

Neutrino Oscillations and the MINOS experiment

Mark Thomson University of Cambridge

This Talk:

- \bullet Introduction to ν oscillations
- Experimental status of v osc.
- MINOS Physics and Status

Recent History

5 years ago (PDG1998):

- ★ Standard Model : <u>assumed</u> massless v
- **★** Fundamental states : v_e , v_μ , v_τ
- ★ mv_e < 3 eV,

Neutrino Oscillations - hints

- ***** Atmospheric neutrino oscillations
 - Statistically marginal / positive & negative results
- Solar neutrino oscillations
 - Required faith in Astrophysics/Astrophysicists....!

5 Years on.....

Now (PDG2002+):

- ★ Standard Model : massive v
- ★ Fundamental states : v₁ , v₂ , v₃
- * $\Delta m_{12}^2 \sim 5 \times 10^{-5} \text{ eV}^2$, $\Delta m_{23}^2 \sim 2 \times 10^{-3} \text{ eV}^2$
- **Neutrino Oscillations Compelling evidence**
 - ***** Atmospheric neutrino oscillations
 - Compelling evidence : Super-Kamiokande (+K2K)
 - ***** Solar neutrino oscillations
 - Compelling evidence : SNO (+KamLand)

Almost all () from neutrino oscillations

Neutrino Oscillations At t=0 produce a V_e (momentum p) $|\boldsymbol{\nu}(0)\rangle = |\boldsymbol{\nu}_{e}\rangle$ $= \cos \theta |\nu_1\rangle + \sin \theta |\nu_2\rangle$ Time development of wave-function determined by time evolution of eigenstates of Hamiltonian $|\nu(t)\rangle = \cos\theta |\nu_1\rangle e^{-i\frac{E_1t}{\hbar}} + \sin\theta |\nu_2\rangle e^{-i\frac{E_2t}{\hbar}}$ $|\nu(t)\rangle = e^{-i\frac{E_{1}t}{\hbar}} \left\{ \cos\theta |\nu_{1}\rangle + \sin\theta |\nu_{2}\rangle e^{-i\frac{(E_{2}-E_{1})t}{\hbar}} \right\}$ **Trees:** \neq E₁ \neq E₂ \implies Observable phase difference **†** In limit that $E \gg m_v$ then $(E_2 - E_1) \alpha (m_2^2 - m_1^2)/2E$ **†** Then its just algebra..... $P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu}) \approx \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{1.27 L \Delta m_{12}^{2}}{E} \right)$

OSCILLATIONS

3 Generation V oscillations

Golden V Oscillation Signal

 $\begin{array}{c} \langle \mathbf{v}_{\tau} \rangle \Rightarrow \langle \mathbf{v}_{\tau} \rangle \Rightarrow \langle \mathbf{v}_{\tau} \rangle \Rightarrow \\ \langle \mathbf{v}_{\tau} \Rightarrow \langle \mathbf{v}_{\mu} \rangle \Rightarrow \\ \langle \mathbf{v}_{\tau} \Rightarrow \langle \mathbf{v}_{\tau} \Rightarrow \langle \mathbf{v}_{\tau} \Rightarrow \langle \mathbf{v}_{\tau} \rangle \Rightarrow \\ \end{array}$

Pure V_{μ} beam

 V_{μ} disappearance + V_{τ} appearance

+observe oscillations e.g $V_{\mu} \rightarrow V_{\tau} \rightarrow V_{\mu}$

Currently most observations pure disappearance

Only SNO observe appearance (indirectly)

Oscillatory structure not yet seen !

Most likely explanation of data is quantum mechanical neutrino oscillations

- neutrinos are only weakly interacting to stop/detect 1 V need ~ 10 light-years of Pb
- ***** need intense sources and large detectors
- neutrino oscillations now seen from:
 - **Atmospheric Neutrinos (SuperK,**
 - Solar Neutrinos (SNO, SuperK,
 - **Reactor Neutrinos (KamLAND)**
 - Neutrino beams (K2K)
- ★ For this talk ignore LSND !

Wait for MiniBoone

Solar Neutrinos

- **★** Fusion in sun is source of V_e
- ***** Flux ~ 6x10¹⁰ cm⁻² s⁻¹
- \star E_v ~ 1 MeV
- ***** Mainly concerned with ⁸B V_e

Atmospheric Neutrinos

* Cosmic Rays (mainly p,He) hitting upper atmosphere produce Vs: $\pi \rightarrow \mu V_{\mu}$ and $\mu \rightarrow e V_e V_{\mu}$ decays * Flux ~ 1 cm⁻² sr⁻¹ s⁻¹ * E_v ~ 1 GeV * N(V_µ)/N(V_e) ~ 2

 \bigstar Super-Kamiokande dominates atmospheric V

Super-Kamiokande

* 50 ktons H₂0
* 11246 PMTs
* Accident in 11/2001
* Operational again – reduced number of PMTs

SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TO

WIKKEN SEKKE

 v_e , v_μ detected via Cerenkov radiation from lepton produced in CC weak interactions

SK particle ID

★ Electrons and muons cleanly identified ~ 99 % purity

`Clean' ring

`Diffuse/fuzzy' ring due to scattering/showering

Measure v_{e}/v_{μ} fluxes vs zenith angle, θ

***** In doing so, scan over large range of L: 10km<L<12000km

$$P(\overline{
u}_{\mu}
ightarrow \overline{
u}_{ au}) pprox \sin^2 2 heta_{23} \sin^2 \left(rac{1.27 L \Delta m_{23}^2}{E}
ight)$$

NOTE: (L/km), E(GeV), $\Delta m^2(eV^2)$

NIKHEF 6 June 2003

Observe clear disappearance signal

But don't see oscillation pattern

SuperKamiokande Result

Supported by K2K

K2K Best fit point: $(sin^22\theta, \Delta m^2) = (1.0, 2.8 \times 10^{-3} eV^2)$ c.f. SuperK: $(sin^22\theta, \Delta m^2) = (1.0, 2.5 \times 10^{-3} eV^2)$

Solar Neutrinos (SNO)

- ★ 1000 tonnes D₂O, inside a
- ★ 12m diameter acrylic vessel.
- ★ ~9500 PMTs + concentrators.
- ★ 17m diameter PMT support.
- **\star** 7000 tonnes H₂O.

NC

V_e

v Detection in SNO

Charged Current (CC)

- ***** Detect electron
- **\star** Sensitive to V_e only
- **★ Rate** $\alpha \Phi(v_e)$

Neutral Current (NC)

- **\star** Detect γ from n capture on d
- **★** Equally Sensitive to V_e , V_{μ} , V_{τ}
- *** Rate (\chi \Phi(v_e) + \Phi(v_\mu) + \Phi(v_\tau))**

р

n

Elastic Scattering (ES)

- ★ Detect scattered e⁻
- ***** Sensitive to V_e , v_{μ} , v_{τ}
- *** Rate (\chi \Phi(\nu_e) + 0.154[\Phi(\nu_\mu) + \Phi(\nu_\tau)]**

Processes have different sesitivities. By measuring all rates can determine: $\Phi(\nu_e) \stackrel{\text{AND}}{=} \Phi(\nu_{\mu}) + \Phi(\nu_{\tau})$

NIKHEF 6 June 2003

SNO Results

Extract number of CC + NC + ES + Background event from maximum likelihood fit to:

ES Events ~ $\Phi(v_e) + 0.154[\Phi(v_\mu) + \Phi(v_\tau)]$ **NC Events** ~ $\Phi(v_e) + \Phi(v_\mu) + \Phi(v_\tau)$ **CC Events** ~ $\Phi(v_e)$

SNO - interpretation

★ Interpretation of solar neutrino data more complicated due to matter effects (MSW)

★ But SNO data strongly favour LMA solution

NIKHEF 6 June 2003

Reactor Experiments

- Nuclear reactors produce a large flux of $\overline{V}e$ (Ev ~ 5 MeV)
- Experiments search for \overline{v}_e disappearance

SNO Result : △m² ~ 5x10⁻⁵ eV² Suggests that for sin²(1.27△m² L/E) ~ 1 require L ~ 110 km

★ Significantly larger distance, therefore, require very large flux i.e. more than 1 reactor at the right distance

Serendipity

The ideal site exists – Kamioka !

many reactors at ~ 150 km (including most powerful power station in the world ~25GW)

★ $\overline{\nu}_{e}$ detected via inverse β -decay $\overline{\nu}_{e} + p \longrightarrow e^{+} + n$ $n + p \longrightarrow d + \gamma$ (2.2MeV) ★ Two step process: + Prompt e^{+} gives measurement of ν_{e} energy + Delayed γ

★ Event tagging:

energy + correlation in space/time

Require ultra-pure Liquid Scintillator

NIKHEF 6 June 2003

KamLAND Results

$L_{v} > 210$ MeV				
Observed	54			
Expected	86+5.6			
Background	0.96+0.99			

6 MoV

- ★ Almost all ① from rate
- ★ Confirmation of solar ∨ deficit (~30)

KamLAND vs SNO

Consistent resultsLMA confirmed

Bring on the next generation...... MINOS (and others)

K2K

MINOS

CNGS

(CERN Neutrinos to Gran Sasso)

CERN to Gran Sasso Neutrino Beam

Comparison

	K2K	MINOS	CGNS
Run	1999-	2005-	2006-
Fid. Volume	22 kton	5 kton	2 kton +
< E _v >	1.3 GeV	3 GeV	17 GeV
L	250 km	735 km	732 km
POT/year	5x10 ¹⁹	4x10 ²⁰ (?)	7.6x10 ¹⁹
$\delta(\Delta m^2)$	~ 50 %	~ 10 %	~ 15 %
τ appearance	No	No	Yes
Oscillation Dip ?	No (?)	Yes	?

where science and art meet

Basic Idea

Measure ratio of neutrino energy spectra in far detector (oscillated) to that observed in the near detector (unoscillated)

Partial cancellation of systematics

MINOS Physics Goals

Demonstrate oscillation behaviour

- observe oscillatory dip/rise
- confirm flavour oscillations describe data
- discriminate against alternative scenarios
- **Theorem Precise Measurements of** Δm_{23}^2 & θ_{23}
 - ~10% measurement of Δm^2_{23}
- **Search for sub-dominant** $V_{\mu} \rightarrow V_{e}$ oscillations
 - first measurements of $\theta_{{\tt 13}}$?

MINOS is the 1st large deep underground detector with a B-field

• first direct measurements of V vs ∇ oscillations from atmospheric neutrino events

How to make a v beam

120 GeV/c protons strike graphite target

Magnetic horns focus charged mesons (pions and kaons)

Pions and kaons decay giving neutrinos

Tunable beam

★ Relative positions of the neutrino horns allow beam energy to be tuned.

***** Start with LE – but maintain flexibility

		(a) PH2he	High Energy	
I	- R		Ϋ́	
				1

Horn 2

Decay tunnel

Tunnelling complete Beam due to turn on Dec 2004

Pipe is embedded in concrete to protect groundwater.

NIKHEF 6 June 2003

MINOS Far Detector

8m octagonal steel & scintillator tracking calorimeter

- 2 sections, 15m each
- 5.4 kton total mass
- 55%/√E for hadrons
- 23%/ \sqrt{E} for electrons

Magnetized Iron (B~1.5T)

484 planes of scintillator

One Supermodule of the Far Detector... Two Supermodules total.

Detector Elements

- *** MINOS detector : SAMPLING CALORIMETER**
- ***** Steel-Scintillator sandwich
- **★** Each plane consists of a 2.54 cm steel +1 cm scintillator
- **★** Each scintillator plane divided into 192 x 4cm wide strips
- **★** Alternate planes have orthogonal strip orientations U and V
- ***** Octagonal Geometry

Basic Technology

*****MAIN FEATURES:

*Extruded scintillator strips
*Wavelength-shifting fibres
+ clear fibre optical readout
*Multi-anode PMT readout
M16 in Far
M64 in Near
*8-fold optical multiplexing in
Far Detector

WLS fibre glued into groove

Going underground

Components taken undergrounds...

Plane Assembly

6-8 Planes per week

Crane carries plane down the hall for installation

Some detector pictures

Current Status

Detector on June 2: 483/484 planes installed. all planes being readout

- The far detector is 99 -100 % built
- The magnetic field is on for Super-Module 1
- Complete far detector later this month (June 2003).
- Atmospheric Neutrino data are being collected

MINOS Near Detector

*** Similar – but not identical !**

- 3.8 x 4.8m "octagonal" steel & scintillator tracking calorimeter
- Same basic construction, sampling and response as the far detector.
- No multiplexing in the main part of the detector due to small size and high rates.
 - Hamamatsu M64 PMT
 - **Faster Electronics (QIE)**
- 282 planes of steel
- **153 planes of scintillator**

Near Detector Status

Not quite so far advanced as Far Detector

Detector components ready – waiting to be intalled in experimental hall

NIKHEF 6 June 2003

Near Detector Status

Event Information

e.g. response to 2 Gev particles

First `results'

Upward going muons produced by local neutrino interactions in rock

Determine velocity from timing $\beta = v/c$ ($\beta = -1$ upward)

μ,μ, MINOS

μ^+ with p = 5.4 GeV/c

And finally what I'd like to be presenting here in a few years time.....

MINOS Sensitivity

★ Measurement of Δm^2 and $sin^2 2\theta$

For $Dm^2 = 0.0025 eV^2$, sin² 2q = 1.0

Factor 10 improvement in precision !

Final sensitivity depends on <u>protons</u> delivered to MINOS

Assumes 25x10²⁰ protons on target.

 * 3 σ discovery potential may significantly eat into current allowed region – exact reach depends on protons

* MINOS has a reasonable chance of making the first measurement of θ_{13}

NIKHEF 6 June 2003

Conclusions

Over the last 5 years our knowledge of the neutrino sector has increased hugely !

Over next 5 years a number of new experiments +`precise' measurements

May shed light on fundamental questions, e.g. flavour symmetry - why near maximal mixing matrix (in contrast to CKM) ?

MINOS is a major part of this experimental effort

Construction is going well – already taking high quality data with the MINOS Far Detector

Eagerly awaiting first beam, due December 2004 – and who knows, maybe some suprises !

The word is getting around.....

NIKHEF 6 June 2003