

DUNE: The Deep Underground Neutrino Experiment

Mark Thomson

University of Cambridge & co-spokesperson of DUNE

Heidelberg Physics Colloquium: 10th December 2015

This talk

- 1. Introduction (1 slide)
- 2. Neutrino Basics: What are neutrinos? (5 slides)
 - and why they are so interesting
- 3. Neutrino oscillations quantum mechanics in action (5 slides)
 - how we study neutrino properties
- 4. DUNE (4 slides)
- 5. DUNE Scientific Aims (6 slides)
 - what we intend to measure and why it matters
- 6. The LBNF/DUNE project (9 slides)
 - the accelerator/infrastructure (LBNF) and the detectors (DUNE)
- 7. The DUNE collaboration (3 slides)
- 8. Political Context (1 slide)
- 9. Opportunities (1 slide)
- 10. Summary (1 slide)

1. Introduction: What is DUNE?

- The Deep Underground Neutrino Experiment (DUNE):
 - is likely to be the next big global project in particle physics
 - aims to "do for neutrinos what the LHC did for the Higgs"
 - potential for major discoveries in: neutrinos and astroparticle physics

1. Introduction: What is DUNE?

- DUNE will consist of
 - A powerful (MW) neutrino beam fired from Fermilab
 - A massive (40000 t) underground detector in the Homestake mine, South Dakota
 - A large international collaboration (currently 800 scientists)

1. Introduction: What is DUNE?

- **DUNE** will consist of

 - itly 800 scientists)

Mestake

2. Neutrino Basics

Neutrinos

- Neutrinos are everywhere:
 - The universe is filled with neutrinos
 - Apart from photons, there are more neutrinos than any other particle
 - ~300 vs in every cm³ of the Universe relics from the Big Bang
 - ~1 trillion (10¹²) neutrinos pass through every cm² every second

- Neutrinos only feel the "Weak Force" (and gravity)
 - They are very weakly interacting, e.g. to stop a 1 MeV particle:
 - For a proton require 0.1 mm of lead
 - For an electron require 10 mm of lead
 - For a neutrino need **10 light years of lead** (weak interaction only)

(strong interaction) (EM interaction) weak interaction only)

Sources of Neutrinos

- Many sources of neutrinos:
 - Relics from the Big Bang
 - Nuclear fusion in the sun
 - 10³⁸ neutrinos per second
 - Core collapse supernova
 - Most of the energy released in neutrinos
 - Interactions of cosmic-rays in the atmosphere
 - Radioactive (beta) decays, e.g.
 - Natural radioactivity in the Earth releases 20 TeraWatts of power in vs
 - Each of you is a neutrino emitter:

you contain ~20 mg ⁴⁰K

 \Rightarrow you emit 300,000,000 vs per day

... and accelerator-based neutrino beams

Neutrinos in particle physics

• The basic building-blocks of the Universe

Most matter in the Universe is built from four particles

quarks		leptons	
Up (u)	Down (d)	Electron (e ⁻)	Neutrino (v_1)

Neutrinos in particle physics

- The basic building-blocks of the Universe
 - Not quite that simple…

	quarks		leptons	
First gen.	Up (u)	Down (d)	Electron (e -)	Neutrino (v_1)
Second gen.	Charm (c)	Strange (s)	Muon (μ ⁻)	Neutrino (v_2)
Third gen.	Top (t)	Bottom (b)	Tau (τ ⁻)	Neutrino (v_3)

- Each particle comes in 3 "copies" with different masses
 - Not understood why…

Neutrinos in particle physics

- The basic building-blocks of the Universe
 - Not quite that simple…

	quarks		leptons	
First gen.	u	d	e⁻	v ₁
Second gen.	С	S	μ	v ₂
Third gen.	t	b	τ	v ₃

- Each particle comes in 3 "copies" with different masses
 - Not understood why…

+ corresponding antiparticles (antimatter)

	quarks		leptons	
First gen.	ū	d	e+	$\overline{\mathbf{v}}_{1}$
Second gen.	Ē	s	μ+	$\overline{\mathbf{v}}_{2}$
Third gen.	t	b	τ+	$\overline{\nu}_3$

Neutrinos Masses

- Neutrinos are "different"
 - e.g. masses are (at least) 1 billion times smaller than those of the other matter particles

Neutrinos Masses

- Neutrinos are "different"

Detecting Neutrinos

- Neutrinos only feel the "Weak Force" (and gravity)
 - They are very weakly interacting, e.g. to stop a 1 MeV neutrino
 - Need 10 light years of lead
 (weak interaction only)
- So its hard... need large detectors & many neutrinos
- Also never directly "see" a neutrino
 - Only see them by their weak interactions

+ the weak interaction changes flavour, e.g. $v + n \rightarrow p + e^{-1}$

Detecting Neutrinos

- Neutrinos only feel the "Weak Force" (and gravity)
 - They are very weakly interacting, e.g. to stop a 1 MeV neutrino
 - Need 10 light years of lead
 (weak interaction only)
- So its hard... need large detectors & many neutrinos
- Also never directly "see" a neutrino
 - Only see them by their weak interactions

+ the weak interaction changes flavour, e.g. $v + n \rightarrow p + e^{-1}$

Usually label the neutrino state producing an electron as "electron neutrino"

3. Neutrino Oscillations

• Now consider nuclear β^+ decay $p \rightarrow n + e^+ + v$

Here: ν could be ν_1, ν_2 or ν_3

3. Neutrino Oscillations

• Now consider nuclear β^+ decay $p \rightarrow n + e^+ + v$

Here: ν could be ν_1, ν_2 or ν_3

But don't "see" the neutrino. Just observe the electron, so label it as an "electron neutrino" state

3. Neutrino Oscillations

• Now consider nuclear β^+ decay $p \rightarrow n + e^+ + v$

Here: v could be v_1, v_2 or v_3

But don't "see" the neutrino. Just observe the electron, so label it as an "electron neutrino" state

• Experimentally, produce and detect neutrinos: but never directly observe the v_1 , v_2 or v_3

Quantum Mechanic Description

- Two distinct types of state:
 - $-v_1, v_2$ and v_3 : the fundamental particles with well-defined mass
 - v_e , v_μ and v_τ : the "weak eigenstates" that are produced with or produce a well-defined charged lepton

- Neutrinos thus propagate as coherent linear superpositions of mass eigenstates. In this example
 - Initial state: $v_e = \alpha v_1 + \beta v_2 + \gamma v_3$
 - Where coefficients α , β , γ are determined by the relative probabilities of the interaction producing a v_1 , v_2 and v_3

Quantum Mechanic Description

- Two distinct types of state:
 - $-v_1, v_2$ and v_3 : the fundamental particles with well-defined mass
 - v_e , v_μ and v_τ : the "weak eigenstates" that are produced with or produce a well-defined charged lepton

- QM evolution of states determine what is measured
 - Initial state: $v_e = \alpha v_1 + \beta v_2 + \gamma v_3$
 - If α , β , γ were constant then would always detect an electron if/ when the neutrino interacted, i.e. $v_e \rightarrow v_e$
 - But in general this is not the case because of the time dependence of the wavefunction, $\alpha \rightarrow \alpha \exp(-iE_1t)$

Quantum Mechanic Description

- Two distinct types of state:
 - $-v_1, v_2$ and v_3 : the fundamental particles with well-defined mass
 - v_e , v_μ and v_τ : the "weak eigenstates" that are produced with or produce a well-defined charged lepton

- QM evolution of states determine what is measured
 - At time t: $\mathbf{v}(t) = \alpha \exp(-i\mathbf{E}_1 t) \mathbf{v}_1 + \beta \exp(-i\mathbf{E}_2 t) \mathbf{v}_2 + \gamma \exp(-i\mathbf{E}_3 t) \mathbf{v}_3$
 - The phase differences between different components means that
 v(t) ≠ v_e
 - There is now a non-zero probability that $v_e \rightarrow v_\mu$ and when the neutrino interacts it can produce a muon μ^- rather than an electron

- QM evolution of states determine what is measured
 - At time t: $\mathbf{v}(t) = \alpha \exp(-i\mathbf{E}_1 t) \mathbf{v}_1 + \beta \exp(-i\mathbf{E}_2 t) \mathbf{v}_2 + \gamma \exp(-i\mathbf{E}_3 t) \mathbf{v}_3$
 - The phase differences between different components means that
 v(t) ≠ v_e
 - There is now a non-zero probability that $v_e \rightarrow v_\mu$ and when the neutrino interacts it can produce a muon μ^- rather than an electron

Neutrino Oscillations

• With some simple algebra, the oscillation probability

$$\mathsf{P}(\mathsf{v}_{\mathsf{e}} \to \mathsf{v}_{\mu}) = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 [\mathrm{eV}^2] L[\mathrm{km}]}{E_{\nu} [\mathrm{GeV}]}\right)$$

Neutrino Oscillations

• With some simple algebra, the oscillation probability

Neutrino Oscillations

• With some simple algebra, the oscillation probability

$$\mathsf{P}(\mathsf{v}_{\mathsf{e}} \to \mathsf{v}_{\mu}) = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 [\mathrm{eV}^2] L[\mathrm{km}]}{E_{\nu} [\mathrm{GeV}]}\right)$$

 Wavelength of oscillations is very long, determined by the very small neutrino mass differences, e.g.

$$\Delta m_{21}^2 = m_2^2 - m_1^2$$

- Neutrino oscillations are a well established phenomena
 - Super-Kamiokande
 SNO

Nobel Prize 2015

- MINOS, T2K, Daya Bay, RENO, ...
- Much of what we know about neutrinos comes from neutrino oscillation experiments

The Standard 3-Flavor Paradigm

★ Weak and mass eigenstates related by the PMNS matrix

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

★ Unitary PNMS matrix ⇒ mixing described by:

- three "Euler angles": $(\theta_{12}, \theta_{13}, \theta_{23})$
- and one complex phase: δ_{5}

$$U_{\rm PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with $s_{ij} = \sin \theta_{ij}$; $c_{ij} = \cos \theta_{ij}$

★ If $\delta \neq \{0, \pi\}$ then SM leptonic sector \Rightarrow CP violation (CPV)

• CPV effects $\propto \sin \theta_{13}$

The 2012 Revolution

★ Two major discoveries in particle physics

- A SM-like Higgs boson (ATLAS, CMS)
 - The key to EWSB and a possible window to the BSM world
- $\theta_{13} \sim 10^{\circ}$ (T2K, MINOS, Daya Bay, RENO)
 - about as large as it could have been !
 - The door to CP Violation in the leptonic sector

The 2012 Revolution

★ Two major discoveries in particle physics

- A SM-like Higgs boson (ATLAS, CMS)
 - The key to EWSB and a possible window to the BSM world
- $\theta_{13} \sim 10^{\circ}$: determines rate of $P(v_{\mu} \rightarrow v_{e})$

- about as large as it could have been !

• The door to CP Violation in neutrino oscillations

Now standard textbook physics*

*apologies for gratuitous plug

4. DUNE

DUNE

DUNE in a Nutshell

★ Intense beam of ν_{μ} or $\overline{\nu}_{\mu}$ fired 1300 km at a large detector ★ Compare $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations ★ Probe fundamental differences between matter & antimatter

DUNE in a Larger Nutshell

★LBNF/DUNE

- Muon neutrinos/antineutrinos from high-power proton beam
 - **1.2 MW** from day one (upgradeable)
- Large underground Liquid Argon Time Projection Chamber
 - 4 x 17 kton is fiducial (useable) mass of >40 kton
- Near detector to characterize the beam

Liquid Argon TPC Basics

A modular implementation of Single-Phase TPC

Record ionization in LAr volume ⇒ 3D image

Liquid Argon TPC Basics

A modular implementation of Single-Phase TPC

Record ionization in LAr volume ⇒ 3D image

Benefits of an imaging detector

e.g. for electron neutrino appearance $e^{\pm} \leftrightarrow \gamma$ separation is vital \star True for both photons from $\pi^0 \rightarrow \gamma \gamma$ or single photons

 Calorimetry to tag electrons/ gammas using dE/dx before EM shower evolves

5. DUNE Science

Unprecedented precision utilizing a massive Liquid Argon TPC

DUNE Science

DUNE will address big questions in science, e.g.

• The matter-antimatter asymmetry in the Universe

- Big Bang: matter & antimatter created in equal amounts
 - As Universe cools down matter and antimatter then annihilate
 - All things being equal, no matter/antimatter remains, just light
 - This is not what happened there is matter left in the Universe
 - Fundamental difference between matter and antimatter
 - CP symmetry violation (CPV)
 - Neutrinos: key to our current best bet for how this happened "leptogenesis"

DUNE Primary Science Program

Focus on fundamental open questions in particle physics and astroparticle physics:

1) Neutrino Oscillation Physics

- Precision Oscillation Physics:
 - e.g. parameter measurement, θ_{23} octant, testing the 3-flavor paradigm
- 2) Nucleon Decay
 - e.g. targeting SUSY-favored modes, $p \rightarrow K^+ \overline{\nu}$
- 3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to v_e

DUNE Primary Science Program

d be maior discoveries Focus on fundamental open questions in partie physics and astroparticle physics:

- **1) Neutrino Oscillation Physics**
 - **Discover CP Violation** in the
 - leptonic sector
 - Mass Hierarchy
 - Precision Oscill
 - ting SUSY-favored modes, $p \rightarrow K^+ \overline{\nu}$
- Supernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to v_e

 $\Rightarrow \Delta m_{12}^2$

 $|\Delta m_{32}^2|$

Long Baseline (LBL) Oscillations

Measure neutrino spectra at 1300 km in a wide-band beam

- Near Detector at Fermilab: measurements of v_{μ} unoscillated beam
- Far Detector at SURF: measure oscillated $v_{\mu} \& v_{e}$ neutrino spectra

Long Baseline (LBL) Oscillations

... then repeat for antineutrinos

- Compare oscillations of neutrinos and antineutrinos
- Direct probe of CPV in the neutrino sector

- Near Detector at Fermilab: measurements of $\overline{\mathbf{v}}_{\mu}$ unoscillated beam
- Far Detector at SURF: measure oscillated \overline{v}_{μ} & \overline{v}_{e} neutrino spectra

DUNE Oscillation Strategy

Measure neutrino spectra at 1300 km in a wide-band beam

• Determine MH and θ_{23} octant, probe CPV, test 3-flavor paradigm and search for BSM effects (e.g. NSI) in a single experiment

E ~ few GeV

- Long baseline:
 - Matter effects are large ~ 40%
- Wide-band beam:
 - Measure v_e appearance and v_u disappearance over range of energies
 - MH & CPV effects are separable

Timescales: year zero = 2025

Rapidly reach scientifically interesting sensitivities:

- e.g. in best-case scenario for Mass Hierarchy :
 - Reach 5σ MH sensitivity with 20 30 kt.MW.year

~2 years

- e.g. in best-case scenario for CPV ($\delta_{CP} = +\pi/2$) :
 - Reach 3σ CPV sensitivity with 60 70 kt.MW.year

Strong evidence

- e.g. in best-case scenario for CPV ($\delta_{CP} = +\pi/2$) :
 - Reach 5σ CPV sensitivity with 210 280 kt.MW.year

~6-7 years

★ Genuine potential for early physics discovery

Proton Decay

Proton decay is expected in most new physics models

- But lifetime is very long $\tau > 10^{33}$ years
- Watch many protons with the capability to see a single decay
- Can do this in a liquid argon TPC
 - For example, look for kaons from SUSY-inspired GUT p-decay

Proton Decay

Proton decay is expected in most new physics models

- But lifetime is very long $\tau > 10^{33}$ years
- Watch many protons with the capability to see a single decay
- Can do this in a liquid argon TPC
 - For example, look for kaons from SUSY-inspired GUT p-decay

Supernova vs

A core collapse supernova produces an incredibly intense burst of neutrinos

- Trigger on and measure energy of neutrinos from galactic supernova bursts
 - In argon (uniquely) the largest sensitivity is to $\nu_{\rm e}$

Physics Highlights include:

- Possibility to "see" neutron star formation stage
- Even the potential to see black hole formation !

DUNE Science Summary

DUNE physics:

- Game-change program in Neutrino Physics
 - Definitive 5σ determination of MH
 - Probe leptonic CPV
 - Precisely test 3-flavor oscillation paradigm
- Potential for major discoveries in astroparticle physics
 - Extend sensitivity to nucleon decay
 - Unique measurements of supernova neutrinos (if one should occur in lifetime of experiment)

6. The LBNF/DUNE Project

LBNF – a MW-scale facility

LBNF and PIP-II

★ In beam-based long-baseline neutrino physics:

beam power drives the sensitivity

\star LBNF will be the world's most intense high-energy ν beam

- 1.2 MW from day one
 - NuMI (MINOS) <400 kW
 - NuMI (NOVA) ultimately ~700 kW
- upgradable to 2.4 MW
- **Requires PIP-II** (proton-improvement plan)
 - \$0.5B upgrade of FNAL accelerator infrastructure
 - Replace existing 400 MeV LINAC with 800 MeV SC LINAC

The LBNF Neutrino Beam

- i) Start with an intense (MW) proton beam from PIP-II
- ii) Point towards South Dakota
- ili) Smash high-energy (~80 GeV) protons into a target is hadrons
- iv) Focus positive pions/kaons
- v) Allow them to decay $\pi^+ o \mu^+
 u_\mu$
- vi) Absorb remaining charged particles in rock
- vii) left with a "collimated" u_{μ} beam

The DUNE Far Detector

DUNE Design =

Far detector: 40-kt LAr-TPC

For more details refer to DUNE CDR

Near detector: Multi-purpose high-resolution detector

For more details refer to DUNE CDR

The Far Site

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850 level (~ 1 mile underground)

The Far Site

DUNE Far Detector site

- Sanford Underground Research Facility (SURF), South Dakota
- Four caverns on 4850 level (~ 1 mile underground)

Staged Approach to 40 kt

Cavern Layout at the Sanford Underground Research Facility based on four independent caverns

- Four identical caverns hosting four independent 10-kt FD modules
 - Allows for staged construction of FD
 - Gives flexibility for evolution of LArTPC technology design
 - Assume four identical cryostats
 - But, assume that the four 10-kt modules will be similar but not necessarily identical

First 10 kt detector

Modular implementation of Single-Phase TPC

- Each 10 kt FD module:
 - Active volume: **12m x 14m x 58m**
 - 150 Anode Plane Assemblies
 - 6.3m high x 2.3m wide
 - 200 Cathode Plane Assemblies
 - 3m high x 2.3m wide
 - A:C:A:C:A arrangement
 - Cathodes at -180 kV for 3.5m drift
 - APAs have wrapped wires read out both sides
 - All inside a large Membrane Cryostat

First 10 kt detector

Modular implementation of Single-Phase TPC

- Each 10 kt FD module:
 - Active volume: **12m x 14m x 58m**
 - 150 Anode Plane Assemblies
 - 6.3m high x 2.3m wide
 - 200 Cathode Plane Assemblies
 - 3m high x 2.3m wide
 - A:C:A:C:A arrangement

57

- Cathodes at -180 kV for 3.5m drift
- APAs have wrapped wires read out both sides
- All inside a large Membrane Cryostat

Membrane Cryostats

Standard technology in liquid natural gas industry

 Whole 10kt Cryostat would fit inside a 200,000 m³ LNG storage tank

Far Detector Development

Single-phase APA/CPA LAr-TPC:

- Design is already well advanced
- Supported by strong development program at Fermilab
 - 35-t prototype (operational in 2015) ready to fill with LAr
 - MicroBooNE (operational in 2015)
 - SBND (aiming for operation in 2018)

Far Detector Development

Single-phase APA/CPA LAr-TPC:

- Design is already well advanced
- Supported by strong development program at Fermilab
 - 35-t prototype (operational in 2015) ready to fill with LAr
 - MicroBooNE (operational in 2015)
 - SBND (aiming for operation in 2018)

Far Detector Development

Single-phase APA/CPA LAr-TPC:

- Design is already well advanced
- Supported by strong development program at Fermilab
 - 35-t prototype (operational in 2015) ready to fill with LAr
 - MicroBooNE (operational in 2015)
 - SBND (aiming for operation in 2018)
- "Full-scale prototype" with ProtoDUNE at the CERN Neutrino Platform
 - Engineering prototype
 - 6 full-sized drift cells c.f. 150 in the far det.
 - Approved by CERN SPSC (Oct. 2015)
 - Aiming for operation in 2018

The DUNE Near Detector

DUNE ND (in brief)

The NOMAD-inspired Fine-Grained Tracker (FGT)

It consists of:

- Central straw-tube tracking system
- Lead-scintillator sampling ECAL
- Large-bore warm dipole magnet
- RPC-based muon tracking systems

It provides:

- Constraints on cross sections and the neutrino flux
- A rich self-contained non-oscillation neutrino physics program

Will result in unprecedented samples of $\mathbf v$ interactions

- >100 million interactions over a wide range of energies:
 - strong constraints on systematics
 - the ND samples will represent a huge scientific opportunity

7. The DUNE Collaboration

DUNE and P5 (US HEP Strategy)

Paraphrasing P5

- Called for the formation of LBNF:
 - as a international collaboration bringing together the LBL community
 - ambitious scientific goals with discovery potential for:
 - Leptonic Charge-Parity (CP) violation
 - Proton decay
 - Supernova burst neutrinos

Resulted in the formation of the DUNE collaboration with strong representation from:

D

- LBNE
- LBNO
- Other interested institutes

DUNE

is a rapidly evolving scientific collaboration...

- First formal collaboration meeting April 16th 18th 2015
- Conceptual Design Report in June
- Passed DOE CD-1 Review in July
- Second collaboration meeting September 2nd 5th 2015
 - Over 220 people attended in person

The DUNE Collaboration

As of today:

803 Collaborators

Czech Republic

145 Institutes

from

The DUNE Collaboration

As of today:

803 Collaborators

USA UK Italy India Other Switzerland Spain France Brazil Americas

- Poland
- Czech Republic

from

26 Nations

Armenia, Belgium, Brazil, Bulgaria, Canada, Colombia, Czech Republic, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, Netherlands, Peru, Poland, Romania, Russia, Spain, Switzerland, Turkey, UK, USA, Ukraine

+ soon to add Finland

DUNE already has broad international support

8. Political Context

Political Context – many firsts

★ LBNF/DUNE will be:

- The first international "mega-science" project hosted by the US
 - "do for the Neutrinos, what the LHC did for the Higgs"
- The first U.S. project run as an international collaboration
 - Organization follows the LHC model

★ The U.S. is serious:

- LBNF/DUNE is the future flagship of Fermilab & the U.S. domestic program – there is no plan B
- Very strong support from FNAL & the DOE
- CD3a in December seek approval of funding for excavation in FY17

★ A game-changer for CERN and the U.S.

- Historic agreement between U.S. and CERN
- US contributes to LHC upgrade (high-field magnets)
- CERN contributes to Far site infrastructure
 - Approved by council in September 2015

Political Context – many firsts

★ LBNF/DUNE will be:

★ The U.S. is serious:

^{Uec} ^{oppont} ^{the flot that we are on the verse of ^{Uec} be optimistic that we are not the verse of ^{Uec} be optimistic that we are not the strength of the next his thing in namina the next his the next} Every reason to be optimistic in particle power of the next big thing in the provide the theory of theory of the theory of the t

\star A gar

9. Opportunities on DUNE

Opportunities in DUNE

DUNE is moving rapidly

- Excavation starts in 2017
- ProtoDUNE @ CERN in 2018
- Far Detector construction in 2019
- Far Detector installation in 2021

DUNE: the next large global Particle Physics project

- Actively seeking new collaborators
 - many synergies with collider experiments
- Immediate Focus in Europe will be ProtoDUNE @ CERN
- Many Opportunities:
 - Hardware: e.g. photon detection system (scintillator + SiPMs)
 - DAQ/Computing: continuous readout = high-data rates
 - Software: LAr-TPC reconstruction

Opportunities in DUNE

DUNE is moving rapidly

- Excavation starts in 2017
- ProtoDUNE @ CERN in 2018
- Far Detector construction in 2019
- Far Detector installation in 2021

DUNE: the next large glob

- Actively seeking p
 - many syne
 - Immedia ope will be ProtoDUNE @ CERN
 - e.g. photon detection system (scintillator + SiPMs)

experiments

- Q/Computing: continuous readout = high-data rates
- Software: LAr-TPC reconstruction

és:

sics project

10. Summary

Summary

★ DUNE will					
 Probe CPV with unprecedented position 					
Definitively determine the MH to greater than 5 σ					
 Significantly advance the discovery potential for proton decay 					
 (With luck) provide a wealth of information on Supernova bursts 					
neutrino physics and astrophysics					

Summary

★ DUNE will

- Probe CPV with unprecedented position
- Definitively determine the MH to greater than 5 σ
- Significantly advance the discovery potential for proton decay
- (With luck) provide a wealth of information on Supernova bursts neutrino physics and astrophysics

★ This is an exciting time

- DUNE is now ballistic
- The timescales are not long:
 - DUNE/LBNF aims to start excavation in 2017
 - The large-scale DUNE prototype will operate at CERN in 2018

Summary

★ DUNE will

- Probe CPV with unprecedented position
- Definitively determine the MH to greater than 5 σ
- Significantly advance the discovery potential for proton decay
- (With luck) provide a wealth of information on Supernova bursts neutrino physics and astrophysics

★This is an exciting time

- DUNE is now ballistic
- The timescales are not long:
 - DUNE/LBNF aims to start excavation in 2017
 - The large-scale DUNE prototype will operate at CERN in 2018

★ An international community is forming – including CERN

 LBNF/DUNE represents a major new scientific opportunity for particle physics

Thank you for your attention

Backup Slides

Parameter Resolutions

δ_{CP} & θ_{23}

• As a function of exposure

PDK p → K ν

DUNE for various staging assumptions

Year

Beam Optimization

Beam Optimization

Following LBNO approach, genetic algorithm used to optimize horn design – increase neutrino flux at lower energies

Reconstruction

LAr-TPC Reconstruction

Real progress in last year – driven by 35-t & MicroBooNE

• Full DUNE simulation/reconstruction now in reach

Schedule

Indicative schedule

Indicative schedule

Calculating Sensitivies

Determining Physics Sensitivities

For Conceptual Design Report

- Full detector simulation/reconstruction not available
 - See later in talk for plans
- For Far Detector response
 - Use parameterized single-particle response based on achieved/ expected performance (with ICARUS and elsewhere)
- Systematic constraints from Near Detector + ...
 - Based on current understanding of cross section/hadro-production uncertainties
 - + Expected constraints from near detector
 - in part, evaluated using fast Monte Carlo

Evaluating DUNE Sensitivities I

Many inputs calculation (implemented in GLoBeS):

- Reference Beam Flux
 - 80 GeV protons
 - 204m x 4m He-filled decay pipe
 - 1.07 MW
 - NuMI-style two horn system
- Optimized Beam Flux
 - Horn system optimized for lower energies
- Expected Detector Performance
 - Based on previous experience (ICARUS, ArgoNEUT, ...)

- Cross sections
 - GENIE 2.8.4
 - CC & NC
 - all (anti)neutrino flavors

Exclusive ν -nucleon cross sections

Evaluating DUNE Sensitivities II

Assumed* Particle response/thresholds

- Parameterized detector response for individual final-state particles

Particle Type	Threshold (KE)	Energy/momentum Resolution	Angular Resolution
μ^{\pm}	30 MeV	Contained: from track length Exiting: 30 %	1 °
π^{\pm}	100 MeV	MIP-like: from track length Contained π-like track: 5% Showering/Exiting: 30 %	1°
e±/γ	30 MeV	2% ⊕ 15 %/√(E/GeV)	1°
р	50 MeV	p < 400 MeV: 10 % p > 400 MeV: 5% ⊕ 30%/√(E/GeV)	5°
n	50 MeV	440%/√(E/GeV)	5°
other	50 MeV	5% ⊕ 30%/√(E/GeV)	5°

*current assumptions to be addressed by FD Task Force

Evaluating DUNE Sensitivities III

Efficiencies & Energy Reconstruction

- Generate neutrino interactions using GENIE
- Fast MC smears response at generated final-state particle level
 - "Reconstructed" neutrino energy
 - kNN-based MV technique used for v_e "event selection", parameterized as efficiencies
- Used as inputs to GLoBES

Evaluating DUNE Sensitivities IV

Systematic Uncertainties

- Anticipated uncertainties based on MINOS/T2K experience
- Supported by preliminary fast simulation studies of ND

Source	MINOS	T2K	DUNE
	ve	ve	ve
Flux after N/F extrapolation	0.3 %	3.2 %	2 %
Interaction Model	2.7 %	5.3 %	~2%
Energy Scale (v_{μ})	3.5 %	Inc. above	(2 %)
Energy Scale (v _e)	2.7 %	2 %	2 %
Fiducial Volume	2.4 %	1 %	1 %
Total	5.7 %	6.8 %	3.6 %

• DUNE goal for v_e appearance < 4 %

- For sensitivities used: 5 $\% \oplus 2 \%$
 - where 5 % is correlated with v_{μ} & 2 % is uncorrelated v_{e} only

5: Hyper-Kamiokande

Far Detector

Hyper-K is the proposed third generation large water Cherenkov detector in the Kamioka mine

- Inner detector volume = 0.74 Mton
- Fiducial volume = 0.56 Mton
- Photomultiplier tubes: 99,000 20" inner detector & 25,000 8" outer detector

JPARC Beam for Hyper-K

- ★ Upgraded JPARC beam
- **★** At least 750 kW expected at start of experiment
 - Physics studies assume 7.5x10⁷ MW.s exposure
 - i.e. 10 years at 750 kW
 - or 5 years at 1.5 MW
 - Beam sharing between neutrinos:antineutrinos = 1 : 3
- ★ Hyper-K is off-axis
 - Narrow-band beam, centered on first oscillation maximum
 - Baseline = 295 km important km important

Hyper-K Science Goals

Focus on fundamental open questions in particle physics and astro-particle physics:

- 1) Neutrino Oscillations
 - CPV from J-PARC neutrino beam
 - Mass Hierarchy from Atmospheric Neutrinos
 - Solar neutrinos
- 2) Search for Proton Decay
 - Particularly strong for decays with $\,\pi^0$
- 3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova

Hyper-K Science Goals

Focus on fundamental open questions in particle physics and astro-particle physics:

- 1) Neutrino Oscillations
 - CPV from J-PARC neutrino beam matter effects are small
 - Mass Hierarchy from Atmospheric Neutrinos
 - Solar neutrinos
- 2) Search for Proton Decay
 - Particularly strong for decays with $\,\pi^{0}$
- 3) Supernova burst physics & astrophysics
 - Galactic core collapse supernova, sensitivity to $\,\overline{oldsymbol{
 u}}_{
 m e}$

★ Significant complementarity with DUNE physics

Hyper-Kamiokande Physics*

★ High-statistics for v_e/\overline{v}_e appearance

Beam	Sig	Background				Total		
mode	$\nu_{\mu} \rightarrow \nu_{e}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$ u_{\mu}$	$\overline{ u}_{\mu}$	ve	$\overline{\nu}_{e}$	NC	
$ u_{\mu}$	3016	28	11	0	503	20	172	3750
$\overline{\mathbf{v}}_{\mu}$	396	2110	4	5	222	265	265	3397

Appearance ν mode

Appearance ∇ mode

102 11.12.15 Mark Thomson I DUNE

CPV Sensitivity

★ CPV sensitivity from event counts

+ some shape information

Hyper-K δ_{CP} Sensitivity

- ★ CPV sensitivity based on:
 - 10 years @ 750 kW or 5 years at 1.5 MW
 - Assume MH is already known

