The ILD Letter of Intent: Optimisation and Performance

Mark Thomson for the ILD group

This talk:

- Introduction
- ② Optimisation of ILD (GLD/LDC→ILD)
- Performance
- Occusion

Introduction

Design Requirements

- ILC provides a clean environment for high precision measurements
- Optimise detector to take full advantage of ILC
- Requires high precision/high efficiency tracking
- Excellent vertex tagging capabilities
- Unprecedented jet energy resolution

International Large Detector: Philosophy

- Based on high granularity particle flow calorimetry
 - confident this will provide necessary jet energy resolution
- "Large" central Time Projection Chamber (TPC)
 - proven technology; provides excellent pattern recognition in a dense track environment
- Tracking augmented by Si strip/pixels
 - extend tracking coverage + improves precision
- A high precision Vertex detector close to IP
 - for best possible heavy flavour tagging
- Close to 4π tracking/calorimetric acceptance

From GLD/LDC to ILD

<u>History</u>

- ★ Late 2007: ILD formed from previous (Asian-dominated) GLD and (European-dominated) LDC groups
- **★** Jan 2008: first ILD meeting (DESY Zeuthen)
- ★ Sep 2008: ILD baseline parameters chosen
 - not always an easy process required compromises
 - choices based on physics arguments from extensive studies (the first part of this talk)
 - essentially unanimous agreement !
- ***** Mar 2009: ILD Letter of Intent submitted, including
 - current understanding of ILD performance \

the second part of this talk

wide range of physics studies

Huge amount of work by many people ! Today I can only give a summary...

For more details see Lol, supporting documents and parallel session talks

Optimisation

- **★** Starting point: GLD and LDC concepts
- **★** Many similarities:
 - both conceived as detectors for particle flow calorimetry with a TPC as the central tracker
- **★** Significant differences:
 - overall parameters: size, magnetic field
 - sub-detector technologies

	LDC		GLD	ILD ?
Tracker	TPC		TPC	TPC
R _{TPC} =	1.5 m		2.0 m	1.5 – 2.0 m
B =	4 T		3 T	3 – 4 T
Vertex	5 single la	ayers	3 double layers	?
ECAL	SiW pixels		Scint strips	?
HCAL	Steel	RPC Scint	Steel-Scint	?

Main ILD sub-detector options

ILD Optimisation: Strategy

- **★** Scope of Optimisation:
 - Concentrate on global detector parameters:
 - radius, B-field, HCAL thickness, ...
- **★** Parameter space:
 - study parameters between/close to GLD and LDC
- ★ Sub-detector technology:
 - At this stage we are not in a position to choose between different options – different levels of sophistication in simulation/reconstruction
 - However, can demonstrate a certain technology/resolution meets the ILC goals
- ★ Cost:
 - Large uncertainties in raw materials/sensors
 - For this reason, do not believe optimising performance for given cost is particularly reliable at this stage
 - Whilst conscious of cost, meeting the required performance/ physics goals is the main design criterion

ILD Optimisation: detector models

★ Optimisation studies performed using both GLD and LDC software

- useful cross-check of results
- simulated an LDC-sized detector in GLD software and vice versa
- simulated an intermediate (B=3.5 T) model in each framework

★ Considered 3 "benchmark" detectors in both software frameworks:

Jupiter : GLD, GLDPrime, GLD4LDC
Mokka : LDC4GLD, LDCPrime, LDC

Sub-Detector	Parameter	GLD	LDC	GLD'	LDC'
ТРС	R _{outer} (m)	1.98	1.51	1.74	1.73
Barrel ECAL	R _{inner} (m)	2.10	1.61	1.85	1.82
	Material	Sci/W	Si/W	Sci/W	Si/W
Barrel HCAL	Material	Sci/Fe	Sci/Fe	Sci/Fe	Sci/Fe
Solenoid	B-field	3.0	4.0	3.50	3.50
VTX	Inner Layer (mm)	17.5	14.0	16	15

ILD Optimisation: Software

- ★ Significant effort to make things as realistic as possible
 - Include: realistic geometry, gaps, dead material, support structures
 - Not perfect, but probably a decent first order estimate
 - e.g. Vertex detectors in Mokka

NOTE: for the tracking detector point resolutions are applied in reconstruction (digitisation stage)

All studies use sophisticated full reconstruction chain

ILD Optimisation: Particle Flow

Role of Particle Flow in ILD optimisation

- ***** ILD designed for Particle Flow Calorimetry
- Plays an important role in the detector optimisation
 essential to that ILD meets ILC jet energy goals

ILC Jet Energy Goals

- ★ Not 30%/√E
- ★ Want to separate W and Z di-jet decays
- ★ For di-jet mass resolution of order

$$\frac{\sigma_m}{m} \approx \frac{\Gamma_Z}{m_Z} \approx \frac{\Gamma_W}{m_W} \approx 0.027$$

~2.75 σ separation between W and Z peaks

$$\Box$$
 $\sigma_{E_j}/E_j < 3.8\%$

★ All studies use sophisticated full reconstruction, e.g. Marlin

Note: better jet energy resolution enables tighter cuts to be made in event selections where invariant mass cuts are important

PFA Optimisation: HCAL Depth

★ Suggests that ILD HCAL should be 43 – 48 layers (5.4-6.0 λ_l) ★ 48 layers chosen

PFA Optimisation: Calorimeter Segmentation

***** Starting from LDCPrime vary ECAL Si pixel size and HCAL tile size

ECAL Conclusions:

- Ability to resolve photons in current PandoraPFA algorithm strongly dependent on transverse cell size
- Require at least as fine as 10x10 mm² to achieve 3.8 % jet E resolution
- Significant advantages in going to 5x5 mm²
- For 45 GeV jets resolution dominates (confusion relatively small)

★ HCAL Conclusions:

 For current PandoraPFA algorithm and Scintillator (analogue) HCAL a tile size of 3×3 cm² looks optimal

PFA Optimisation: B vs Radius

★ Starting from LDCPrime (B=4.0 T, r_{ECAL}=1825 mm) vary B and R

★ <u>Conclude:</u>

- R is more important than B for PFA performance
- Confusion term $\propto B^{-0.3}R^{-1}$
- For 45 GeV jets resolution dominates (confusion relatively small)

PFA Optimisation: B vs Radius

★ Comparing LDC, LDCPrime and LDC4GLD jet energy resolutions

Relative to	P/T P/m	D -0.3 D -1	Relative σ _E /E vs E _{JET} /GeV				
LDCPrime	D/ I	K/III	DK .	45	100	180	250
LDC	4.0	1.6	1.08	1.02	1.04	1.05	1.06
LDCPrime	3.5	1.8	1.00	1.00	1.00	1.00	1.00
LDC4GLD	3.0	2.0	0.95	0.99	0.97	0.96	0.96

★ <u>Conclude:</u>

- Differences between GLD and LDC are small
- Not surprising: original detector parameters chosen such that higher B (partly) compensates for smaller radius
- Of the models considered the larger radius, lower field combination is slightly favoured, but at most 5 % differences.

B and R not only affect particle flow...

ILD Optimisation: Tracking

★ Compare GLD, GLDPrime and GLD4LDC momentum resolution and GLDPrime and LDCPrime impact parameter resolution

★ <u>Conclude:</u>

- All models give the required performance with only ~5-10 % differences
- For high momentum tracks:
 - LDC is favoured over GLD but only by ~5 % (larger lever arm)
 - The 3 double layer Vertex detector is favoured two high precision points close to the IP rather than one
- Dependence on point resolution + detector layout/technology likely to be much larger than differences observed here

ILD Optimisation: Background considerations

- ★ Large beam background of low p_T electron/positron pairs
 - Radius of pair background envelope is determined by B
 - Determines the minimum inner radius of the vertex detector
 - Potential to impact flavour tagging performance

★ But radius of pair background envelope scales only as \sqrt{B}

\star Dependence of inner radius of vertex detector is weaker than \sqrt{B}

• fixed clearance between background and beam pipe and beam pipe and vertex detector

★ Consequently 4 T → 3 T translates to a ~10 % difference in inner radius of vertex detector

ILD Optimisation: Flavour Tagging

- **★** Compare flavour tagging performance for GLD and LDC based models
 - Differences of 2.5 mm in inner radius of beam pipe due to B field

Use "State-of-the-Art" LCFIVertex algorithms

- ANNs separately tuned for the different detector models
- NOTE: ~2% stat. uncertainties on results from ANN training/finite stats.

★ Conclude:

- Differences are not large
- Higher B (smaller inner radius) slightly favoured but not conclusive due to statistical uncertainties

0.6

0.8

Efficiency

Does not provide a strong argument for higher field

ILD Optimisation: Physics

- **★** Also compared physics performance for GLD and LDC based models
 - Higgs mass from $e^+e^- \rightarrow ZH \rightarrow e^+e^- X/\mu^+\mu^- X$
 - W/Z reconstruction in SUSY Point 5 chargino/neutralino analysis
 - Tau reconstruction/polarisation
- ★ Only significant difference found for full reconstruction of tau decay, e.g. $\tau^- \rightarrow \rho^- \nu_{\tau} \rightarrow \pi^+ \pi^0 \nu_{\tau}$
- ★ For reconstruction of both photons from $\pi^0 o \gamma\gamma$
 - 5×5 mm² is a significant advantage
 - larger radius also helps

ILD Optimisation: Summary

What did we learn ? (much more detail in Lol)

- **★LDC**, "Prime", GLD give similar performance
 - almost by "construction"
 - all valid detector concepts for ILC
- ★For PFlow, radius is more important than B
- *****Arguments for high B are rather weak
- *****For current PFlow algorithm want segmentation
 - ECAL < 10×10 mm² (5×5 mm² preferred)
 - HCAL ~ 3×3 cm² (no obvious advantage in higher granular for analogue HCAL)

Choice of ILD parameters

- ★ B = 3.5 T
 - not a big extrapolation from CMS solenoid (larger)
 - only weak arguments for higher field
 - 3.0 T viable, but would like to better understand backgrounds
- ★ r_{ECAL} = 1.85 m
 - for B = 3.5 T need ~1.55 m to reach jet E goal
 - then allow for uncertainties in shower simulation
 - larger radius brings performance advantages (~16 % for 1.85 c.f. 1.55)
- *****Technology
 - no selection at this stage

	B/T	r _{ECAL} /m
LDC	4.0	1.6
Prime	3.5	1.8
GLD	3.0	2.0

B ILD Detector Performance

- ★ Defined detailed GEANT4 model of ILD "software reference" model
- For this software model use sub-detector models for which full reconstruction performance has been established
- ECAL: SiW: 5×5 mm²
- Advantages of high segmentation
- PFA with strip clustering not yet demonstrated (needs R&D)
- ditto PFA with MAPS ECAL
- HCAL: 3x3 cm² Scint. tiles
- PFA with digital/semi-digital HCAL not yet fully demonstrated
- First studies indicate comparable perf.
- VTX: 3 double layer layout
- slightly better impact parameter res.
- Interesting to study potential pattern recognition advantages
- Si Tracking: SiLC design
- coverage down to 6°

Level of detail in GEANT4 model probably as good as most TDRs !

Performance Highlights: Track Finding Efficiency

 ★ For (p>1 GeV) efficiency is greater than 99.5 % for any track leaving 4+ hits in tracking detectors (includes V⁰s and kinks)

NOTE: beam background not included

- Subject of on-going work
- Studies to date do not indicate any problems with background
- However, studies require improvements to digitisation/reconstruction of time structure of bunch train to make solid statements

Particle Flow Performance

★Benchmarked using:

- $Z \rightarrow u\overline{u}, dd, s\overline{s}$ decays at rest
- |cosθ|<0.7

_					
	Ej	$\sigma(\mathbf{E_{jj}})$	$\sigma(\mathbf{E_{jj}})/\sqrt{\mathbf{E_{jj}}}$	$\sigma(\mathbf{E_j})/\mathbf{E_j}$	
45	GeV	2.4 GeV	25 %	3.7 %	
100	0 GeV	4.1 GeV	29 %	2.9 %	
180	0 GeV	7.5 GeV	40 %	3.0 %	
250	0 GeV	11.1 GeV	50 %	3.2 %	
$\begin{array}{c c} \textbf{di-jet} & \textbf{jet} \\ \hline \\ \textbf{J} \\ J$					
r uiv. ence	0.8 0.8 SUL 0.6 0.4 0.2		• 180 GeV • 250 GeV	⁷ Jets ⁷ Jets ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴ ⁴	

- In terms of statistical power rms₉₀ ×1.1 ≈ Gaussian equiv.
- No strong angular dependence down to cosθ~0.975

★ Previously argued aiming for σ(E_{jet})/E_{jet} < 3.8 %
 ★ ILD meets this requirement for 40-400 GeV jets

Excellent jet energy resolution is a strength of ILD !

ILD Physics Performance

ILD Physics Studies:

- Extensive set of analyses developed for Lol
 - "benchmark" and many other processes
- All use full simulation/reconstruction
- Large scale grid-based MC production ~30M events !
- Based on StdHep files generated at SLAC
- Two experienced reviewers assigned to each analysis to give some level of feedback/quality assurance

A lot of impressive work from many people !

Caveats:

- Different analyses have different levels of sophistication
- Not the ultimate performance that can be achieved
 - don't draw too strong conclusions yet
 - except perhaps that ILD is an excellent general purpose detector for the ILC

Due to time constraints can only give "highlights" here... Significantly more in the Lol

$e^+e^- \to HZ$: Higgs Recoil Mass

- ★ Model independent determination of Higgs mass from Higgsstrahlung events at √s = 250 GeV
- **★** Measure four-momentum of Z from its decays to $e^+e^-/\mu^+\mu^-$
- ★ Determine Higgs four momentum from recoil mass assuming √s = 250 GeV for underlying e⁺e⁻ collision
- ★ Resolution limited by:
 - momentum resolution
 - beamstralung
 - +bremβtrahlung for electron final state
- **★** Select events using only information from di-lepton system

Interpretation depends strongly on whether lumi. spectrum is realistic

$e^+e^- \to HZ$: Higgs Branching ratios

- ★ Determine BR(H→bb), BR(H→cc), BR(H→gg) from Higgs-strahlung events
- **★** Test of flavour tagging performance
- **★** Cut based selections of three HZ decay topologies

★Combine with $\sigma(e^+e^- \rightarrow HZ)$ from model independent analysis (for LoI 5 % uncertainty) to give BRs

Channel	Br(H→bb)	Br(H→cc)	Br(H→gg)
ZH→qqcc		30 ⊕ 5 %	
ZH→vvqq	5.1 ⊕ 5 %	19 ⊕ 5 %	
ZH→llqq	2.7 ⊕ 5 %	28 🕀 5 %	29 🕀 5 %
Combined	5.5 %	15 %	29%

★Results broadly consistent with Tesla TDR (taking into account different lumi. and different √s)

Relation to detector performance

- Current sensitivities probably more a measure of sophistication of the analysis rather than ultimate detector performance, i.e. can improve → multi-variate (e.g. ANN)
- nonetheless, good performance achieved
- NOTE: in vvqq analysis Higgs di-jet mass resolution feeds into final sensitivity

Chargino and Neutralino Production at \sqrt{s} = 500 GeV

★Chargino and neutralino production in the SUSY "point 5" scenario provides a benchmark for jet energy resolution

 $\begin{array}{l} \star \, e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \quad \text{and} \ e^+ e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow Z Z \tilde{\chi}_1^0 \tilde{\chi}_1^0 \\ \text{result in final states with four jets and missing energy} \end{array}$

★ Neutralino process is challenging: cross section ~10% chargino

Chargino and Neutralino Production at \sqrt{s} = 500 GeV

Chargino and neutralino production in the SUSY "point 5" scenario provides a benchmark for jet energy resolution

 $\begin{array}{l} \star \, e^+ e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \quad \text{and} \ e^+ e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow Z Z \tilde{\chi}_1^0 \tilde{\chi}_1^0 \\ \text{result in final states with four jets and missing energy} \end{array}$

★ Neutralino process is challenging: cross section ~10% chargino

than mass sums

Top production at \sqrt{s} = 500 GeV

- ★ At \sqrt{s} = 500 GeV top mass determined from direct reconstruction of final state ★ Fully-hadronic $t\bar{t} \rightarrow (bq\bar{q})(\bar{b}q\bar{q})$ and semi-leptonic $t\bar{t} \rightarrow (bq\bar{q})(\bar{b}\ell\nu)$
- ★ Main analysis issue is that of jet combinatorics

★Final mass from kinematic fit using chosen jet associations

Stau production at \sqrt{s} = 500 GeV

★ Post Lol: included beam background, precision essentially same

and finally...WW-scattering at $\sqrt{s} = 1$ TeV

★Limits on anomalous couplings similar to earlier fast simulation studies

Physics Summary

 \sqrt{s}

Observable

Precision

Comments

Model Independent

Model Independent

Model Dependent

includes 5%

from $\sigma(e^+e^- \rightarrow ZH)$

 $\theta_{\tau^+\tau^-} > 178^\circ$

 $\theta_{\tau^{+}\tau^{-}} > 178^{\circ}$

 $\tau \to \pi \nu$ only

from kin. edges

from kin. edges

from kin. edges

 $(bq\overline{q})$ $(\overline{b}q\overline{q})$ only

fully-hadronic only

+ semi-leptonic

fully-hadronic only

+ semi-leptonic

measurements

Analysis

- $\sigma(e^+e^- \rightarrow ZH)$ 0.5 fb (5.1%) Higgs recoil mass $250 \, \text{GeV}$ 74 MeV $m_{\rm H}$ $67\,\mathrm{MeV}$ $m_{\rm H}$ $Br(H \rightarrow b\overline{b})$ $2 \oplus 5\%$ Higgs Decay $250 \, \mathrm{GeV}$ $Br(\mathbf{H} \to \mathbf{c}\overline{\mathbf{c}})$ $14 \oplus 5\%$ $Br(\mathbf{H} \to gg)$ $29 \oplus 5\%$ $\sigma(e^+e^- \rightarrow \tau^+\tau^-)$ $0.3\,\%$ $\tau^+\tau^ 500 \, \mathrm{GeV}$ AFB ± 0.003 P_{τ} ± 0.015 $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ 0.6% $\sigma(e^+e^- \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_2)$ 2.1% $m(\tilde{\chi}_1^{\pm})$ Gaugino Production 500 GeV $2.4 \, \text{GeV}$ $m(\tilde{\chi}_2^0)$ $0.9 \, \mathrm{GeV}$ $m(\tilde{\chi}_1^0)$ $0.8\,\mathrm{GeV}$ $\sigma(e^+e^- \rightarrow t\bar{t})$ 0.4% $40 \, \mathrm{MeV}$ m_t $e^+e^- \rightarrow t\bar{t}$ $500 \, \mathrm{GeV}$ $30 \,\mathrm{MeV}$ m_t Γ_t $27 \,\mathrm{MeV}$ Γ_t $22 \,\mathrm{MeV}$ $\sigma(e^+e^- \rightarrow \tilde{\mu}_L^+ \tilde{\mu}_L^-)$ 2.5% $500 \, {
 m GeV}$ Smuons in SPS1a' $m(\tilde{\mu}_L)$ $0.5 \, \mathrm{GeV}$ Staus in SPS1a' $500 \, \mathrm{GeV}$ $m(\tilde{\tau}_1)$ $0.1 \,\mathrm{GeV} \oplus 1.3 \sigma_{\mathrm{LSP}}$ $-1.4 < \alpha_4 < 1.1$ α_4 WW Scattering $1 \,\mathrm{TeV}$
- Only had time to give a flavour of physics studies in ILD Lol
- Whilst the results do not represent the ultimate precision achievable, they:

Demonstrate the high level of performance of ILD

Demonstrate that ILD is an excellent general purpose detector concept for the ILC

+ photon final states (GMSB/WIMPS)

 $-0.9 < \alpha_5 < +0.8$

- + Littlest Higgs
- + beam polarisation from WW

 α_5

Conclusions

- * ILD is powerful general purpose detector for the ILC based on particle flow calorimetry
- ★ The ILD parameters were chosen on the basis of an extensive series of optimisation studies
 - now have a much better understanding of the performance issues
- **★** ILD meets the performance goals for a detector at the ILC
 - highly performant tracking
 - excellent flavour tagging capability
 - unprecedented jet energy resolution
- ★ ILD physics studies have started in earnest, and the results presented in the Lol hopefully demonstrate the general purpose nature of the concept

Over to Sugimoto-san...

Backup slides: tracking coverage and material

Bacjup: ILD Flavour Tagging Efficiency

Backup : Flavour tagging: higher energies

★ANNs were not tuned for 250 GeV jets

Flavour composition	91.2 GeV	500 GeV
bb	22%	15%
CC	17%	25%
uu, dd, ss	61%	60%

TILC09, Tsukuba, 17/04/2009

Backup: ILD Tau Pairs

