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Course Synopsis

Handout 1: Introduction, Decay Rates and Cross Sections
Handout 2: The Dirac Equation and Spin

Handout 3: Interaction by Particle Exchange

Handout 4: Electron — Positron Annihilation

Handout 5: Electron — Proton Scattering

Handout 6: Deep Inelastic Scattering

Handout 7: Symmetries and the Quark Model

Handout 8: QCD and Colour

Handout 9: V-A and the Weak Interaction

Handout 10: Leptonic Weak Interactions

Handout 11: Neutrinos and Neutrino Oscillations

Handout 12: The CKM Matrix and CP Violation

Handout 13: Electroweak Unification and the W and Z Bosons
Handout 14: Tests of the Standard Model

Handout 15: The Higgs Boson and Beyond

* Will concentrate on the modern view of particle physics with the emphasis
on how theoretical concepts relate to recent experimental measurements

* Aim: by the end of the course you should have a good understanding of
both aspects of particle physics
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Preliminaries

Web-page: www.hep.phy.cam.ac.uk/~thomson/partlliparticles/
e All course material, old exam questions, corrections, interesting links etc.
* Detailed answers will posted after the supervisions (password protected)

Format of Lectures/Handouts:

* | will derive almost all results from first principles (only a few exceptions).

* In places will include some additional theoretical background in non-
examinable appendices at the end of that particular handout.

* Please let me know of any typos: thomson@hep.phy.cam.ac.uk

Books:
* The handouts are fairly complete, however there a number of decent books:

* “Particle Physics”, Martin and Shaw (Wiley): fairly basic but good.

* “Introductory High Energy Physics”, Perkins (Cambridge): slightly below
level of the course but well written.

* “Introduction to Elementary Physics”, Griffiths (Wiley): about right level
but doesn’t cover the more recent material.

* “Quarks and Leptons”, Halzen & Martin (Wiley): good graduate level
textbook (slightly above level of this course).

Before we start in earnest, a few words on units/notation and a very brief
“Part Il refresher”...
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Preliminaries: Natural Units

* S.I. UNITS: kg m s are a natural choice for “everyday” objects
e.g. M(Prescott) ~ 250 kg

* not very natural in particle physics
* instead use Natural Units based on the language of particle physics

* From Quantum Mechanics - the unit of action

* From relativity - the speed of light: C
* From Particle Physics - unit of energy: GeV (1 GeV ~ proton rest mass energy)

* Units become (i.e. with the correct dimensions):

Energy GeV Time (GeV /h)~!
Momentum GeV/c Length  (GeV/ hc)_;
Mass GeV/c? Area (GeV/hc)™

* Simplify algebra by setting: | /; — ¢ — |
*Now all quantities expressed in powers of GeV

Ener Time GeV ™!

ay GeV 1 To convert back to S.I. units,
Momentum GeV Length GeV need to restore missing factors
Mass GeV Area GeV 2 of /i and ¢
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Preliminaries: Heaviside-Lorentz Units

2
e
* Electron charge defined by Force equation: [ — —
4meyr?
- In Heaviside-Lorentz units set |€) = 1
62

and NOW: electric charge 2l L 1
b= 47r? has dimensions [FL ]2 - [EL] 2= [hc] 2

* Since C=(8(),u()) %21 ) | [y =1

* Unless otherwise stated, Natural Units are used throughout these
handouts, E? = p2 —|—m2 , D=k, etc.
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Review of The Standard Model

Particle Physics is the study of:

* MATTER: the fundamental constituents of the universe
- the elementary particles

* FORCE: the fundamental forces of nature, i.e. the interactions
between the elementary particles

Try to categorise the PARTICLES and FORCES in as simple and
fundamental manner possible

* Current understanding embodied in the STANDARD MODEL.:
* Forces between particles due to exchange of particles
» Consistent with all current experimental data !
* But it is just a “model” with many unpredicted parameters,
e.g. particle masses.
* As such it is not the ultimate theory (if such a thing exists), there
are many mysteries.
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Matter in the Standard Model

* In the Standard Model the fundamental “matter” is described by point-like
spin-1/2 fermions

LEPTONS QUARKS
q | miGeV q | miGeV The masses quoted for the
First e |[—1/0.0005[d|-1/3| 03 | Muees e tho effective
Generation v, | 0 ~0 ul+2i3] 03 ﬁaasiii rf:()jr sqt:z:ks confined
Second u|-1| 0106 |s |-1/3| 0.5
Generation v, | 0 =0 cl|+2/3| 1.5
Third v |-1| 177 |b|-13| 4.5
Generation vy | O =0 t | +2/3| 175

* In the SM there are three generations — the particles in each generation
are copies of each other differing only in mass. (not understood why three).
* The neutrinos are much lighter than all other particles (e.g. v, has m<3 eV)
— we now know that neutrinos have non-zero mass (don’t understand why
so small)
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Forces in the Standard Model

* Forces mediated by the exchange of spin-1 Gauge Bosons

Force Boson(s) | JP | m/GeV g
EM (QED) | Photon y | 1- 0
Weak W/ Z 1- | 80/91
Strong (QCD) | 8 Gluons g | 1~ 0
Gravity (?) | Graviton? | 2* 0 8

- Fundamental interaction strength is given by charge g.
* Related to the dimensionless coupling “constant” X

(both g and & are dimensionless,
* In Natural Units g=v4nuo but g contains a “hidden” fc )

* Convenient to express couplings in terms of & which, being
genuinely dimensionless does not depend on the system of
units (this is not true for the numerical value for ¢)
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Standard Model Vertices

* Interaction of gauge bosons with fermions described by SM vertices
* Properties of the gauge bosons and nature of the interaction between
the bosons and fermions determine the properties of the interaction

STRONG EM WEAK CC | WEAK NC
1
q 8s q LL* e ut d EW u | q 8z q
1
1
Only quarks All charged All fermions : All fermions
Never changes fermions Always changes | Never changes
flavour Never changes flavour ! flavour
flavour
Ot ~ 1 o~ 1/137 Oty jz ~ 1/40
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Feynman Diagrams

* Particle interactions described in terms of Feynman diagrams

e.d. scattering e.g. annihilation
e e e+ u"‘
Y

9 q

* IMPORTANT POINTS TO REMEMBER:
*“time” runs from left - right, only in sense that: %

¢+ LHS of diagram is initial state INITIAL FINAL
* RHS of diagram is final state + +
+ Middle is “how it happened” e v H

* anti-particle arrows in -ve “time” direction

* Energy, momentum, angular momentum, etc. _
conserved at all interaction vertices e H

* All intermediate particles are “virtual” “time” ”

i.e. E2 # |p|? +m? (handout 3)
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Special Relativity and 4-Vector Notation

*Will use 4-vector notation withpO as the time-like component, e.g.

pu = {Eaﬁ} = {E,px,py,pz} (contravariant)
pu =8uvp" ={E,—p} ={E,—px,—py,—D:} (covariant)
with 1 0 0 O
_ouv_(0—-1 0 0
SBuv=8" =10 0-1 0
0O 0 0 -1

*In particle physics, usually deal with relativistic particles. Require all
calculations to be Lorentz Invariant. L.I. quantities formed from 4-vector

scalar products, e.g. 5

P“Pu =E? — P2 = m Invariant mass
xtpy =Et—pT7r Phase
* A few words on NOTATION
Four vectors written as either: p" or p
Four vector scalar product: p“qu or p.q
Three vectors written as: P

Quantities evaluated in the centre of mass frame: p*, p* etc.

Prof. M.A. Thomson Michaelmas 2010 12




Mandelstam s, t and u

* In particle scattering/annihilation there are three particularly useful 3
Lorentz Invariant quantities: s, tand u 1 > < 2
* Consider the scattering process | +2 — 34+4 /
4

* (Simple) Feynman diagrams can be categorised according to the four-momentum
of the exchanged particle

_ e PDi
e P1 P3 e-
>m/\N< K
P2 P4
s-channel t-channel u-channel

*Can define three kinematic variables: s,t and u from the following four vector
scalar products (four-momentum of exchanged particle)

=(p1+p2)? t=(p1—p3)? u=(p1—ps)?
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Example: Mandelstam s, t and u

s=(p1+p2)? t=(p1—p3)% u=(p1—ps)?

Note: S+i+u= m% =+ m% + m% + mﬁ (Question 1)
* e.g. Centre-of-mass energy, S
e' p3 M
Y
e p2 pa N

2 2 = = \2
s=(p1+p2)°=(E1+E)" = (P1+P2)
*This is a scalar product of two four-vectors === [|orentz Invariant

* Since this is a L.l. quantity, can evaluate in any frame. Choose the
most convenient, i.e. the centre-of-mass frame:

PT = (Eikvﬁ*) P2 = (Eiv_ﬁ*)

*Hence /S is the total energy of collision in the centre-of-mass frame
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From Feynman diagrams to Physics

Particle Physics = Precision Physics
* Particle physics is about building fundamental theories and testing their
predictions against precise experimental data
*Dealing with fundamental particles and can make very precise theoretical
predictions - not complicated by dealing with many-body systems

*Many beautiful experimental measurements
== precise theoretical predictions challenged by precise measurements

*For all its flaws, the Standard Model describes all experimental data !
This is a (the?) remarkable achievement of late 20th century physics.

Requires understanding of theory and experimental data

* Part Il : Feynman diagrams mainly used to describe how particles interact

* Part Ill: ¢ will use Feynman diagrams and associated Feynman rules to
perform calculations for many processes

+ hopefully gain a fairly deep understanding of the Standard Model
and how it explains all current data

Before we can start, need calculations for:

* Interaction cross sections;
* Particle decay rates;
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Cross Sections and Decay Rates

* In particle physics we are mainly concerned
with particle interactions and decays, i.e.
transitions between states

= these are the experimental observables of particle physics
 Calculate transition rates from Fermi’s Golden Rule

i =2x|Ts|*p(Ey)

Ffi is number of transitions per unit time from initial state
i) to final state (f| - not Lorentz Invariant !

Tfl- is Transition Matrix Element

(fIH|j){j|H]|i) H is the i
L perturbing
Tfl |H‘ +JZ’7£1 E; — E R Hamiltonian

p(Ey) is density of final states
* Rates depend on MATRIX ELEMENT and DENSITY OF STATES
- _/

_J/ —
" Y
the ME contains the fundamental particle physics just kinematics
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The first five lectures

* Aiming towards a proper calculation of decay and scattering processes
Will concentrate on: e~ -
+ + + + €
° eTe~ — u u_ e ,Y l’l
° e—q — e_q
(e-q—e—q to probe e- -
proton structure) H q q

A Need relativistic calculations of particle decay rates and cross sections:
WS
flux

A Need relativistic treatment of spin-half particles:

Dirac Equation
A Need relativistic calculation of interaction Matrix Element:

Interaction by particle exchange and Feynman rules
+ and a few mathematical tricks along, e.g. the Dirac Delta Function

O =

x (phase space)

Prof. M.A. Thomson Michaelmas 2010
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Particle Decay Rates

* Consider the two-body decay . 1
i— 142 i /ﬁ
N Want to calculate the decay rate in first order ......................... ‘. ..............................
perturbation theory using plane-wave descriptions /
of the particles (Born approximation): 2
P ] _’-_’_Et 7 — - =
' —Nel(l'” ) (k7=p.F as h=1)
— Ne iP*

where N is the normalisation and p.x = p'x

For decay rate calculation need to know:

* Wave-function normalisation
* Transition matrix element from perturbation theory
* Expression for the density of states

All in a Lorentz
Invariant form

* First consider wave-function normalisation

* Previously (e.g. part ll) have used a non-relativistic formulation
* Non-relativistic: normalised to one particle in a cube of side g

[yy*dV =N?a’=1 = N*=1/d°

Prof. M.A. Thomson Michaelmas 2010
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Non-relativistic Phase Space (revision)

* Apply boundary conditions (p = /ik ): =
* Wave-function vanishing at box boundaries
== quantised particle momenta: a/\/\/
_ 27ny . _ 27[”)’ . __ 27nng
Px= =g > Py= (> Pz= a
* Volume of single state in momentum space: Doy a
(2_7:)3 _ ()’ 0
a -V
* Normalising to one particle/unit volume gives
number of states in element: d°p = dp.dp,dp, 2T
q d313><1 d*p ’ 4777 Px
n — _— =
2z)° "V (2m)3
% plZ’
* Therefore density of states in Golden rule: z
£ — dn| | dn d|p| with
P( f) T = - _ ﬁE

* Integrating over an elemental shell in s \

momentum-space gives (E ) B 47Ip % ﬁ

(&°p = 4np*dp) P = am)3
Prof. M.A. Thomson Michaelmas 2010 19

Dirac 0 Function

* In the relativistic formulation of decay rates and cross sections we will make
use of the Dirac & function: “infinitely narrow spike of unit area”

5(x—a) o / §(x—a)dx =1

%

| st = @

a X —c0

* Any function with the above properties can represent 5(x)

: 1 _ (ﬁ)
e.g. 6()6) = lim e \20° (an infinitesimally narrow Gaussian)
0—=0+/27T0

* In relativistic quantum mechanics delta functions prove extremely useful
for integrals over phase space, e.g. inthedecay ¢ — 1 4+ 2

f 6(Ea —E; —EQ)dE and f 63(ﬁa — D1 —ﬁg)d3ﬁ

express energy and momentum conservation
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* We will soon need an expression for the delta function of a function 5(f(x))
e Start from the definition of a delta function

2 1 ify; <0<
[Fotm={ o Bt
1

0 otherwise £ 4
* Now express in terms of ¥y = f(x) where f(xo) =0
and then change variables

df I ifx; <xp<x >
./x] o(flx >)dx { 0 otherwise o~

A
* From properties of the delta function (i.e. here only o(f(x))
non-zero at x)

_I 1 ifx; <xp<xp

T [ 0 otherwise > x
X0

* Rearranging and expressing the RHS as a delta function

[ 80t = e [ -

1 ‘df / dxlxo X1
s
= | of) = . o(x—xo) (1)
Prof. M.A. Thomson Michaelmas 2010 21

The Golden Rule revisited

Ly =27|Ty°p(Ey)

* Rewrite the expression for density of states using a delta-function

dn .
p(Er) = aE |, = d—E5(E E;)dE since F; = F;

Note : integrating over all flnal state energies but energy conservation now
taken into account explicitly by delta function

- Hence the golden rule becomes: I'j; = 277:/ |Tf,-\25(E,- —E)dn

the integral is over all “allowed” final states of any energy

 For dn in a two-body decay, only need to consider
one particle : mom. conservation fixes the other

r —Zn/\T 25— By — ) !
fi — fi i 1 2 (27‘:)3 )

* However, can include momentum conservation explicitly by integrating over
the momenta of both particles and using another d-fn

3> 43 7
.. — (74 /I’r 2S(m. . _ = d p1 d’p
L fi = \«t) j | L fi| O\Lg Ll Lszu \[Jz P1— PZ}(ZTL’) (271_)
Energy cons. Mom. cons.

Den5|ty of states
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Lorentz Invariant Phase Space

* In non-relativistic QM normalise to one particle/unit volume: f vrydV =1

* When considering relativistic effects, volume contracts by Y — E/m
—

Ay S
al MavAl

a a
a afy
* Particle density therefore increases by ¥ = E /m

* Conclude that a relativistic invariant wave-function normalisation
needs to be proportional to E particles per unit volume

* Usual convention: | Normalise to 2E particles/unit volume | [ y*y'dV = 2E

* Previouslyused /' normalised to 1 particle per unit volume [y*ydV =1

 Hence 1//’ = (2E)1/21// is normalised to 2F per unit volume

* Define Lorentz Invariant Matrix Element, Mfl- , in terms of the wave-functions
normalised to 2F particles per unit volume

My =yl .y |H|..w _ ) = (2E1.2E,.2F5...2E,) /2Ty,
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* For the two body decay Mﬁ — <l//i Wé ‘ICI,“I’D
I —1+2

= (2E;.2E) 2E>)'*Ty;
f

* Now expressing T; in terms of My; gives

= (2E,-.2E1.2E2)1/2(l//1llfz\ﬁ/\llfi>

. — (27’[)4 d3ﬁ1 d3ﬁ2
fi =

[ M8 (E: ~ By — E2)8 (5~ 1 — o
2E;

) (271')32E1 (271')321*:2

Note:

° Mfi uses relativistically normalised wave-functions. It is Lorentz Invariant

d3ﬁ is the Lorentz Invariant Phase Space for each final state particle

o —— L

(27)32E  the factor of 2FE arises from the wave-function normalisation

(prove this in Question 2)

© This form of Ff,' is simply a rearrangement of the original equation
but the integral is now frame independent (i.e. L.1.)

° Ffi is inversely proportional to E;, the energy of the decaying particle. This is

exactly what one would expect from time dilation (E; = ym).
© Energy and momentum conservation in the delta functions

Prof. M.A. Thomson Michaelmas 2010
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Decay Rate Calculations

(2m)* / 2 N W
Tyi= M|*8(Ei—E, —E2)83(Pi— p1 —

* Because the integral is Lorentz invariant (i.e. frame independent) it can be
evaluated in any frame we choose. The C.o0.M. frame is most convenient

*Inthe C.oM.frame E; =m; and p;=0 =

™ 1 [|l/f I2

/. 3
1L f; — VI £ Fii; —D
Ji 871'2Eij il SR =

\S
L£)o

]l
+
A l
=

(
\

- Integrating over P2 using the 3-function:

| & pi
S Tji= goag | MaPolm—E —E2) -0 2/
now E3 = (m3+|p1|*) since the 8-function imposes P, = —
g 7= R sin0aBde — pipan T

dpldQ
2 / /
L'yi= 307 2E /‘Mfli 5 mi; — m1+P1 m2—|— ) E E,
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* Which can be written ~ 1 f| 12 (o NS E o VN A AO (2)

i tJjr— I‘ jll S\P1)U\J\F1))upiuasa

in the form 32E2Ei j

where g(p1) = p}/(E1E>) = p}(m} + p3)~V /2 (m3 + p2)~1/2

k
_ 2 2\1/2 1/2

and  f(p )—m,-—(ml—l—pl)/ (m2+p1)/ . |

Note: - 5(f(p1)) imposes energy conservation. ﬁ/é .........

e f(pl) = () determines the C.0.M momenta of /
p*

the two decay products
ie. f(p1)=0 for p1 =p°
* Eq. (2) can be integrated using the property of ¢ - function derived earlier (eq. (1))

g(p”
/g p1 dpl ur/q /g Pl (pl )dpl | 1 (/,1) |
|ay/a |p J LS/ OGP p

where P is the value for which f(p*) =0

« All that remains is to evaluate df/dp
daf P P o op . E+E
dpr — M +p)2 T (mE+p) 2T E Er E\E)
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- E\Ey i
iving: I'y = Myil® ] a2
giving fi 327r2E,-/| sl Pi1(E1+E2) E\Er |y, s
_ 1 [lln"ﬁ,fllz L‘ dna
32m2E; J Ey+E> ‘P1:P*

* But from f(py)

[ = M 2dQ
f 3271:2Eml/’ i

In the particle’s rest frame F; — m,'
1

e —=I=
T

Nan
327:2 / Myl dQ

VALID FOR ALL TWO-BODY DECAYS'!

—0,i.e. energy conservation: E{ + FE>» = m;

3)

* p* can be obtained from f(p;) =0
(m% T p*2) 1/2 T (m% +p*2>1/2 =mj (Question 3)
) 1
‘ pr= 2, /[(ﬂfilz — (:’:’11 —'rmz)z] [:nl-z — (n"l "12)2] (now try Questions 4 & 5)
1
Prof. M.A. Thomson Michaelmas 2010
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Cross section definition

no of interactions per unit time/per target
incident flux

Flux = number of
incident particles/
unit area/unit time

* The “cross section”, o, can be thought of as the effective cross-
sectional area of the target particles for the interaction to occur.

* In general this has nothing to do with the physical size of the
target although there are exceptions, e.g. neutron absorption

Differential Cross section

o ——

do _ no of particles per sec/per target into dQQ

here @ is the projective area of nucleus

or generally

do
dQ incident flux q4.
€ dQ =d(cosH)d¢
- do
© > ./ | with |0 = @dQ
integrate over all

other particles

p \f’}

Prof. M.A. Thomson Michaelmas 2010
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example

* Consider a single particle of type a with velocity, U, traversing a region of area

A containing 71;, particles of type b per unit volume (Va + Vb)&
In time ot a particle of type a traverses °
region containing 71 (v, + vp)ASt A .
particles of type b o
° * Interaction probability obtained from effective
A ® cross-sectional area occupied by the
®s ny(va +vy)Adt particles of type b
ny(vy +vp)Adto
* Interaction Probability = ( - ) = nbvﬁtG [v =V, + vb]

A
— Rate per particle of typea = 1,0 O

« Consider volume V| total reaction rate = (n,v0).(n,V) = (n,V) (nyv)
= Nb¢a6

* As anticipated: | Rate =Flux x Number of targets x cross section

Prof. M.A. Thomson Michaelmas 2010 29

Cross Section Calculations

. . 3
e C N
onsider scattering process o /
|+2—34+4 1 y——— 2
V2
e Start from Fermi’s Golden Rule: 4/
&p3 dpy
'y =(2m) /|sz|26 E)+Ey—E3— E4)8 (p1 + pr — P — Pa) (2n)3 (2n)?
where Tf,- is the transition matrix for a normalisation of 1/unit volume
* Now Rate/Volume = (flux of 1) X (number density of 2) X ¢
= nl(V1—|—V2)Xn2XG
* For 1 target particle per unit volume Rate = (V1 + VZ)G
o = —rf i
(vi+v2)
d&ps &ps

O =

Tri|“0(E1 +Ey — E3 —E +p2—
V1+V2/‘ 7il?8(Ey +Ex — E3x — E4) 8 (Py + pr — P3 — P4)( )3 (2
—_— Y ~

“————>._| the parts are not Lorentz Invariant —
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*To obtain a Lorentz Invariant form use wave-functions normalised to2F particles

per unit volume Y = (2E)1/21V
» Again define L.I. Matrix element M ¢; = (2E, 2E; 2E;3 2E4)1/2Tfi
27 —2 d3 d3
o= (2m) [|Mf, 2S(E) +Ey — E3 — E4)8° (D1+D2—D%—I94)Aﬁ
zblmzm —|—V2) J 2F3 2E4

* The integral is now written in a Lorentz invariant form

» The quantity ' = 2E12F>(v; +Vv|) can be written in terms of a four-vector
scalar product and is therefore also Lorentz Invariant (the Lorentz Inv. Flux)

_ u 2, 211/2 :
F=4 [(pl p2u) mlmz} (see appendix I)
* Consequently cross section is a Lorentz Invariant quantity
Two special cases of Lorentz Invariant Flux:

e Centre-of-Mass Frame * Target (partlcle 2) at rest
F = 4EEx(vi+w) F = 4E\E(vi+2)
= AEE(|P"|/E1+ P/ E2) = 4Eimyvy
= 4|p"(|(E1+E2) = 4Eimy(|p1l|/E1)
- 4|ﬁ*|\/§ = 4m2\[)’1\
Prof. M.A. Thomson Michaelmas 2010 31

2—2 Body Scattering in C.0.M. Frame

* We will now apply above Lorentz Invariant formula for the ﬁ}/' 3
interaction cross section to the most common cases used 5~ —pi
in the course. First consider 2—2 scattering in C.o0.M. frame 1 /' ) <

 Start from 4 o

(2m) 2 / ) &3 & piy
o= M |?8(Ey + Ey — Ey — Ef)8° +p2—Pp3—
2E12E(v1 +v2) Ml O(Es + By = Es = Ea)8%(P1 + P2 = Py = Pa) 2E3 2E4
*Here p1+pP2=0 and E|+E,=+/s
275) -2 d3 d3
= o= / Mi|*8 E3s —E4) 8% (P +
IEANE |Mi|“6(v/s — E3 — E4) 87 (P3 + Pa) >E: 2E;

* The integral is exactly the same integral that appeared in the particle decay
calculation but with 7, replaced by /s

(2m) 2 |77l
4|ﬁ?\\/§ 4y/'s

= M;|“dQ”
64n2s | pr /I d

—

/ Mi[2dQ*
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1|5}l

do
6475 |7

because the angles in dQ*

* Start by expressing d€Q* in terms of Mandelstam ¢
i.e. the square of the four-momentum transfer

_ o u
e P Pg e

TR
qu—p1 — D3

* In the case of elastic scattering |]_97] = \ﬁ}kp’ e e 3
1 2 *
Oelastic 64725 / [Mpi|~dQ ,
p* ph 4

* For calculating the total cross-section (which is Lorentz Invariant) the result on

the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating
the differential cross section in a rest frame other than the C.o.M:

My Paer

d(COS 9*)d¢* refer to the C.0.M frame
* For the last calculation in this section, we need to find a L.l. expression fodo

t=q>=(p1—p3)?

Product of
four-vectors
therefore L.I.
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e Want to express d{2* in terms of Lorentz Invariant

dr

where 1= (p1—p3)* = pi+p3—2p1.p3 =mi+m3—2p1.p;

— Mgi|?
dr 64ns|ﬁ;<y2‘ i

¢+ In C.o.M. frame: x 4 3
pTu (ET,0,0, |ﬁ>f ) /I_)?(v
pF = (E,|53|sin6",0,]5|cos6) 1B N
P = EEi—|5i]|Flcos6’ % 2
(= mi—E{ES 4 20|Filcos” 4
giving dt = 2|p7||p3|d(cos 6%)
] iy qqr _ drdo”
therefore dQ =d(c089 )d¢ =
) 211175l
1 ﬁ; 2 2
hence do M7 |7dQ* = Mp|~do*dr
6472 |j)’j‘|I i 2-647t25\ﬁﬂ2I il d¢
* Finally, integrating over d¢* (assuming no¢* dependence of|Mﬁ-|2 ) gives:
do 1
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Lorentz Invariant differential cross section

* All quantities in the expression fordc /d¢ are Lorentz Invariant and

therefore, it applies to any rest frame. It should be noted that \p, |2
is a constant, fixed by energy/momentum conservation

i = ol m o) fs — (1 —ms )

* As an example of how to use the invariant expression do /d¢
we will consider elastic scattering in the laboratory frame in the limit
where we can neglect the mass of the incoming particle E; > m;

E, ‘ ’:”2 e.g. electron or neutrino scattering
2
. s—m
In this limit |12 = (s =ma)”
4s
do 1 )
M —
dr  167(s—m3)? 3 1M (m1 =0)
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2—2 Body Scattering in Lab. Frame

* The other commonly occurring case is scattering from a fixed target in the
Laboratory Frame (e.g. electron-proton scattering)

* First take the case of elastic scattering at high energy where the mass
of the incoming particles can be neglected: m; =m3 =0, my=my=M

ELpD 2 (E3,|P3)) 3 eq. 1 e e~ 3
, > @

(E4,|Pa]) >\ 4 , X X 4

* Wish to express the cross section in terms of scattering angle of the e-
dQ =2md(cos )
do dG dr 1 dt do Integrating

over d
dQ dr dQ 27 d(cos 6) dt ?
* The rest is some rather tedious algebra.... start from four-momenta

plz(El,0,0,El), pQZ(M,O,O,O), p3:(E3,E3Sin9,0,E3COSG), p4:(E4,ﬁ4)
sohere = (pl —p3)2 = —2p1.p3 = —2E1E3(1 — COS 9)

therefore

But from (E,p) conservation pi1 -+ p2 = p3+ p4
and, therefore, can also express f in terms of particles 2 and 4
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I = (pz—p4)2:2M2—2p2.p4:2M2—2ME4
= 2M?>—-2M(E| +M —E3) = —2M(E| — E3)

Note El is a constant (the energy of the incoming particle) so

dr dE;
- = oM—
d(cos0) d(cos 6)
i : i EM
» Equating the two expressions for f gives E; =
M+E|—E|cos0
2 2
E
o dE; _ E:M _ E%M ﬂ _ By
d(cos ) (M+E; —Ejcos0)? E\M M
1 1 . E? E2 E2 1
C.l_(f:,._./dt ~ d‘G:A_zM‘_%d‘_O-:_:;d‘_O-:_S‘, 7 --’\\’\|Mf,i|2
asl Zmwd(coso) ar T M dt T odr T lomw(s—M=)=" -
using 5= (p1+p2)* =M>+2pi.pr = M?>+2ME; Pa_iti‘(:;:21_r"(a)‘;’s'ess§
1=
giveS (S —M2) — 2ME1 ........................................
2
do _ 1 Es M i |* In limit m; — 0
dQ  64n2 \ ME;
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In this equation, E; is a function of 4:
EtM
Ey =
M+E,—E;cos0
2
- do 1 1 5
giving — M i m; =0
dQ ~ 64n2 (M+E1—Elcose> My (m1 =0)

General form for 2—2 Body Scattering in Lab. Frame

*The calculation of the differential cross section for the case where m; can not be
neglected is longer and contains no more “physics” (see appendix ll). It gives:

do 1 1 P3|
dQ  64n% pym ‘ﬁ3’(E1+m2)—E3|ﬁ1‘COSG

Again there is only one independent variable, 8, which can be seen from
conservation of energy

Er+m =/ |FsP 43+ /|51 2+ |52 — 2151 | Bs| cos 6 +m3

M|

i.e. ‘ﬁ3‘ is a function of @ pP4=PpP1—P3
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Summary

* Used a Lorentz invariant formulation of Fermi’s Golden Rule to

derive decay rates and cross-sections in terms of the Lorentz
Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:

* Particle decay'

7 Where p* is a function of particle masses
r=_~ o / My 2dO 1
3271' pr= o \/[(ml2 — (my+my)?] [m} — (m —my)?]
* Scattering cross section in C.o0.M. frame:
1 P
647s | pr
* Invariant differential cross section (valid in all frames):
do 1 2 1 2 2
= —— | My pi | = —[s— (mi+mp)”|[s — (m —my)~]
dt  64ms|pr|? Myl 4s
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Summary cont.

* Differential cross section in the lab. frame (11,=0)

do 1 [ E; 2|M_|2 do 1
dQ ~ 6472 \ ME; /i dQ ~ 642

* Differential cross section in the lab. frame (1,7 0)

do 1 1 73]
dQ 6472 |ﬁ1\m1 ‘ﬁ3’(E1—|—WLz)—E3|ﬁ1|COSG

with By +m = \/|73[2+m3 + /|51 2+ |53 2 — 2171 || 3] cos 6 +m3

Summary of the summary:

-

<M+E1—

*Have now dealt with kinematics of particle decays and cross sections
* The fundamental particle physics is in the matrix element
* The above equations are the basis for all calculations that follow
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Appendix | : Lorentz Invariant Flux

NON-EXAMINABLE

=Collinear collision: a > < b
Va, Pa Vby Pb
F=2E2E)(vgtvy) = 4EE, | Pely 1Pl
Ea Eb

= 4(|PalEb+ |Pp|Ea)
To show this is Lorentz invariant, first consider
Pa-Pb = Ph Poy = EaEp — Pa-Db = EaEp + | Pal| Db
Giving  F?/16 — (phipou)* = (|PalEs+|PplEa)® — (EaEp+ |PallPb])?
= |Bal*(Ej = Pol*) + E2(IPs|” — Ef)
|Bal®miy — Egmy

= —mzm%
_ 2 211/2
F o= 4[(phpoy)’ —mamy)
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Appendix Il : general 2—2 Body Scattering in lab frame

NON-EXAMINABLE

pl:(EhO)O?'ﬁlD? pz:(Ma()aOaO)a p3:(E3aE3Sin9307E3COSG)7 p4:(E47ﬁ4)

do do dr 1 dt do
dQ ~ drdQ  2x d(cos @) dr

But now the invariant quantity £:

t = (p2—pa)’ =m3+mj—2py.py=m3+mi—2mEs
= m%—}—mﬁ—ng(El—i—mg—Eg.)
dr dEs

) Pt
= d(cos ) mzd(cose)
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Which gives do my dE3; do

dQ 7 d(cos) dt

To determine dEj/d(cos#), first differentiate E3 — |P3|*> = m3

dE; L d|ps]
23— =2 — _
: d(cos6) 73] d(cos6) (All1)
Then equate t = (p1 —p3)2 = (p4 —P2)2 to give

m3 +m3 —2(E1E3 — | p1]|P3|cos 0) = mj +m3 — 2my(Ey +my — E3)
Differentiate wrt. cosé

(E1+m) S92 i feos 0221 — I [
dcos 0 dcos 6
. dE = 117412
Using (1) N 3 _ _ P1]1753] _ (All.2)
d(cos0) |p3|(E1+ma)—E3|p1|cos6
do L) dE3 do _m dE3 1 ‘M .|2
dQ ~ 7 d(cos6) df 7 d(cos6) 64ms|pi2"
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It is easy to show |p}|\/s = my|pi]
do dE3 111%) 2
= = Myl
dQ  d(cos8) 647%m5|pi]|
and using (All.2) obtain
do . 1 1 ’ﬁ3|2 ‘M ‘2
dQ ~ 6472 pimy |ps|(Ey +mp) —Es|pi|cos@
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