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Spin, Helicity and the

Dirac Equation

[__Upto this point we have taken a hands-off
approach to “spin”.

[__Sdattering cross sections calculated for

spin-less particles

| Td understand the WEAK interaction need to
understand SPIN

[__Nded a relativistic theory of quantum

mechanics that includes spin

[ =} The DIRAC EQUATION
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[_spiN complicates things....
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since ORTHOGONAL SPIN states.

1
o= |2m> ML p(Ey)

4

Cross-section : sum over all spin assignments,

averaged over initial spin states.
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‘ The Klein-Gordon Equation Revisited I

Schrodinger Equation for a free particle can be
written as
O 1

= ——V-*
Zat 2m v

Derivatives : 1st order in time and 2nd order in
space coordinates = not Lorentz invariant

From Special Relativity:
E?2 — pz 4 m>
from Quantum Mechanics:
E=i2 , p=—iV

ot
Combine to give the Klein-Gordon Equation:
0%
— V2 . m2
o = )9

Second order in both space and time derivatives -
by construction Lorentz invariant.

[__Négative energy solutions
—> anti-particles
[ BUT negative energy solutions also give

negative particle densities !?
Y™ <0

Try another approach.....
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‘ Weyl Equations I

(The massless version of the Dirac Equation)

Klein-Gordon Eqn. for massless particles:

e — V)Y = 0

(E* —p*)y = 0

Try to factorize 2nd Order KG equation |1

equation linear in V AND %:
) ~ 9 ~ _
(50 —0-V)(5 +t0.V)y = 0
with as yet constants o

Gives the two decoupled WEYL Equations
0
(02 3, ax T Oy 3 T o Bz)¢ T Bitp

/5] __ oY
(Gw§+aya zaz)¢ ~ Bt
both linear in space and time derivatives.

BUT must satisfy the Klein-Gordon Equation

l.e. In operator form
(E—-6.p)E+6.p)y = 0
must satisfy
~ 2 R
(E"—p%)p = 0
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Weyl equations give:
- 2 A A A A A A
(E — O0xP0xPy — O-’ypyo-’ypy — 02P,02P,
- O-wpwo-ypy — Gypyawpw
_ O'ypyo'zpz - O-szo-’yp'y

_ Uzﬁzawﬁw T Uwﬁwazlaz)¢ =0
Therefore in order to recover the KG equation:

~ 2 A A PR
(E — PgPg — pypy _ pzpz) — 0?
require:
ol =0, =02 = 1
(0goy +0y0,) = O etc.

S Og, Oy, Oz ANTI-COMMUTE

The simplest choice for o are the Pauli spin matrices
(01 (0 -1 (10
2 =\10)% =\1¢0)°%2= 101

Hence solutions to the Klein-Gordon equation
(E—-6.p)(E+6.p)yy = 0
are given by the Weyl Equations:
(E—5.p)p =0
(E+6.p)x =0

Since o; are 2 X 2 matrices, need 2 component
wave-functions - WEYL SPINORS.

b=N (gl) o—i(Et—P.T)
2

The wave-function is forced to have a new degree of
freedom - the spin of the fermion.
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Consider the FIRST Weyl Equation

(E—6.p)¢p = 0
(2 + 0o+ 0y +025)0 = 0
For a plane wave solution:
6 = N P1 e—i(Et—D.T)
G2
the first Weyl Equation gives
(E — OxPxr — OyPy — O'zpz)qb = 0
(E—6.p)¢p = 0

where

Qe
Th
|

OxPx + OyDy + O2P=

— Pz ) Px — 'ipy
Pz + 1Py —DP:

Hence for the first WEYL equation, the SPINOR solutions of

(E — 0.p)¢ = 0 are given the coupled equations:

— pz¢1 + (par: — ipy)¢2 — E¢1 }

(Pz + iPy)Pp1 — P22 = E¢2
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Dr M.A. Thomson

[ CHoose p along z axis, i.e. p, = |p|:

(E—|p|)p1 =0
(E+ |p|)¢p2 =0

There are two solutions ¢4 = <(1)) and p_ —= <(1))

[ Thk first solution, ¢4 = <(1)) requires E = +|p|, i.e.
a positive energy (particle) solution. Similarly, the second
p_ = <(1)) requires £ = —|p|, i.e. a negative energy
(anti-particle) solution.

[ Bdck to the FIRST WEYL equation

(E—0o.p)¢p = 0
&.pp = E¢
6Py - B _ ]+l E>0
Pl |p| ~1 E<O

[_The solutions of the WEYL equations are Eigenstates of
the HELICITY operator.

i — o.p
Pl
with Eigenvalues +1 and —1 respectively.

0]
/ > P
HELICITY is the projection of a particle’s SPIN onto its flight
direction.

(Recall WEYL equations applicable for massless particles)
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[_Intlerpret the two solutions of the FIRST WEYL equation
as a RIGHT-HANDED H = -1 particle and a

LEFT-HANDED anti-particle H = —1.
E>0 H=+1 E<OH=-1
— P—
> >

RH particle LH anti-particle

[ The SECOND WEYL equation:

(E+o.p)x =0
has LEFT-HANDED particle and RIGHT-HANDED
anti-particle solutions.
E<O H=+1 E>O0H=-1

— —
> >

RH anti-particle LH particle

SUMMARY:

[__BY factorizing the Klein-Gordon equation into a form
linear in the derivatives => force particles to have a
non-commuting degree of freedom, SPIN !

[__Siill obtain anti-particle solutions
[__Pilobability densities always positive
[_‘Natural’ states are the Helicity Eigenstates

[ WEyl Equations are the ultra-relativistic (massless) limit
of the Dirac Equation
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‘ Spin in the Fundamental Interactions I

[ The ELECTROMAGNETIC, STRONG, and WEAK
interactions are all mediated by VECTOR (spin-1) fields. In
the massless limit, the fundamental fermion states are
eigenstates of the helicity operator. HANDEDNESS

[ (CHIRALITY) plays a central réle in the interactions
between the field bosons and the fermions; the only
allowed couplings are:

LH particle to LH particle
RH particle to RH particle
LH anti-particle to LH anti-particle
RH anti-particle to RH anti-particle
LH particle to RH anti-particle
RH particle to LH anti-particle

EXAMPLE eTe™ — putp™
Of the 16 possibilities ONLY the following SPIN
combinations contribute to the cross-section

e ® < ’ e+ 2] ® . < ’ e+
i n

All other SPIN combinations give zero |Mz|2
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‘ Solutions of the Weyl Equations I

Consider the general case of a particle with travelling at an
angle @ with respect to the z-axis

p. = |p|cos
Px = |p| sin 0
WEYLT (E—6.p)¢p = 0
&5.p)¢ = Eo

— P-¢1 + P2P2 = E¢; }

pw¢1 — pz¢2 — E¢2

For the positive energy solution E = +|p|:

¢p1c0s 0 + Pposin@ = ¢q
¢p15in 0 — p3cos @ = o

sin 6
= 1 = 2
¢ ¢ (1 — cos0)
Therefore
.. 0 2
ﬂ _ 2sm§cos§
P2 (1 — cos?Z + sin®Z
0
ﬂ _ COS 3
¢2 Sing

Normalizing such that 12 + 22 = 1 gives:

_ o
¢1 = cosg
— win®
¢2 = sing
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[_Sd the positive energy solution to the first Weyl equation
(RH particle) gives

6
+cosZ : = ,
¢ru = N . 2 |e”i(Et=PI) RH fermion
+Sln§

This is still a Eigenvalue of the helicity operator with
(H = +1) i.e. aRH particle but now referred to an
external axis.

The positive energy solution to the SECOND Weyl equation
(LH particle) gives

-sin? = =
xtg = N 2 e I(Et—D.-I) TH fermion
+Cos3

Not much more than the Quantum Mechanical rotation

properties of spin-%.

[_The spin part of a RH particle/anti-particle wave-function
can be written

+ COSQ

pr(0) = (2] = cos?t +singl

+sin>
Sln2

[_Similarly for a LH particle/anti-particle

-sin?

Y1 (0) = 2] = —sin2t+ cosZ]

+ —_
COS 5

For particles/anti-particles with momentum —p(8), i.e. an
angle @ + 7 to the z-axis:

Yr(O+m) = —SingT + cos%i,
Y (0 +m) = —cos2t —sinZ|

12
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‘ Applicationto eTe™ — ,LL_I_/,L_ I

L s
e__=> [ e e__ = [ e

&
[__Edur helicity combinations u/ w’
contribute to the cross-section. P W
e e e

e € -

+/ y
i u

\

\

[_Cdnsider the first diagram

+ T /“
€r€r, — HMHRHj . -

&

With the e~ direction defin-
ing the z axis:

[_The spin parts of the wave-functions :
Vemet =r(0)Yr(m)=11
V=t =Yr(0)hr(0 + )
=-CcoS —TT cosy sm‘9 (11+11)-sin? 9“,

[_GiVing the contribution the matrix element:

2
€
|]\41|2 — |<¢“1_2“;:|_|q_2|¢61_%e}f>|2
4
€ 2Q|2

= q—4|cos 5

_ o (1)2 (1 + cos 0)?

q* \ 2
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[ Pekform same calculation for the four allowed helicity

combinations

v
/-./ e My occos (6/2)

e__=»

u® —5 (1+cose)
v

o sin%(6/2)

ot %(1 -cosH)
v

6 __e= /:'-/ M, o sm (6/2)

u® —5 (1 Cos0)

6o / M, occos (0/2)

1u+/ — = (1+cosP)

[_Edr unpolarized electron/positron beams : each of the
above process contributes equally. Therefore SUM over all
matrix elements and AVERAGE over initial spin states.
Giving the total Matrix Element (remember spin-states are
orthogonal so sum squared matrix elements) :

1
M = {IMi]* + |My|® + | Ms|* + | M|}
1
M| = qu{%(l-l-cosﬁ’)z—l—%(1—cos¢9)2+
1(1 = cos 0)? + 1(1 + cos )2}
IM|? = —(1+4+ cos?0)

4q4
[_Ndthing more than the QM properties of a SPIN-1 particle

decaying to two SPIN—% particles
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Electron/Positron beams along z-axis (g2 = 4E? = s)

Using the spin-averaged matrix element

IM|? = E(l + cos? 0)

4 2
|IM|? = (:—az)(l + cos? 0)
s

do , E?
— = 27|M|
dS) (27)3

(4mcr)? 1
T(l + cos 0)— 1 (2n)°

= 27

2

a* Q%
= (1 + cos? )
4s

20 do
{ d| cos 9|
{ The angle O is determined from

the measured directions of the

} jets. | cos@| is plotted since it

% IS not possible to uniquely identify

10 which jet corresponds to the quark

and which corresponds to the anti-

quark. The curve shows the ex-

o897 oL 06 08 70 pected (1 4+ cos? @) distribution.
Jcos 6| QUARKS are SPIN-2

for eTe™ — qq.

o (cos 8)/ o (o)
o
I
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Dr M.A. Thomson

(yet again)

Total cross section forete~ — ff

do
o = —dﬂ

27 2Q
/ / ! (1 + cos? 0) sin 6dOd¢

Wa2Q2

/ (14 9*)dy (y = cos0)
2s -1
2 )2
4T Qf
3s

4w o?

3s

o(ete” = putp™) =

101|||111|||l||||||r

ete~ — qu_

L i1l

v Jade

T T TTrTrT

O Mark J

A Pluto

O Tasso
o(ete™ — ptu™)
for ete™ collider data

T ll'lllfll
1 llllllll

g (nb)

Ogep =

at centre-of-mass ener-
gies 8-36 GeV

0.1

1 I. TT"I_II'I]

0‘01I1_LLllill|IllIJ.llll
10 20 30

Vs (GeV)

o
L3
o

[_This is the complete lowest order calculation of the
ete™ — u+u_ cross-section (in the limit of massless
fermions).

16
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‘ The Dirac Equation I

WEYL Equations describe massless SPIN-% particles. But
all known fermions are MASSIVE. Again start from the KG

equation. 62¢
= (V2?2 —m?
o = v
~ 2 ~2
Hy = (p°+m?)
Write down equation LINEAR in space and time derivatives
Hy = (a.p+ Bm)y
and require it to be a solution of the KG equation:
H’lb — (aw'pw —I_ a’y‘]./j'y —I_ a2°].3z —I_ ﬁ'm)¢
~ 2 .
H vy = (Jaiz.pw2 + ...

+(agoy + ayag)P.D,y, + -
+(0iaB + Bt )Py + -

For this to satisfy Klein-Gordon equation:
~ 2 . . .
H¢ = (p,°+D,” +5.2+m*)y
require
azz — /82 = 1 (t=wz,9,2)
8718 %1 -+ ;0 = 0 (’L # ])
a;8+pPa; = 0

Now require 4 anti-commuting matrices.

Dr M.A. Thomson
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The Dirac Equation:

Hy = (a.p+pBm)y

Can be written in a slightly different form

i % = (—id@.V + Bm)y
iB 2L = (—iBa.V + m)y

(iB 2+iBa.V-B*m)p = 0
(170 5+ i7" gt 17 gyt i7° 55-Bim)p =
with v = (B8, 8a)

Giving

(z2v*0, — m)1p =0

with
(v9)* = 1
)2 =C0)*=0* = -1
(Vv =) = 0 (i #j)

Identify the v# as matrices which must satisfy the
anti-commutation relations above. The Pauli spin matrices
provide only 3 anti-commuting matrices and the lowest
dimension matrices satisfying these requirements are

4 X 4. The «y-matrices are closely related to the 2 X 2
Pauli spin matrices.
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10 00
o _ 0100} /1 O
7= 00-1 0] =\L0 -1
00 O -1
0 001
1 0010} (/0 o,
7= 0-100] =\, O
1 000
000 -1
5 00 3 O _(()ay)
T = 1t0¢00) "\, 0
2000
001 O
3 000-1) /0 o,
7= 1000] =\, 0
010 0
also define O O 1 O
Onla2~3 0001} 0 1
v =y iy 1000)]=\1 o0
0100

Solutions to the Dirac Equation are written as
four-component Dirac SPINORSs

Dr M.A. Thomson Lent 2004



20

‘ Rest Frame Solutions of the Dirac Equation I

Dirac Equation: (iv*8, — m)y =0
0 o

(z7 8t+7’71 Ox +272 3y+7’7 ——’I’I’L)’Lb =0

Consider a particle at REST: pp = % —¢ = 0, etc.

Dirac Equation becomes:

(iv° & —m)yp =0

10 0 0\ [Oy:/0t (2
i 01 0O 8¢2/8t m P2
00-10 8¢3/3t o 3
00 0-1/ \oy,/ot P4
.0 .02
2 ot - m¢1a 2 ot — m¢2
Giving two orthogonal © = +m solutions:
1 0
w(t) = (g ]e™ wa(t) = (g |ei™
0 0

I.e. positive energy spin-up and spin-down PARTICLES

The two other equations

.03 .0y
() = —m () = —m
ot ¢39 ot ¢4
give two orthogonal £ = —m solutions:
0 0
us(t) = (9 |eF™,  ua(t) = (g |etm
0 1

I.e. —ve energy spin-up and spin-down ANTI-PARTICLES
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The DIRAC equation

[_gilles PARTICLE/ANTI-PARTICLE solutions

[__rebuires the particles/anti-particles to have an
additional degree of freedom (SPIN) !

[_inlthe massless limit, the DIRAC equation
reduces to the two uncoupled WEYL
equations

[_Inlgeneral the Dirac Equation gives FOUR
simultaneous equations for the components
of the SPINOR.

e.g. more general solutions

1 0
0 1
_ Pz _ x—1
ur =N | G | w2=N (€E+n€;!)
(Pz+iPy) —P-z
(E+m) (E+m)
For (uy,uz) E = +/p?+ m?
Pz (Pz—iPy)
(Da+1Dy) Ep
uz = IN (fg_m;y s ug =N _ﬁ
1 0
0 1

For (uz,us) E = —\/p? + m?2
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Lorentz Structure of Interactions

NON-EXAMINABLE

e
1
Y T Propagator
P e P Proton Current
Matrix element MV factorises into 3 terms :
—aM = Electron Current
—igh¥
X — Photon Propagator
q

X  (uy,|tey”|u,) Proton Current

[__Fdrmions are 4-component SPINORS.
[ linteraction enters as 4 X 4 matrices.

[_Ldrentz invariance allows only five possible forms for
the interaction: SCALAR uu, PSEUDO-SCALAR
uy°u, VECTOR uyH*u, AXIAL-VECTOR uy*~°u,
TENSOR uo**u

[__Electro-magnetic and Strong forces are VECTOR
interactions - which determines the HELICITY structure.

Treats helicity states symmetrically = PARITY
CONSERVATION

[_Thhe WEAK interaction has a different form: (V-A) i.e.
~*(1 — ~°). Projects out a single helicity
combination : = PARITY VIOLATION

The WEAK interaction is the subject of next lecture
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