory is the ultimate neutrino physics
- **★** Conceivably could be hosted in UK
- Impressive physics reach demonstrated in the (UK initiated, UK led) International Scoping Study (ISS) which delivered the baseline design

Neutrino Factory: International Context

- **★** Current activities geared around International Design Study (IDS)
 - Deliver the neutrino factory reference design by 2012/2013
 - UK has significant leadership roles
- ★ International support
 - EUROnu (coordinator Rob Edgecock)
 - FP7 Design Study for super beams, beta-beams and Neutrino Factory
 - Reports to Strategy Session of CERN Council in 2012
 - US "Muon Accelerator Programme", MAP
 - Significant US initiative
 - real momentum and cash (FY10 = \$10M, FY11 = \$15⁺M)
 - Focuses on muon collider but strong connection to NF
 - IDS-NF and MICE are central to muon acceleration

Neutrino Factory: UK R&D

- **★** Two main aspects of UK R&D programme
 - **•UKNF specific:** (i.e. specific to NF rather than site specific)
 - Conceptual design (as part of IDS-NF)
 - MICE single largest part
 - **UKNF generic**: (i.e. accelerator R&D applicable more widely than 'just' NF)
 - Proton-driver front-end test stand (FETS)
 - Target studies
 - Development of high-gradient cavities
 - Rapid acceleration EMMA (funded through Basic Technology Fund)
- **★**STFC funded programme used to leverage external funds:
 - UKNF Conceptual design work:
 - Matching funds for EUROnu
 - Leverage resources from US (MAP) and elsewhere
 - UKNF FETS:
 - Leverages resources from Spain
 - UKNF target studies:
 - Matching funds for EUROnu
 - UKNF cavity work:
 - Matching funds for SC cavity work within EUCARD

MICE Status

- **★** MICE is designed to demonstrate muon cooling, central the the NF
- **★** A major Particle Physics project based in UK (RAL)
- **★** Significant contributions from international collaborators (US, ...)

Currently STEP I (of VI) installed and operational

UKNF/MICE: Impact of cuts

<u>UKNF</u>

- **★** Cuts have led to reduction in range and scope activities
- ★ Partly protected by external funds (EU etc.)
- **★** Future programme (from 2012) uncertain:
 - Will require negotiation/proposals in light of new accelerator centre

<u>MICE</u>

- **★** Cash flow problems relating to prioritisation/STFC finances
- In addition, MICE-UK asked to bear some costs previously considered host-lab costs
- ★ Despite this, still possible to implement the experiment, but likely to lead to a slip in the schedule.

Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay: Context

- **★** Are neutrinos Majorana or Dirac particles
- **★** Theoretical prejudice favours Majorana neutrino
- **★** Consequences:
 - neutrinos are there own anti-particles
 - $\Delta L = 2$ leading to neutrinoless double β decay

★ To date only one (hotly disputed) claim for a signal

Heidelberg-Moscow Experiment klapdor-kleingrothaus interpretation

 $200 < \langle m_{\beta\beta} \rangle < 500 \,\mathrm{meV}$

- **★** This is one of the hot topics in physics
 - ~7 experiments coming online
 - UK involvement Super-Nemo and SNO+

Super-NEMO

1 module:

Source ⁸²Se first but almost any isotope possible <u>Tracking</u> : 2000 cells in Geiger mode <u>Calorimeter:</u> 550 PMTs + scint. blocks <u>Modules</u> surrounded by water passive shielding

Super-NEMO Demonstrator Module

- **★** Build first Super-NEMO module as a demonstrator prior to full TDR
- **★** Aims:
 - Demonstrate feasibility of large scale mass production
 - Measure backgrounds
 - finalise detector design
 - Competitive physics measurement
 - sensitivity to Klapdor claim by 2015

- **★** UK Super-NEMO funding is currently limited to demonstrator module
- ★ Impact of financial situation
 - Original request: ~ £5M
 - £3M (funded) over 2009-2012
 - Work-packages not-funded:
 - ASIC-based Tracker readout
 - Calorimeter
 - Calibration

Super-NEMO: Looking Forward

NOTE: ★ Full proposal for Super-NEMO ~ 2012

SNO+

- **\star** Replace D₂0 with Neodymium-loaded liq. scint.
- **★** Primary interest $\mathbf{0}\mathbf{v}\mathbf{\beta}\mathbf{\beta}$
 - cost-effective and extremely competitive
 - fully operational by 2012
- **★** In addition, broad physics programme
 - Solar neutrinos
 - Geo-neutrinos
 - 240 km baseline reactor v oscillations
 - Supernova neutrinos

• • • •

★ UK Perspective:

- Capitalising on over 20 year of UK investment in SNO
- Already a very high UK impact
 - Filling key roles with 30% of academics on collaboration
- Canada providing some support
- STFC is providing "minimal bridging funds" for next 2 years
 - but no post-doc support

0νββ Outlook

\star Notional sensitivities and timescales for $0\nu\beta\beta$ experiments

2013: KK claim may be ruled out by multiple experiments
2015: *if* KK claim true, may have firm evidence from Super-NEMO
By 2015: neutrino mass above (m_{ββ}) ~ 100 meV will either be established or ruled out by multiple experiments (GERDA, EXO, CUORE, SNO+) using different isotopes

★ From the UK perspective: circa 2012

- Funding request for full proposal for Super-NEMO
- SNO+ will be fully operational, will need "more official" UK support, including post-docs.

My Conclusions

- * The revolution in our understanding of the neutrino sector continues
 - anticipate a number of truly significant results in next decade
- **★** The good news: the UK still has a neutrino programme
- **★** But, the post-prioritisation cuts have hurt:
 - MINOS exploitation: continues (with FNAL support)
 - T2K exploitation: UK in decent position despite lack of PDRAs
 - UKNF: world-leading (in part due to external support), but next funding request not so far away...
 - MICE: now operational (step I) but potentially significant delays due to current financial constraints
 - Super-NEMO: demonstrator funded (at a reduced level c.f. request)
 - SNO+: surviving on academic effort thanks to STFC "bridging funds"
- **\star** Viable near-term programme (MINOS, T2K, $0\nu\beta\beta$)
- **★** Significant effort towards long-term programme (MICE, UKNF)
- **★** But, lack of a medium term programme is a real concern:
 - UK JPARC Future Neutrino Project (high power targetry etc.) not funded
 - Liquid Argon detector development project not funded

Final Words

- ★ Over the past 15 years the UK has built up a vibrant and well-focused neutrino programme
- **★** The recent round of cuts are more than just a flesh wound
 - they had a real impact
- **★** Must defend our science, further cuts could have a devastating impact...

Final Words

- ★ Over the past 15 years the UK has built up a vibrant and well-focused neutrino programme
- **★** The recent round of cuts are more than just a flesh wound
 - they have done real damage
- **★** Must defend our science, further cuts could have a devastating impact...

