The GLD Concept

Mark Thomson University of Cambridge

This Talk:

• Machine

2 ILC Physics/Detector Requirements : why a large detector

- The GLD Concept
- One comments on cost and optimisation
- **6** Conclusions

OThe ILC

***** Event rates modest – small compared to LHC

Impact on Detector Design

- ***** Radiation Hardness does not dictate detector design
- Modest timing requirements
- **★** Must be able to cope with modest gamma-gamma bgd
- ★ Impact of non-zero crossing angle ?

Recommendations from the WG4

Tentative, not frozen configuration, working hypotheses, "strawman"

★ Final focus L* has big effect on backgrounds/ forward region

+ major MDI issue

PHYSICS not the machine drives ILC Detector design BUT MDI + crossing-angle also important

2 ILC Physics / Detector Requirements

Precision Studies/Measurements

- ★ Higgs sector
- ★ SUSY particle spectrum
- *** SM particles** (e.g. W-boson, top)
- ★ and much more...

Difficult Environment:

- *High Multiplicity final states often 6/8 jets
- ★Small cross-sections e.g. σ(e⁺e⁻→ZHH) = 0.3 fb

*****Many final states have"missing" energy

√s (GeV)

neutrinos + neutrilinos(?)/gravitinos(?) + ????

- * Detector optimized for precision measurements in difficult environment
- * Only 1 or 2 detectors make sure we choose the right option(s) + cost is not unimportant

Compare with LEP

★LEP Physics was "relatively" EASY

At ILC:

*Backgrounds dominate `interesting' physics *Kinematic fitting less useful (missing particles+Beamstrahlung) *Much more exposed to flaws of detector !

- * Physics performance depends critically on the detector performance
- * Stringent requirements on an ILC detector need to get it right

ILC Detector Requirements

- ★ Momentum: σ_{1/p} ~ 5x10⁻⁵/GeV (1/10 x LEP) (e.g. Z mass reconstruction from charged leptons)
 ★ Impact parameter: σ_{d0} < 5µm ⊕10µm/p(GeV) (1/3 x SLD) (c/b-tagging in background rejection/signal selection)
 ★ Jet energy : δE/E = 0.3/E(GeV) (1/2 x LEP) (W/Z invariant mass reconstruction from jets)
- Hermetic down to : θ = 5 mrad
 (for missing energy signatures e.g. SUSY)
- Sufficient timing resolution to separating events from different bunch-crossings

Must also be able to cope with high track densities due to high boost and/or final states with 6+ jets, therefore require:

- High granularity
- Good pattern recognition
- Good two track resolution

General consensus that Calorimetry drives ILC detector design

Calorimetry at the ILC

- Much ILC physics depends on reconstructing invariant masses from jets in hadronic final states
- ***** Kinematic fits won't necessarily help Unobserved particles (e.g. v),
 - + (less important ?) Beamstrahlung, ISR
- **★** Aim for jet energy resolution ~ $\Gamma_{\rm Z}$ for "typical" jets
 - the point of diminishing return
- ***** Jet energy resolution is the key to calorimetry
- The visible energy in a jet (excluding v) is:

60 % charged particles : 30 % γ : 10 % K_L,n

The Particle Flow Analysis (PFA):

 Reconstruct momenta of individual particles avoiding double counting

Charged particles in tracking chambers Photons in the ECAL Neutral hadrons in the HCAL (and possibly ECAL)

***** Need to separate energy deposits from different particles

ACFA8 Daegu 11/7/2005

Mark Thomson

Jet energy resolution:

Best at LEP (ALEPH): $\sigma_{E}/E = 0.6(1+|\cos\theta_{Jet}|)/\sqrt{E(GeV)}$

***** Jet energy resolution directly impacts physics sensitivity

Reconstruction of two di-jet masses allows discrimination of WW and ZZ final states

Often-quoted Example:

If the Higgs mechanism is not responsible for EWSB then QGC processes important e⁺e⁻→vvWW→vvqqqq, e⁺e⁻→vvZZ→vvqqqq

ILC GOAL:

 $\sigma_{\rm F}/{\rm E} = 0.3/\sqrt{{\rm E}({\rm GeV})}$

THIS ISN'T EASY !

 ★ EQUALLY applicable to any final states where want to separate W→qq and Z→qq !

*****Best resolution "achieved" for TESLA TDR : $0.30\sqrt{E_{iet}}$

Component	Detector	Frac. of jet energy	Particle Resolution	Jet Energy Resolution	
Charged Particles(X [±])	Tracker	0.6	10 ⁻⁴ E _X	neg.	
Photons(γ)	ECAL	0.3	0.11√E _γ	0.06√E _{jet}	
Neutral Hadrons(h ⁰)	HCAL	0.1	0.4√E _h	0.13√E _{jet}	
morgupov					

morgunov

- **★ Energy resolution gives** $0.14\sqrt{E_{jet}}$ (dominated by HCAL)
- In addition, have contributions to jet energy resolution due to "confusion" = assigning energy deposits to wrong reconstructed particles (double-counting etc.)

$$\sigma_{jet}^{2} = \sigma_{x^{\pm}}^{2} + \sigma_{\gamma}^{2} + \sigma_{h^{0}}^{2} + \sigma_{confusion}^{2} + \sigma_{threshold}^{2}$$

Single particle resolutions not the dominant contribution to jet energy resolution !

granularity more important than energy resolution

ACFA8 Daegu 11/7/2005

Aside : Why PFA argues "Big is Beautiful"

Comment : on useful (?) Figure of Merit:

* Often quoted F.O.M. for jet energy resolution: BR²/ σ (R=R_{ECAL}; σ = 1D resolution)

i.e. transverse displacement of tracks/"granularity"

- ★ Does this work ?
 - compare OPAL/ALEPH (W→qq no kinematic fit)

	BR ²	BR²/σ	σ _ε /√E	R ²/σ
OPAL	2.6 Tm ²	26 Tm	0.9	60 m
ALEPH	5.1 Tm ²	170 Tm	0.6	110 n

★ No ! Things aren't that simple....
My guess for FoM: R²/σ

B-field just spreads out energy deposits from charged particles in jet – not separating collinear particles

 \bigstar

Size more important - spreads out energy deposits from all particles

Dense Jet: B=fteld

R

 $d=0.15BR^{2}/p_{t}$

BThe GLD Concept

- What is the GLD concept ?
 - SIZE : quite large (larger than SiD/LDC)

Compare:

- *****Small Detector : SiD
- ***Large Detector: e.g. LDC (Tesla TDR)**
- *****Truly Large Detector: GLD

General Features of GLD Concept

- ***** "Large" gaseous central time projection chamber (TPC)
- * "Medium/High" granularity ECAL : W-Scintillator
- * "Medium/High" granularity HCAL : Pb-Scint (inside solenoid)
- ***** Precision microvertex detector (first layer close to IP)
- * "Moderate" B-field : 3 Tesla

Vertex Detector

🛧 Requirements driven by heavy flavour tagging

★ Important for many physics analyses

- e.g. couplings of a low mass Higgs Want to test g_{Hff}~m_f O(%) measurements of the branching ratios H→bb,cc,gg
- *Also important for event ID and background rejection

Aim for significant improvement compared to previous detectors

 $\sigma_{d0} \sim a \oplus b/[p(GeV)\beta sin^{3/2}\theta]$ Goal: a=5µm, b=10µm

a: point resolution, b : multiple scattering

d

Main design considerations:

- *Inner radius: as close to beampipe as possible, ~20 mm for impact parameter resolution
- ★Layer Thickness: as thin as possible suppression of γ conversions, minimize multiple scattering,...

Constraints:

- ★ Inner radius limited by e⁺e⁻ pair bgd. depends on the machine + B field
- ★ Layer thickness depends on Si technology

🛠 Ultimate design driven by machine

+ technology !

GLD Baseline design:

Fine pixel CCDs (FPCCDs)
Point resolution : 5 μm
Inner radius : 20 mm
Outer radius : 50 mm

*****Polar angle coverage : |cosθ|<0.9

BUT ultimate design depends on worldwide detector R&D

ACFA8 Daegu 11/7/2005

Mark Thomson

Backgrounds in GLD VTX

Higher B helps as pairs constrained to smaller radii How much of a disadvantage is B = 3T ?

- GLD VTX Forced to a slightly larger inner radius : 2mm ?
 Will depend on ILC parameters/MDI !
- This is a disadvantage of lower B-field in GLD concept
 How much does the larger inner radius matter ?

* Main impact – charm tagging, e.g. Tesla study

 ★Here charm-tagging efficiency for 70 % purity decreases from 45 % ⇒ 30 % as R_{inner} increased from 15 mm ⇒ 26 mm
 NOTE: not completely fair comparison as different wafer thickness

* 3 Tesla field not helpful from point of view of charm-tagging * BUT probably not a big concern

Central Tracking Required momentum resolution driven by reconstruction of Z mass in $Z \rightarrow \mu^+ \mu^-$ decays

 $\mu^+\mu^-$ angular distribution ➡ Spin, CP,...

Recoil mass to µ+µ-**⇒М**_н *σ*_{ZH} , **9**_{ZHH}

goal: $\Delta M_{uu} < 0.1 \times \Gamma_Z$

 $\sigma_{1/p} < 10^{-4} \text{ GeV}^{-1}$

ACFA8 Daegu 11/7/2005

TPC or Si Tracker ?

★ Two favoured central tracker technologies: TPC and Si Detector

★ Large number of samples vs. smaller number of high precision points

***** PATTERN RECOGNITION in SiD looks non-trivial

- *** GLD** concept adopts a TPC
 - used successfully in ALEPH/DELPHI

Motivation for a TPC

Advantages of a TPC:

- Large number of 3D space points good pattern recognition in dense track environment
- ***** Good 2 hit resolution
- Minimal material

little multiple scattering little impact on ECAL conversions from background γ

- **★** dE/dx gives particle identification
- Identification of non-pointing tracks aid energy flow reconstruction of V⁰ signals for new physics

e.g. Reconstruction of kinks GMSB SUSY: $\tilde{\mu} \rightarrow \mu + \tilde{G}$

+ Large WORLDWIDE R&D effort suggests that a TPC for an ILC detector is viable

+ Size helps :
$$\sigma_{1/p} \sim \frac{1}{BR^2}$$

e.g. GLD TPC Conceptual Design

- ★ Inner radius: 40 cm
- *** Outer radius: 200 cm**
- ★ Half-length : 235 cm
- *** Readout :** 200 radial rings

- Drift velocity ~5cm μs⁻¹ (depends on gas)
- Total Drift time \sim 50 μs
 - i.e. integrate over ~100 BX

★Background ⇒ ~10⁵ hits in TPC (depends on gas/machine)
★~10⁹ 3D readout voxels (1.2 MPads+20MHz sampling)

⇒0.1% occupancy

*No problem for pattern recognition/track reconstruction even when taking into account background !

+ One Major Question (?) : Readout <u>technology</u>

Gas Amplification: MWPC vs MPGD

MWPC : Multi-wire proportional chambers MPGD : Micro-pattern gas detectors

Previous TPCs used multiwire chambers not ideal for ILC.

resolution limited by:

• ExB effects

angle between sense wires and tracks

- Strong ion feedback requires gating
- Thick endplanes wire tension

Gas Electron Multipliers or MicroMEGAS

- 2 dimensional readout
- Small hole separation ⇒ reduced ExB effects ⇒ improved point resolution
- Natural supression of ion feedback
- No wire tension ⇒ thin endplates

e.g. GEMs

- ★ High electric field strength in GEM holes ~ 40-80 kV/cm
- ***** Amplification occurs between GEM foils (50 μ m)
- **★** Ion feedback is suppressed : achieved 0.1-1 %
- **★** Limited amplification (<100) use stack of 2/3 GEMs
- Ultimate viability of MPGDs subject of active worldwide <u>R&D</u> (of which KEK test beam studies play importart role)
- * MWPCs considered fallback option

Tracking = VTX + SIT + TPC +.....

*****To achieve good momentum resolution need to augment VTX/TPC particularly in the ENDCAP/far forward region

GLD Concept:

- * <u>Intermediate tracker (IT)</u> : 4 layers of Si
 - ★ 9cm 30cm

e.g. TESLA TDR

- *** 20** μ**m Si strips**
- **★** Forward Si disks : coverage down to 150 mrad

*****Forward tracking is IMPORTANT

- needs carefully evaluation in GLD studies !
- including tracking behind TPC endplane...

IT

GLD Tracking Performance

• GLD conceptual design (barrel) achieves goal of : $\sigma_{\rm pT}/p_{\rm T} < 5 {\rm x10^{-5}} \ p_{\rm T}$

Calorimeter Requirements

- Excellent energy resolution for jets i.e. high granularity
- Good energy/angular resolution for photons how good ?
- Hermeticity
- Reconstruction of non-pointing photons
- **Particle flow drives calorimeter design:**
 - *****Separation of energy deposits from
 - individual particles \cdot small X₀ and R_{Moliere} : compact showers
 - high lateral granularity : O(R_{Moliere})
 - ★ Discrimination between EM and hadronic showers
 - small X_0/λ_T
 - longitudanal segmentation
 - **★**Containment of EM showers in ECAL

W-Scintillator: sampling calorimeter is a good choice

- Tungsten is great : $X_0 / \lambda_1 = 1/25$, $R_{Moliere} \sim 9mm$ EM showers are short/Had showers long
 - + narrow EM showers
- Scintillator is relatively cheap !

Calorimeter Concept

★ ECAL and HCAL inside coil could we get away with some of HCAL beyond coil ? (probably not)

ECAL:

Longitudinal segmentation: 39 layers (~25 X_0 ; ~1 λ_I) Achieves Good Energy Resolution:

ECAL Structure

- R_{Moliere} ~ 9mm for solid tungsten
 + scintillator layers increase effective R_{Moliere} ~ 15 mm
- Aim for segmentation ~ R_{Moliere} ideally (?) ~ 1cm x 1cm - but cost !

Initial GLD ECAL concept:

- *Achieve effective ~1cm x 1cm segmentation using strip/tile arrangement
- ***Strips : 1**cm x 20cm x 2mm
- ***Tiles** : 4cm x 4cm x 2mm
- ★Ultimate design needs to be optimised for particle flow performance
 - + question of pattern recognition in dense environment

Scintillator Readout

Traditional Approach:

- * Readout with Wavelength shifting fibres + Photomultiplier Tubes (PMT)
- ***** Not suitable for ILC Calorimeter
 - ★ PMTs in high B-field
 - Need long fibre lengths to get signals out - attentuation, +....

GLD ECAL/HCAL Readout:

 Read out with WLS fibres + Silicon Multipixel Photon Counter directly on fibre at strip end

SiPM:

- + Number of cells up to ~ 1000
- Effective area ~1mm x 1mm (very compact)
- + High gain (~10⁶); Detect + amplification
- + Cheap (a few \$/device in future ?)
- + High Quantum efficiency ~ 70+%

SiPM cost will have significant impact on overall cost-perforance optimisation

Hadron Calorimeter

ACFA8 Daegu 11/7/2005

Aside....

- ***** Often argued that Moliere radius sets scale for ECAL segmentation
- *** Only** true once the shower has developed
- * In first "few" radiation lengths have energy deposits from a small number of electrons
- May argue for fine/very fine segmentation in first N radiation lengths
- **★** Would be able to locate photon conversion point precisely
- **★** How much does this help PFA ?

Forward Calorimeters

+SiW for luminosity cal

+Radiation hardness for "far forward" beam cal issue for Worldwide R&D

Forward Cal.

Final design MDI issue

Muon Chambers

ACFA8 Daegu 11/7/2005

Mark Thomson

... now need to iterate towards a more optimal design

Simulation, simulation, simulation, simulation, ...

ACFA8 Daegu 11/7/2005

Mark Thomson

GLD Cost-performance Optimisation

Different requirements for different sub-detectors:

- *** VTX : design driven by heavy flavour tagging,** machine backgrounds, <u>technology</u>
- * Tracker : design driven by σ_p , PATREC, track separation, + R&D

(TRACKER does influence on size and therefore cost)

★ ECAL/HCAL : single particle σ_E not the main factor ⇒ jet energy resolution ! Impact on particle flow drives calorimeter design

For VTX and TRACKER can learn a lot independent of rest of detector design. NOT TRUE for ECAL/HCAL need to consider entire detector

For GLD concept "optimisation" of SIZE and CALORIMETRY (i.e. PARTICLE FLOW) appear to be the main issues Many issues !

e.g.....

e.g. HCAL vs Solenoid

★ A 3 Tesla CMS like Solenoid presents "few" technical problems

- + Folklore cost scales roughly as total stored energy U
- + pdg quotes 50 M\$ (U/GJ)^{0.66}

(take with generous pinch of salt, based on pre-1992 data, but ~OKish for CMS)

+ the solenoid will contribute significantly to overall cost

-
$$\mathbf{U} \propto \mathbf{B}^2 \mathbf{R}^2 \mathbf{L}$$
 ($\mathbf{R} = \mathbf{R}_{coil}$, $\mathbf{L} = \mathbf{L}_{coil}$)

- + would like to keep the solenoid volume as low as possible
- Would using Tunsgten (W) rather than Lead (Pb) as the HCAL absorber reduce overall cost ?
 - **★** The HCAL would cost more W is relatively expensive
 - ***** BUT interaction length for W is 9.6 cm c.f 17.1 cm for Pb
 - + HCAL would be more compact
 - ***** Therefore solenoid cost would be reduced

Which effect wins in terms of cost ?

Desirable to consider cost issues whilst "finalising" baseline GLD concept

6 Conclusions I

- **★** PFA argues for as large a detector as possible
- **★** GLD is a viable large detector design
- ★ However, current GLD concept: not really optimised
- * Size, COIL and ECAL/HCAL (segmentation/readout) most important cost issues ?
- *** VTX, TPC : design dependent on <u>vital detector R&D</u>**
- \star + COIL is important need to get the real experts involved when trying to optimise overall cost/performance

Final words (personal opinion):

The GLD concept looks <u>very</u> promising

Need to fix baseline GLD design bearing in mind cost issues

For PFA optimisation within baseline GLD design should use full simulation – this optimisation is not easy

Vital to include backgrounds (close coupling to MDI)

There is a lot of extremely interesting work to be done over the next few years..... interesting = fun !

Conclusion II

At the ILC : Big is Beautiful

Backup Slides

Mark Thomson