The physics potential of the next generation of long-baseline experiments

NuMi Off-axis meeting, Cambridge, UK January 12, 2004

Walter Winter

Technische Universität München,

Institut für Theoretische Physik, T30d.

Based upon ...

- Superbeams versus Neutrino Factories
 by Patrick Huber, Manfred Lindner, WW
 Nucl. Phys. B 645 (2002) 3, hep-ph/0204352
- ✓ Synergies between the first-generation JHF-SK and NuMI superbeam experiments
 by Patrick Huber, Manfred Lindner, WW
 Nucl. Phys. B 654 (2003) 3, hep-ph/0211300
- Reactor Neutrino Experiments Compared to Superbeams by Patrick Huber, Manfred Lindner, Thomas Schwetz, WW Nucl. Phys. B 665 (2003) 487, hep-ph/0303232
- ✓ Understanding CP phase-dependent measurements at neutrino superbeams in terms of bi-rate graphs by WW, hep-ph/0310307

Contents

- Introduction
- ✓ First-generation superbeams: JHF-SK and NUMI
- \checkmark Reactor experiments with two detectors
- \checkmark The sin² 2 θ_{13} -sensitivity limit
- \checkmark Mass hierarchy sensitivity
- ✓ CP measurements at LMA-I !?!
- \checkmark Summary and conclusions

Introduction: Neutrino oscillations

Most interesting for future LBL: θ_{13} , sgn (Δm_{31}^2) , δ_{CP}

Critical for three-flavor effects: Magnitude of θ_{13}

$$\Rightarrow$$
 Find $\theta_{13} > 0$

 \Rightarrow Reactor experiment or superbeam?

Introduction: Future LBL experiments

- ✓ L, E chosen that in oscillation maximum:
 - $\Delta m_{31}^2 L/E = \mathcal{O}(1)$ $\rightarrow L \sim 1 \,\mathrm{km} - 8\,000 \,\mathrm{km}$
 - $\rightarrow E \sim 1 \,\mathrm{MeV} 50 \,\mathrm{GeV}$
- ✓ Artificial neutrino source: Reactor, Accelerator
 → well-known flux, flavor composition, ...
- ✓ Often: near detector for better control of systematics

Examples for future LBL exps

	Reactor exp.	Superbeam	Neutrino Factory
Timescale	$\lesssim 2015$	$\lesssim 2015$	> 2015
Source	Reactor	Accelerator	Accelerator
ν -production	Semi-leptonic	Semi-leptonic	Leptonic
	$n \to p + e^- + \bar{\nu}_e$	$\pi, K \xrightarrow[>99\%]{} \mu + \nu_{\mu}$	$\mu \to e + \bar{\nu}_e + \nu_\mu$
Constraints	Systematics	Systematics	Statistics
Challenges	Knowledge of	Backgrounds	Target power,
	detector		muon cooling
ν -energies	$\sim 4{ m MeV}$	$\sim 1{\rm GeV}$	$\sim 50{\rm GeV}$
Baselines	$1-2\mathrm{km}$	$300-1000\mathrm{km}$	$700-7500\mathrm{km}$

First-generation superbeams

	JHF-SK	NuMI
Beam		
Baseline	$295\mathrm{km}$	a) 712 km
		b) 890 km
		c) 950 km
Off-axis angle	2°	a)b) 0.72° c) 0.97°
Target Power	$0.77\mathrm{MW}$	$0.4\mathrm{MW}$
Detector		
Technology	Water Cherenkov	Low-Z calorimeter
Fiducial mass	$22.5\mathrm{kt}$	$50\mathrm{kt}$
Running period	5 years	5 years

... similar to LOIs (Itow et al, 2001; Ayres et al, 2002)

(Simulation description: Huber, Lindner, Winter, NPB 654, 2002, 3, hep-ph/0211300)

Superbeams: Appearance channels

Interesting information in $P_{app}=P_{\mu e}$ or $P_{\bar{\mu}\bar{e}}$

To second order in $\sin 2\theta_{13}$ and the hierarchy parameter $\alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{21}^2}$:

$$P_{app} \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}[(1-\hat{A})\Delta]}{(1-\hat{A})^{2}}$$

$$\pm \alpha \sin 2\theta_{13} \xi \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$$

$$+ \alpha \sin 2\theta_{13} \xi \cos \delta_{CP} \cos(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$$

$$+ \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(\hat{A}\Delta)}{\hat{A}^{2}},$$

 $\Delta \equiv \frac{\Delta m_{31}^2 L}{4E}, \xi \equiv \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23}, \hat{A} \equiv \pm \frac{2\sqrt{2}G_F n_e E}{\Delta m_{31}^2}.$ $\rightarrow \sin^2 2\theta_{13}, \delta_{CP}, \text{ and mass hierarchy (via } \hat{A}) \text{ measurements!}$ (Cervera et al., 2000; Freund, Huber, Lindner, 2000; Freund, 2001) Walter Winter – NuMi Off-

Problems with degeneracies

Especially for large α and $\sin 2\theta_{13}$ all terms act simultaneously \rightarrow A different parameter value in one term can often be compensated by a different parameter value in another term \rightarrow There exists an "eight-fold" degeneracy (Barger, Marfatia, Whisnant, 2001):

1) $\underline{\operatorname{sgn}}(\Delta m_{31}^2)$ -degeneracy (Minakata, Nunokawa, 2001) Most important for us: solution for opposite sign of Δm_{31}^2 spoils especially mass hierarchy and $\sin^2 2\theta_{13}$ measurements

2) $(\theta_{23}, \frac{\pi}{2} - \theta_{23})$ -degeneracy (Fogli, Lisi, 1996)

Does not appear for current best-fit value $\theta_{23} = \pi/4$

3) (δ, θ_{13}) -degeneracy (Burguet-Castell, Gavela, Gomez-Cadenas, Hernandez, Mena, 2001) Important for neutrino factories because of good energy resolution and statistics

Superbeams: Impact factors

1. Statistical errors

2. Systematics

4. Degeneracies

 $\sin^2 2\theta_{13}$

5. External input

6. True values

Determined by R&D of
experimentControllable by L, E,
combinations,...

No influence by experiment

For a more detailed discussion: see Secs. 3 and 5 of hep-ph/0204352

The new player: Reactor experiments

near det. (
$$\lesssim 500 \,\mathrm{m}$$
) $\stackrel{\overline{\nu}_e}{\Longrightarrow}$ **far det.** (~ 1.7 km)

Key ideas:

 $\bar{\nu}_{\underline{e}}$

- 1) Build detector much *bigger* than CHOOZ
- \rightarrow KamLAND etc.: it is possible to build such a detector
- 2) Use additional *near detector* (without oscillations!)
- \rightarrow Eliminate uncertainties
- \rightarrow Relative precision is easier than absolute precision
- 3) Use *identical* near and far detectors
- \rightarrow Eliminate correlated errors (e.g., shape uncertainty)

(Martemyanov et al, 2002, Minakata et al, 2002, Huber et al, 2003, Schönert et al, 2003, ...)

Reactor setups: Examples

	Reactor-I	Reactor-II
Integrated luminosity	$400 \mathrm{t}\mathrm{GW}\mathrm{y}$	8000 t GW y
Unoscillated events	31493	629867
$\sigma_{ m norm}$	0.8%	0.8%
$\sigma_{ m cal}$	0.5%	0.5%
Baseline	$1.7\mathrm{km}$	$1.7\mathrm{km}$
Detector equivalent	$4 \times CHOOZ$	KamLAND
(Ior 2 y and 10 GW)		

(Luminosities given in detector mass $[t] \times$ thermal reactor power $[GW] \times$ running time [y])

Additional assumptions:

- Background-free measurement (Schönert, Lasserre, Oberauer, hep-ex/0203013)
- Identical near and far detectors
- 100 % detection efficiency (\rightarrow maybe re-scaling)

(Huber, Lindner, Schwetz, Winter, NPB 665, 2003, 487, hep-ph/0303232)

Reactor experiments: Impact factors

True and fit parameter values

True parameter values: Used to compute the reference rate vector

- \rightarrow Replace data for the analysis of future experiments
- \rightarrow Provided by nature within current limits
- Fit parameter values: Used to fit the reference rate vector
- \rightarrow Determine prec. of quantities of interest (fixed ref. rate vector)
- \rightarrow Lead to correlations

Correlations in "theorist's language":

The precision for a set of k parameters is obtained by the projection of the n-dim. fit manifold onto the k-dim. hyperplane $(1 \le k < n)$

<u>Ex.</u>: Projection onto $\sin^2 2\theta_{13}$ -axis (1D) or $\sin^2 2\theta_{13}$ - δ_{CP} -plane (2D)

Difference to "cut" through fit manifold:

No correlations, computed for fixed oscillation parameters

Definition: $\sin^2 2\theta_{13}$ -sensitivity

We define:

The $\sin^2 2\theta_{13}$ -sensitivity limit is the largest fit value of $\sin^2 2\theta_{13}$, which fits the true value $\sin^2 2\theta_{13} = 0$ at the chosen CL.

Advantages:

- ✓ Reference rate vector is computed for sin² 2θ₁₃ = 0
 → No dependence on the true value of δ_{CP}
- ✓ Guaranteed range, in which $\sin^2 2\theta_{13}$ will be found (at CL) → Covers all degeneracies (reference rate vector equal!)
- ✓ Straightforward inclusion of $sgn(\Delta m_{31}^2)$ -degeneracy → Sensitivity limit does not depend on mass hierarchy
- \checkmark Inclusion of correlations by projection onto $\sin^2 2\theta_{13}$ -axis

Sensitivitiy Plots

(Courtesy of Manfred Lindner)

The $\sin^2 2\theta_{13}$ -sensitivity limit

 \rightarrow Superbeam (1st gen.) dominated by correlations and degeneracies

 \rightarrow Reactor experiments dominated by systematics

$\sin^2 2\theta_{13}$ -sens.: Δm^2_{31} -dependence

90% CL, unpublished

Includes correlations and degeneracies!

(Similar figure without NUMIin hep-ph/0303232)

 \rightarrow Reactor-I very robust (broad spectrum) \rightarrow Rel. improvement to **CHOOZ** bound important! (Breaks away for small Δm_{31}^2) \rightarrow NUMI: sharper spectrum; peak position depends on L, E $\rightarrow \operatorname{At} \Delta m_{31}^2 = 2 \cdot 10^{-3} \, \mathrm{eV}^2$ hardly difference among options; NUMI@890km best

$\sin^2 2\theta_{13}$ -sens.: Δm^2_{21} -dependence

→ Reactor experiment hardly affected by Δm_{21}^2 → Superbeams: Correlations become important for large Δm_{21}^2 → Is the timescale the most critical issue for NUMI???

 $\Delta m_{31}^2 = 2 \cdot 10^{-3} \,\mathrm{eV}^2$, 90% CL, unpublished

Includes correlations and degeneracies!

(Similar figure without NUMIin hep-ph/0303232)

What reactor experiments cannot do

- \checkmark No measurement of Δm_{31}^2 independent of $\sin^2 2\theta_{13}$
- \checkmark No measurement of θ_{23}
- \checkmark No matter effects, no mass hierarchy sensitivity
- \checkmark No sensitivity to $\delta_{\rm CP}$
- \checkmark No flavor transitions $\nu_{\alpha} \rightarrow \nu_{\beta}$ observable

\rightarrow What can NUMI off-axis do and the others not?

For example: Mass hierarchy sensitivity

 \rightarrow Put detector to longer baseline $L \gg 712\,{\rm km}$

(Barger, Marfatia, Whisnant, hep-ph/0210428; Huber, Lindner, Winter, hep-ph/0211300) (Minakata, Nunokawa, Parke, hep-ph/0301210)

Mass hierarchy sensitivity reach JHF-SK + NuMI@890km, 50kt:

 $[\]Delta m_{31}^2 = 2.5 \cdot 10^{-3} \,\mathrm{eV}^2,90\%$ CL

(Winter, hep-ph/0310307)

"Conservative reach": This can be done in any case!

For bi-probability graphs, see also Minakata, Nunokawa, Parke, hep-ph/0301210

Mass hierarchy: Luminosity scaling

JHF-SK + NUMI@890km, $\sin^2 2\theta_{13}$ -sensitivity reach:

 $\Delta m_{31}^2 = 2.5 \cdot 10^{-3} \,\mathrm{eV}^2,90\% \,\mathrm{CL}$

(Winter, hep-ph/0310307)

 $\rightarrow 50 \,\mathrm{kt}$ detector very useful!

Mass hierarchy sensitivity: Synergies

\rightarrow 'How many experiments do we need for that?"

- ✓ JHF-SK or NuMI@712km alone: No sensitivity
- ✓ JHF-SK+NuMI:Put NuMI to longerbaseline
- ✓ Strong dependence on Δm_{21}^2 can be resolved by large reactor experiment
- ✓ Three exps optimal!

Conservative reach, 17 kt NUMI detector only!, $\Delta m^2_{31} = 3 \cdot 10^{-3} \text{ eV}^2$, 90% CL

(Huber, Lindner, Winter, hep-ph/0211300; Huber, Lindner, Schwetz, Winter, hep-ph/0303232)

What about CP violation at LMA-I? Example: JHF-SK (ν)+ NUMI@712km, 50kt, $\bar{\nu}$ only:

 $\Delta m_{31}^2 = 2.5 \cdot 10^{-3} \,\mathrm{eV}^2$, 90% CL, dashed=no degeneracy

(Winter, hep-ph/0310307)

- \rightarrow In spite of optimized setup only marginal sensitivity close to $3/2\pi$
- \rightarrow But: $\bar{\nu}$ -running could be replaced by REACTOR-II!

Can we learn sth about $\delta_{\rm CP}$ at all?

"CP coverage" of 360° = no information on $\delta_{\rm CP}$

Examples: CP patterns = CP coverage as fct. of True value of δ_{CP}

 $\sin^2 2\theta_{13} = 0.1, \Delta m_{31}^2 = 2.5 \cdot 10^{-3} \,\text{eV}^2, 90\%$ CL, dashed=no deg. (Winter, hep-ph/0310307)

 \rightarrow Though no CP violation may be possible, certain regions of the "CP circle" could be excluded if one is lucky!

Summary (simplified)

	JHF-SK	NUMI	Reactor exp.	
$\Delta m_{31}^2, \theta_{23}$	Good	Good	Poor	
θ_{13} -sensitivity	Paramdep.	Paramdep.	Robust	
Matter effects	Almost none	712km ≥712km	None	
Mass hierarchy	None	None	None	
Good (NUMI@890km)				
Very good (NuMI@890km), indep. of Δm^2_{21}				
CP violation	Margin	al, close to $\delta_{\rm CP}=3/2^3$	π only	
CP precision	Marginal, b	out for all values of $\delta_{ m CI}$	$2: < 360^{\circ}$	
Flavor trans.	Yes	Yes	No	
Spectral info.	Marginal	Marginal	Good	

Conclusions

- ✓ All experiment types needed: Synergies, Complementarity
- ✓ For $\sin^2 2\theta_{13}$, a reactor experiment would be very competitive
- ✓ NUMI: Long baseline ≫ 712 km interesting to make its physics potential unique
 → Mass hierarchy sensitivity/matter effects
- ✓ In principle: Lower energy/large OA angle possible But: over-proportional loss of events
- ✓ CP-sensitivity as a 'by-product' for large sin ${}^{2}2\theta_{13}$!? → REACTOR-II instead of long $\bar{\nu}$ -running?