Particle Physics

Dr M.A. Thomson

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

Part II, Lent Term 2004 HANDOUT V

Spin, Helicity and the Dirac Equation

\star Upto this point we have taken a hands-off approach to "spin".
\star Scattering cross sections calculated for spin-less particles

\star To understand the WEAK interaction need to understand SPIN

Need a relativistic theory of quantum mechanics that includes spin

$\star \Rightarrow$ The DIRAC EQUATION

\star SPIN complicates things....

The process

represents the sum over all possible spin states

$$
M_{1} \quad \sum_{i} N_{i}
$$

$$
|M|^{2} \rightarrow\left|\sum_{i} M_{i}\right|^{2}=\sum_{i}\left|M_{i}\right|^{2}
$$

since ORTHOGONAL SPIN states.

$$
\sigma=\frac{1}{4}\left[2 \pi \sum_{i}\left|M_{i}\right|^{2} \rho\left(E_{f}\right)\right]
$$

Cross-section : sum over all spin assignments, averaged over initial spin states.

The Klein-Gordon Equation Revisited

Schrödinger Equation for a free particle can be written as

$$
i \frac{\partial \psi}{\partial t}=-\frac{1}{2 \mathrm{~m}} \nabla^{2} \psi
$$

Derivatives : 1st order in time and 2nd order in space coordinates \Rightarrow not Lorentz invariant

From Special Relativity:

$$
E^{2}=p^{2}+m^{2}
$$

from Quantum Mechanics:

$$
\hat{\mathbf{E}}=i \frac{\partial}{\partial \mathrm{t}} \quad, \quad \hat{\mathrm{p}}=-i \nabla
$$

Combine to give the Klein-Gordon Equation:

$$
\frac{\partial^{2} \psi}{\partial t^{2}}=\left(\nabla^{2}-m^{2}\right) \psi
$$

Second order in both space and time derivatives by construction Lorentz invariant.

Negative energy solutions
\Rightarrow anti-particles

* BUT negative energy solutions also give negative particle densities !?
$\psi^{*} \psi<0$
Try another approach.....

Weyl Equations

(The massless version of the Dirac Equation) Klein-Gordon Eqn. for massless particles:

$$
\begin{aligned}
\left(\frac{\partial^{2} \psi}{\partial \mathbf{t}^{2}}-\nabla^{2}\right) \psi & =0 \\
\text { i.e. }\left(\hat{\mathbf{E}}^{2}-\hat{\mathbf{p}}^{2}\right) \psi & =0
\end{aligned}
$$

Try to factorize 2nd Order KG equation \rightarrow equation linear in ∇ AND $\frac{\partial}{\partial t}$:

$$
\left(\frac{\partial}{\partial \mathrm{t}}-\tilde{\sigma} . \nabla\right)\left(\frac{\partial}{\partial \mathrm{t}}+\tilde{\sigma} \cdot \nabla\right) \psi=0
$$

with as yet undetermined constants $\tilde{\boldsymbol{\sigma}}$
Gives the two decoupled WEYL Equations

$$
\begin{aligned}
& \left(\sigma_{x} \frac{\partial}{\partial \mathrm{x}}+\sigma_{y} \frac{\partial}{\partial \mathrm{y}}+\sigma_{z} \frac{\partial}{\partial \mathrm{z}}\right) \psi=+\frac{\partial \psi}{\partial \mathrm{t}} \\
& \left(\sigma_{x} \frac{\partial}{\partial \mathrm{x}}+\sigma_{y} \frac{\partial}{\partial \mathrm{y}}+\sigma_{z} \frac{\partial}{\partial \mathrm{z}}\right) \psi=-\frac{\partial \psi}{\partial \mathrm{t}}
\end{aligned}
$$

both linear in space and time derivatives.
BUT must satisfy the Klein-Gordon Equation
i.e. in operator form

$$
(\hat{\mathbf{E}}-\tilde{\sigma} \cdot \hat{\mathrm{p}})(\hat{\mathrm{E}}+\tilde{\sigma} \cdot \hat{\mathrm{p}}) \psi=0
$$

must satisfy

$$
\left(\hat{\mathbf{E}}^{2}-\hat{\mathbf{p}}^{2}\right) \psi=0
$$

Weyl equations give:

$$
\begin{aligned}
\left(\hat{\mathbf{E}}^{2}\right. & -\sigma_{x} \hat{\mathbf{p}}_{x} \sigma_{x} \hat{\mathbf{p}}_{x}-\sigma_{y} \hat{\mathbf{p}}_{y} \sigma_{y} \hat{\mathbf{p}}_{y}-\sigma_{z} \hat{\mathbf{p}}_{z} \sigma_{z} \hat{\mathbf{p}}_{z} \\
& -\sigma_{x} \hat{\mathbf{p}}_{x} \sigma_{y} \hat{\mathbf{p}}_{y}-\sigma_{y} \hat{\mathbf{p}}_{y} \sigma_{x} \hat{\mathbf{p}}_{x} \\
& -\sigma_{y} \hat{\mathrm{p}}_{y} \sigma_{z} \hat{\mathbf{p}}_{z}-\sigma_{z} \hat{\mathbf{p}}_{z} \sigma_{y} \hat{\mathrm{p}}_{y} \\
& \left.-\sigma_{z} \hat{\mathbf{p}}_{z} \sigma_{x} \hat{\mathbf{p}}_{x}-\sigma_{x} \hat{\mathbf{p}}_{x} \sigma_{z} \hat{\mathbf{p}}_{z}\right) \psi=0
\end{aligned}
$$

Therefore in order to recover the KG equation:

$$
\left(\hat{\mathbf{E}}^{2}-\hat{\mathbf{p}}_{x} \hat{\mathbf{p}}_{x}-\hat{\mathbf{p}}_{y} \hat{\mathbf{p}}_{y}-\hat{\mathbf{p}}_{z} \hat{\mathrm{p}}_{z}\right)=0
$$

require:

$$
\begin{aligned}
\sigma_{x}^{2}=\sigma_{y}{ }^{2}=\sigma_{z}^{2} & =1 \\
\left(\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{x}\right) & =0 \text { etc. }
\end{aligned}
$$

$\therefore \sigma_{x}, \sigma_{y}, \sigma_{z}$ ANTI-COMMUTE
The simplest choice for σ are the Pauli spin matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Hence solutions to the Klein-Gordon equation

$$
(\hat{\mathbf{E}}-\tilde{\sigma} \cdot \hat{\mathbf{p}})(\hat{\mathbf{E}}+\tilde{\sigma} \cdot \hat{\mathbf{p}}) \psi=0
$$

are given by the Weyl Equations:

$$
\begin{aligned}
& (\hat{\mathbf{E}}-\tilde{\sigma} \cdot \hat{\mathbf{p}}) \phi=0 \\
& (\hat{\mathbf{E}}+\tilde{\sigma} \cdot \hat{\mathbf{p}}) \chi=0
\end{aligned}
$$

Since σ_{i} are 2×2 matrices, need 2 component wave-functions - WEYL SPINORS.

$$
\phi=N\binom{\phi_{1}}{\phi_{2}} \mathrm{e}^{-\mathrm{i}(\mathrm{Et}-\tilde{\mathrm{p}} . \tilde{\mathrm{r}})}
$$

The wave-function is forced to have a new degree of freedom - the spin of the fermion.

Consider the FIRST Weyl Equation

$$
\begin{aligned}
(\hat{\mathrm{E}}-\tilde{\sigma} \cdot \hat{\mathrm{p}}) \phi & =0 \\
\left(\frac{\partial}{\partial \mathrm{t}}+\sigma_{x} \frac{\partial}{\partial \mathrm{x}}+\sigma_{y} \frac{\partial}{\partial \mathrm{y}}+\sigma_{z} \frac{\partial}{\partial \mathrm{z}}\right) \phi & =0
\end{aligned}
$$

For a plane wave solution:

$$
\phi=N\binom{\phi_{1}}{\phi_{2}} \mathrm{e}^{-\mathrm{i}(\mathrm{Et}-\tilde{\mathrm{p}} . \tilde{\mathrm{r}})}
$$

the first Weyl Equation gives

$$
\begin{aligned}
\left(E-\sigma_{x} \mathrm{p}_{x}-\sigma_{y} \mathrm{p}_{y}-\sigma_{z} \mathrm{p}_{z}\right) \phi & =0 \\
(E-\tilde{\sigma} \cdot \tilde{\mathrm{p}}) \phi & =0
\end{aligned}
$$

where

$$
\begin{aligned}
\tilde{\sigma} \cdot \tilde{\mathrm{p}} & =\sigma_{x} \mathrm{p}_{x}+\sigma_{y} \mathrm{p}_{y}+\sigma_{z} \mathrm{p}_{z} \\
& =\binom{\mathbf{p}_{z} \mathbf{p}_{x}-i \mathbf{p}_{y}}{\mathbf{p}_{x}+i \mathbf{p}_{y}-\mathbf{p}_{z}}
\end{aligned}
$$

Hence for the first WEYL equation, the SPINOR solutions of $(E-\tilde{\sigma} \cdot \tilde{\mathrm{p}}) \phi=0$ are given the coupled equations:

$$
\left.\Rightarrow \quad \begin{array}{l}
\mathrm{p}_{z} \phi_{1}+\left(\mathrm{p}_{x}-i \mathrm{p}_{y}\right) \phi_{2}=E \phi_{1} \\
\left(\mathrm{p}_{x}+i \mathrm{p}_{y}\right) \phi_{1}-\mathrm{p}_{z} \phi_{2}=E \phi_{2}
\end{array}\right\}
$$

\star Choose $\tilde{\mathrm{p}}$ along z axis, i.e. $\mathrm{p}_{z}=|p|$:

$$
\begin{aligned}
& (E-|p|) \phi_{1}=0 \\
& (E+|p|) \phi_{2}=0
\end{aligned}
$$

There are two solutions $\phi_{+}=\binom{1}{\mathbf{0}}$ and $\phi_{-}=\binom{0}{1}$.
\star The first solution, $\phi_{+}=\binom{1}{0}$, requires $E=+|p|$, i.e. a positive energy (particle) solution. Similarly, the second $\phi_{-}=\binom{0}{1}$, requires $E=-|p|$, i.e. a negative energy (anti-particle) solution.
\star Back to the FIRST WEYL equation

$$
\begin{aligned}
(E-\tilde{\sigma} \cdot \hat{\mathrm{p}}) \phi & =0 \\
\tilde{\sigma} \cdot \hat{\mathrm{p}} \phi & =E \phi \\
\frac{\tilde{\sigma} \cdot \hat{\mathrm{p}}}{|p|} \phi & =\frac{E}{|p|} \phi= \begin{cases}+1 & E>0 \\
-1 & E<0\end{cases}
\end{aligned}
$$

\star The solutions of the WEYL equations are Eigenstates of the HELICITY operator.

$$
\hat{H}=\frac{\tilde{\sigma} \cdot \hat{p}}{|\boldsymbol{p}|}
$$

with Eigenvalues +1 and -1 respectively.

HELICITY is the projection of a particle's SPIN onto its flight direction.

* Interpret the two solutions of the FIRST WEYL equation as a RIGHT-HANDED $H=+1$ particle and a LEFT-HANDED anti-particle $H=-1$.

\star The SECOND WEYL equation:

$$
(\hat{\mathbf{E}}+\tilde{\sigma} \cdot \hat{\mathbf{p}}) \chi=0
$$

has LEFT-HANDED particle and RIGHT-HANDED anti-particle solutions.

RH anti-particle

SUMMARY:

* By factorizing the Klein-Gordon equation into a form linear in the derivatives \Rightarrow force particles to have a non-commuting degree of freedom, SPIN !
* Still obtain anti-particle solutions
\star Probability densities always positive
* 'Natural' states are the Helicity Eigenstates
* Weyl Equations are the ultra-relativistic (massless) limit of the Dirac Equation

Spin in the Fundamental Interactions

* The ELECTROMAGNETIC, STRONG, and WEAK interactions are all mediated by VECTOR (spin-1) fields. In the massless limit, the fundamental fermion states are eigenstates of the helicity operator. HANDEDNESS
* (CHIRALITY) plays a central rôle in the interactions between the field bosons and the fermions; the only allowed couplings are:

LH particle	to	LH particle
RH particle	to	RH particle
LH anti-particle	to	LH anti-particle
RH anti-particle	to	RH anti-particle
LH particle	to	RH anti-particle
RH particle	to	LH anti-particle

EXAMPLE $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$

Of the 16 possibilities ONLY the following SPIN combinations contribute to the cross-section

All other SPIN combinations give zero $\left|M_{i}\right|^{2}$

Solutions of the Weyl Equations

Consider the general case of a particle with travelling at an angle θ with respect to the z-axis

$$
\begin{gathered}
\left.\begin{array}{rl}
\mathrm{p}_{z} & =|\mathrm{p}| \cos \theta \\
\mathrm{p}_{x} & =|\mathrm{p}| \sin \theta \\
\text { WEYL } 1 & (\hat{\mathbf{E}}-\hat{\sigma} \cdot \hat{\mathrm{p}}) \phi=0 \\
(\hat{\sigma} \cdot \hat{\mathrm{p}}) \phi & =\hat{\mathbf{E}} \phi \\
\Rightarrow \quad \mathrm{p}_{z} \phi_{1}+\mathrm{p}_{x} \phi_{2}=E \phi_{1} \\
\mathrm{p}_{x} \phi_{1}-\mathrm{p}_{z} \phi_{2}=E \phi_{2}
\end{array}\right\}
\end{gathered}
$$

For the positive energy solution $E=+|\mathbf{p}|$:

$$
\begin{gathered}
\left.\Rightarrow \quad \begin{array}{l}
\phi_{1} \cos \theta+\phi_{2} \sin \theta=\phi_{1} \\
\phi_{1} \sin \theta-\phi_{2} \cos \theta=\phi_{2}
\end{array}\right\} \\
\Rightarrow \quad \phi_{1}=\phi_{2} \frac{\sin \theta}{(1-\cos \theta)}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\frac{\phi_{1}}{\phi_{2}} & =\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\left(1-\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}\right)} \\
\frac{\phi_{1}}{\phi_{2}} & =\frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}
\end{aligned}
$$

Normalizing such that $\phi_{1}{ }^{2}+{\phi_{2}}^{2}=1$ gives:

$$
\begin{aligned}
& \phi_{1}=\cos \frac{\theta}{2} \\
& \phi_{2}=\sin \frac{\theta}{2}
\end{aligned}
$$

* So the positive energy solution to the first Weyl equation (RH particle) gives

$$
\phi_{\mathrm{RH}}=N\binom{+\cos \frac{\theta}{2}}{+\sin \frac{\theta}{2}} \mathrm{e}^{-\mathrm{i}(\mathrm{Et}-\tilde{\mathrm{p}} . \tilde{\mathrm{r}})} \mathrm{RH} \text { fermion }
$$

This is still a Eigenvalue of the helicity operator with $(H=+1)$ i.e. a RH particle but now referred to an external axis.

The positive energy solution to the SECOND Weyl equation (LH particle) gives

$$
\chi_{\mathrm{LH}}=N\binom{-\sin \frac{\theta}{2}}{+\cos \frac{\theta}{2}} \mathrm{e}^{-\mathrm{i}(\mathrm{Et}-\tilde{\mathrm{p}} . \tilde{\mathrm{r}})} \mathrm{LH} \text { fermion }
$$

Not much more than the Quantum Mechanical rotation properties of spin $-\frac{1}{2}$.
\star The spin part of a RH particle/anti-particle wave-function can be written

$$
\psi_{R}(\theta)=\binom{+\cos \frac{\theta}{2}}{+\sin \frac{\theta}{2}}=\cos \frac{\theta}{2} \uparrow+\sin \frac{\theta}{2} \downarrow
$$

Similarly for a LH particle/anti-particle

$$
\psi_{L}(\theta)=\binom{-\sin \frac{\theta}{2}}{+\cos \frac{\theta}{2}}=-\sin \frac{\theta}{2} \uparrow+\cos \frac{\theta}{2} \downarrow
$$

For particles/anti-particles with momentum $-\tilde{p}(\theta)$, i.e. an angle $\theta+\pi$ to the z-axis:

$$
\begin{aligned}
& \psi_{R}(\theta+\pi)=-\sin \frac{\theta}{2} \uparrow+\cos \frac{\theta}{2} \downarrow \\
& \psi_{L}(\theta+\pi)=-\cos \frac{\theta}{2} \uparrow-\sin \frac{\theta}{2} \downarrow
\end{aligned}
$$

Application to $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$

Four helicity combinations
 contribute to the cross-section.

\star Consider the first diagram

$$
e_{R}^{-} e_{L}^{+} \quad \rightarrow \quad \mu_{R}^{-} \mu_{L}^{+}
$$

With the e^{-}direction defining the \boldsymbol{z} axis:

\star The spin parts of the wave-functions :

$$
\begin{aligned}
\psi_{e_{R}^{-} e_{L}^{+}} & =\psi_{R}(0) \psi_{L}(\pi)=\uparrow \uparrow \\
\psi_{\mu_{R}}^{-\mu_{L}^{+}} & =\psi_{R}(\theta) \psi_{L}(\theta+\pi) \\
& =-\cos ^{2} \frac{\theta}{2} \uparrow \uparrow-\cos \frac{\theta}{2} \sin \frac{\theta}{2}(\uparrow \downarrow+\downarrow \uparrow)-\sin ^{2} \frac{\theta}{2} \downarrow \downarrow
\end{aligned}
$$

\star Giving the contribution the matrix element:

$$
\begin{aligned}
\left|\boldsymbol{M}_{1}\right|^{2} & \left.=\left|\left\langle\psi_{\mu_{R}^{-} \boldsymbol{\mu}_{L}^{+}}\right| \frac{e^{2}}{\boldsymbol{q}^{2}}\right| \psi_{e_{R}^{-} e_{L}^{+}}\right\rangle\left.\right|^{2} \\
& =\frac{e^{4}}{\boldsymbol{q}^{4}}\left|\cos ^{2} \frac{\theta}{2}\right|^{2} \\
& =\frac{e^{4}}{\boldsymbol{q}^{4}}\left(\frac{1}{2}\right)^{2}(1+\cos \theta)^{2}
\end{aligned}
$$

* Perform same calculation for the four allowed helicity combinations

$\begin{aligned} M_{1} & \alpha \cos ^{2}(\theta / 2) \\ & \rightarrow \frac{1}{2}(1+\cos \theta)\end{aligned}$

$M_{2} \alpha \sin ^{2}(\theta / 2)$
$\rightarrow \frac{1}{2}(1-\cos \theta)$

$M_{3} \alpha \sin ^{2}(\theta / 2)$ $\rightarrow \frac{1}{2}(1-\cos \theta)$

$\begin{aligned} M_{4} & \alpha \cos ^{2}(\theta / 2) \\ & \rightarrow \frac{1}{2}(1+\cos \theta)\end{aligned}$
ћ For unpolarized electron/positron beams : each of the above process contributes equally. Therefore SUM over all matrix elements and AVERAGE over initial spin states. Giving the total Matrix Element (remember spin-states are orthogonal so sum squared matrix elements) :

$$
\begin{array}{r}
|M|^{2}=\frac{1}{4}\left\{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}+\left|M_{3}\right|^{2}+\left|M_{4}\right|^{2}\right\} \\
|M|^{2}= \\
\frac{1}{4} \frac{e^{4}}{q^{4}}\left\{\frac{1}{4}(1+\cos \theta)^{2}+\frac{1}{4}(1-\cos \theta)^{2}+\right. \\
\left.\frac{1}{4}(1-\cos \theta)^{2}+\frac{1}{4}(1+\cos \theta)^{2}\right\}
\end{array}
$$

$$
|M|^{2}=\frac{e^{4}}{4 q^{4}}\left(1+\cos ^{2} \theta\right)
$$

* Nothing more than the QM properties of a SPIN-1 particle decaying to two SPIN $-\frac{1}{2}$ particles

Electron/Positron beams along z-axis $\left(q^{2}=4 E^{2}=s\right)$
Using the spin-averaged matrix element

$$
\begin{aligned}
& |M|^{2}=\frac{e^{4}}{4 q^{4}}\left(1+\cos ^{2} \theta\right) \\
& |M|^{2}=\frac{(4 \pi \alpha)^{2}}{4 s^{2}}\left(1+\cos ^{2} \theta\right) \\
& \frac{d \sigma}{d \Omega}=2 \pi|M|^{2} \frac{E^{2}}{(2 \pi)^{3}} \\
& =2 \pi \frac{(4 \pi \alpha)^{2}}{4 s^{2}}\left(1+\cos ^{2} \theta\right) \frac{s}{4} \frac{1}{(2 \pi)^{3}} \\
& =\frac{\alpha^{2} Q_{f}^{2}}{4 s}\left(1+\cos ^{2} \theta\right) \\
& \frac{d \sigma}{d|\cos \theta|} \text { for } \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \text {. } \\
& \text { The angle } \theta \text { is determined from } \\
& \text { the measured directions of the } \\
& \text { jets. } \quad|\cos \theta| \text { is plotted since it } \\
& \text { is not possible to uniquely identify } \\
& \text { which jet corresponds to the quark } \\
& \text { and which corresponds to the anti- } \\
& \text { quark. The curve shows the ex- } \\
& \text { pected }\left(1+\cos ^{2} \theta\right) \text { distribution. } \\
& \text { QUARKS are SPIN- } \frac{1}{2}
\end{aligned}
$$

(yet again)

Total cross section for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{f} \overline{\mathrm{f}}$

$$
\begin{aligned}
\sigma & =\int \frac{d \sigma}{d \Omega} d \Omega \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\alpha^{2} Q_{f}^{2}}{4 s}\left(1+\cos ^{2} \theta\right) \sin \theta d \theta d \phi \\
& =\frac{\pi \alpha^{2} Q_{f}^{2}}{2 s} \int_{-1}^{+1}\left(1+y^{2}\right) d y \quad(y=\cos \theta) \\
& =\frac{4 \pi \alpha^{2} Q_{f}^{2}}{3 s} \\
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)=\frac{4 \pi \alpha^{2}}{3 s}
\end{aligned}
$$

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)$ for $\mathrm{e}^{+} \mathrm{e}^{-}$collider data at centre-of-mass energies $8-36 \mathrm{GeV}$
\star This is the complete lowest order calculation of the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$cross-section (in the limit of massless fermions).

The Dirac Equation

NON-EXAMINABLE

WEYL Equations describe massless SPIN $-\frac{1}{2}$ particles. But all known fermions are MASSIVE. Again start from the KG equation.

$$
\begin{aligned}
\frac{\partial^{2} \psi}{\partial t^{2}} & =\left(\nabla^{2}-m^{2}\right) \psi \\
\hat{\mathbf{H}}^{2} \psi & =\left(\hat{\mathbf{p}}^{2}+m^{2}\right) \psi
\end{aligned}
$$

Write down equation LINEAR in space and time derivatives

$$
\hat{\mathbf{H}} \psi=(\vec{\alpha} \cdot \hat{\mathbf{p}}+\beta m) \psi
$$

and require it to be a solution of the KG equation:

$$
\begin{aligned}
\hat{\mathbf{H}} \psi= & \left(\alpha_{x} \cdot \hat{\mathbf{p}}_{x}+\alpha_{y} \cdot \hat{\mathbf{p}}_{y}+\alpha_{z} \cdot \hat{\mathrm{p}}_{z}+\beta \cdot m\right) \psi \\
\hat{\mathbf{H}}^{2} \psi= & \alpha_{i}^{2} \cdot \hat{\mathbf{p}}_{x}{ }^{2}+\ldots \\
& +\left(\alpha_{x} \alpha_{y}+\alpha_{y} \alpha_{x}\right) \hat{\mathbf{p}}_{x} \hat{\mathbf{p}}_{y}+\ldots \\
& +\left(\alpha_{x} \beta+\beta \alpha_{x}\right) \hat{\mathbf{p}}_{x} m+\ldots \\
& +\beta^{2} m^{2}
\end{aligned}
$$

For this to satisfy Klein-Gordon equation:

$$
\hat{\mathbf{H}}^{2} \psi=\left(\hat{\mathbf{p}}_{x}{ }^{2}+\hat{\mathbf{p}}_{y}{ }^{2}+\hat{\mathbf{p}}_{z}{ }^{2}+m^{2}\right) \psi
$$

require

$$
\begin{aligned}
\alpha_{i}^{2}=\beta^{2} & =1 \quad(i=x, y, z) \\
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i} & =0 \quad(i \neq j) \\
\alpha_{i} \beta+\beta \alpha_{i} & =0
\end{aligned}
$$

Now require 4 anti-commuting matrices.

The Dirac Equation:

$$
\hat{\mathbf{H}} \psi=(\vec{\alpha} \cdot \hat{\mathbf{p}}+\beta m) \psi
$$

Can be written in a slightly different form

$$
\begin{aligned}
& i \frac{\partial \psi}{\partial \mathrm{t}}=(-i \vec{\alpha} \cdot \nabla+\beta m) \psi \\
& i \beta \frac{\partial \psi}{\partial \mathrm{t}}=(-i \beta \vec{\alpha} \cdot \nabla+m) \psi \\
&\left(i \beta \frac{\partial}{\partial \mathrm{t}}+i \beta \vec{\alpha} \cdot \nabla-\beta^{2} m\right) \psi=0 \\
&\left(i \gamma^{0} \frac{\partial}{\partial \mathrm{t}}+i \gamma^{1} \frac{\partial}{\partial \mathrm{x}}+i \gamma^{2} \frac{\partial}{\partial \mathrm{y}}+i \gamma^{3} \frac{\partial}{\partial \mathrm{z}}-\beta^{2} m\right) \psi=0 \\
& \text { with } \quad \gamma^{\mu}=(\beta, \beta \vec{\alpha})
\end{aligned}
$$

Giving

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

with

$$
\begin{aligned}
\left(\gamma^{0}\right)^{2} & =1 \\
\left(\gamma^{1}\right)^{2}=\left(\gamma^{2}\right)^{2}=\left(\gamma^{3}\right)^{2} & =-1 \\
\left(\gamma^{i} \gamma^{j}-\gamma^{j} \gamma^{i}\right) & =0 \quad(i \neq j)
\end{aligned}
$$

Identify the γ^{μ} as matrices which must satisfy the anti-commutation relations above. The Pauli spin matrices provide only 3 anti-commuting matrices and the lowest dimension matrices satisfying these requirements are 4×4. The γ-matrices are closely related to the 2×2 Pauli spin matrices.

$$
\begin{aligned}
& \gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \sigma_{x} \\
-\sigma_{x} & 0
\end{array}\right) \\
& \gamma^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \sigma_{y} \\
-\sigma_{y} & 0
\end{array}\right) \\
& \gamma^{3}=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \sigma_{z} \\
-\sigma_{z} & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { also define } \\
& \gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Solutions to the Dirac Equation are written as four-component Dirac SPINORs

$$
\psi=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)
$$

NOTE: this is not the only possible representation of the γ matrices - just the most commonly used

Rest Frame Solutions of the Dirac Equation

Dirac Equation:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\left(i \gamma^{0} \frac{\partial}{\partial \mathrm{t}}+i \gamma^{1} \frac{\partial}{\partial \mathrm{x}}+i \gamma^{2} \frac{\partial}{\partial \mathrm{y}}+i \gamma^{3} \frac{\partial}{\partial \mathrm{z}}-m\right) \psi=0
$$

Consider a particle at REST: $\mathrm{p}_{x}=i \frac{\partial}{\partial \mathrm{x}} \psi=0$, etc.
Dirac Equation becomes:

$$
\begin{gathered}
\left(i \gamma^{0} \frac{\partial}{\partial t}-m\right) \psi=0 \\
i\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
\partial \psi_{1} / \partial t \\
\partial \psi_{2} / \partial t \\
\partial \psi_{3} / \partial t \\
\partial \psi_{4} / \partial t
\end{array}\right)=m\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) \\
i \frac{\partial \psi_{1}}{\partial t}=m \psi_{1}, \quad i \frac{\partial \psi_{2}}{\partial t}=m \psi_{2}
\end{gathered}
$$

$$
u_{1}(t)=\left(\begin{array}{l}
\mathbf{1} \\
0 \\
0 \\
\mathbf{0}
\end{array}\right) e^{-i m t}, \quad u_{2}(t)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) e^{-i m t}
$$

i.e. positive energy spin-up and spin-down PARTICLES

The two other equations

$$
i \frac{\partial \psi_{3}}{\partial t}=-m \psi_{3}, \quad i \frac{\partial \psi_{4}}{\partial t}=-m \psi_{4}
$$

give two orthogonal $\underline{\boldsymbol{E}=-\boldsymbol{m}}$ solutions:

$$
u_{3}(t)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
\mathbf{0}
\end{array}\right) e^{+i m t}, \quad u_{4}(t)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
\mathbf{1}
\end{array}\right) e^{+i m t}
$$

i.e. - ve energy spin-up and spin-down ANTI-PARTICLES

The DIRAC equation

gives PARTICLE/ANTI-PARTICLE solutions

\star requires the particles/anti-particles to have an additional degree of freedom (SPIN) !

* in the massless limit, the DIRAC equation reduces to the two uncoupled WEYL equations
* In general the Dirac Equation gives FOUR simultaneous equations for the components of the SPINOR.
e.g. more general solutions
$u_{1}=N\left(\begin{array}{c}1 \\ \mathbf{0} \\ \frac{\mathbf{p}_{z}}{(E+m)} \\ \frac{\left(\mathbf{p}_{x}+i \mathbf{p}_{y}\right)}{(E+m)}\end{array}\right), \quad u_{2}=N\left(\begin{array}{c}0 \\ 1 \\ \frac{\left(\mathbf{p}_{x}-i \mathbf{p}_{y}\right)}{(E+m)} \\ \frac{-\mathbf{p}_{z}}{(E+m)}\end{array}\right)$
For $\left(u_{1}, u_{2}\right) \quad E=\sqrt{p^{2}+m^{2}}$
$u_{3}=N\left(\begin{array}{c}\frac{\mathbf{p}_{z}}{(E-m)} \\ \frac{\left(\mathbf{p}_{x}+i \mathbf{p}_{y}\right)}{(E-m)} \\ 1\end{array}\right), \quad u_{4}=N\left(\begin{array}{c}\frac{\left(\mathbf{p}_{x}-i \mathbf{p}_{y}\right)}{(E-m)} \\ -\frac{\mathbf{p}_{z}}{(E-m)} \\ 0 \\ 1\end{array}\right)$
For $\left(u_{3}, u_{4}\right) \quad E=-\sqrt{p^{2}+m^{2}}$
The DIRAC equation lives in the realm of PART III Particle Physics.

Lorentz Structure of Interactions

NON-EXAMINABLE

Matrix element M factorises into 3 terms :

$$
\begin{array}{rlrl}
-i M & =\left\langle\bar{u}_{e}\right| i e \gamma^{\mu}\left|u_{e}\right\rangle & & \text { Electron Current } \\
& \times \frac{-i g^{\mu \nu}}{q^{2}} & & \text { Photon Propagator } \\
& \times\left\langle\bar{u}_{p}\right| i e \gamma^{\nu}\left|u_{p}\right\rangle & \text { Proton Current }
\end{array}
$$

* Fermions are 4-component SPINORS.
$\star \quad \therefore$ interaction enters as 4×4 matrices.
\star Lorentz invariance allows only five possible forms for the interaction: SCALAR $\bar{u} u$, PSEUDO-SCALAR $\overline{\boldsymbol{u}} \gamma^{\mathbf{5}} \boldsymbol{u}$, VECTOR $\overline{\boldsymbol{u}} \gamma^{\boldsymbol{\mu}} \boldsymbol{u}$, AXIAL-VECTOR $\overline{\boldsymbol{u}} \gamma^{\boldsymbol{\mu}} \gamma^{5} \boldsymbol{u}$, TENSOR $\overline{\boldsymbol{u}} \boldsymbol{\sigma}^{\boldsymbol{\mu}} \boldsymbol{u}$
* Electro-magnetic and Strong forces are VECTOR interactions - which determines the HELICITY structure.
Treats helicity states symmetrically \Rightarrow PARITY CONSERVATION
* The WEAK interaction has a different form: (V-A) i.e. $\gamma^{\mu}\left(1-\gamma^{5}\right)$. Projects out a single helicity combination : \Rightarrow PARITY VIOLATION

The WEAK interaction is the subject of next lecture

