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Lent Term 2015 
Prof. Mark Thomson 

Lecture 3 : Fitting and Hypothesis testing  

Statistics 

n = 1 
n = 2 
n = 3 
n = 4 
n = 5 

n = 10 
n = 20 
n = 40 
n = 60 
n = 80 
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   Lecture     1: Back to basics  
                            Introduction, Probability distribution functions, Binomial 
                            distributions, Poisson distribution  
   Lecture     2: The Gaussian Limit 
                            The central limit theorem, Gaussian errors, Error  
                             propagation, Combination of measurements, Multi- 
                             dimensional Gaussian errors, Error Matrix    
   Lecture     3:  Fitting and Hypothesis Testing 
                             The χ2 test, Likelihood functions, Fitting, Binned maximum  
                               likelihood, Unbinned maximum likelihood 
   Lecture     4:  The Dark Arts Part I 
                             Bayesian Inference, Credible Intervals  
   Lecture     5:  The Dark Arts II 
                             The Frequentist approach, Confidence Intervals, 
                             Limits near physical boundaries, Systematic Uncertainties  . 
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Introduction 
!  Given some data (event counts, distributions) and a particular theoretical model  

"  are the data consistent with the model: 
•  hypothesis testing 
•  goodness of fit 

"  in the context of the model, what are our best estimates of its parameters: 
"  fitting 

!  In both cases, need a measure of consistency of data with our model   

!  Start with a discussion of 
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The Chi-Squared Statistic 
!  Suppose we measure a parameter,             , which a theorist says should have  
       the value  
!  Within this simple model, we can write down the prior probability of obtaining 
        the value               given the prediction  

! To express the consistency of the data, ask the  
    question �if the model is correct what is the  
    probability of obtaining result at least far as far  
    from the prediction as the observed value�  

!  This is simply the fraction of the area under the 
      Gaussian with  

!  e.g. if 1.5σ from the prediction:  
!  Only care about degree of consistency, not whether 
     we are on the +ve or –ve side, so equivalently want 
     the probability   

where 

!  For Gaussian distributed variables,         , forms the basis of our consistency test 
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!  The probability distribution for, χ2, can be obtained easily from the ID distribution 

and 

Factor of two from 
+ve and –ve parts  
of Gaussian 
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!  So far, this isn�t particularly useful… 
!  But now extend this to two dimensions (ignoring correlations for the moment,  
      although we now know how to include them)  

The Chi-Squared Statistic in higher dimensions 

!  Lines of equal probability are equivalent to lines of equal  

!  What if I measure  
!  How consistent is this with expected  
        values ? 
!  ANSWER: the probability of obtaining 
      smaller probability then observed  

"  i.e. integrate 2D PDF over region  
      where 
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!  It is worth seeing how this works mathematically… 
"  First transform error ellipse into circular contours 

"  Therefore 
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!  Only interested in �radius� i.e. 
"  so transform   

with 

!  Therefore, probability distribution in chi-squared:  

!  For two Gaussian distributed variables, we now have an expression for the 
      chi-squared probability distribution !     

Problem: 

and 

Show that: 
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n = 1 
n = 2 
n = 3 
n = 4 
n = 5 

n = 10 
n = 20 
n = 40 
n = 60 
n = 80 

!  For any number of variables (degrees of freedom) can now obtain  

!   Already done for you, e.g. tables or more convenient   TMath::Prob(χ2,n)  
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Properties of chi-squared 
!  For n degrees of freedom  

Proof:  or 

!  For n degrees of freedom  
Proof:  
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n = 1 
n = 2 
n = 3 
n = 4 
n = 5 

n = 10 
n = 20 
n = 40 
n = 60 
n = 80 

!  For large n; the distribution tends to a Gaussian  (large ~ 40) 
Useful for quick estimates… 
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Example 
!  Suppose we have an absolute prediction for a distribution, e.g. a differential  
       cross section and we can account perfectly for experimental effects  
       (efficiency, background, bin-bin migration) 
!  Measure number of events in bins of cosθ,       , and compare to prediction  
!  If prediction is correct, expect the observed number of events in a given bin to  
      to follow a  Poisson distribution of mean     
!  If the expectations in all bins are sufficiently large, the Poisson distribution  
      can be approximated as a Gaussian with mean        and variance    
!  In this limit can use chi-squared for consistency with hypothesis  

Expected fluctuations  
around mean  

!  For N bins, have N independent (approximately) Gaussian distributed variables 
!  Overall consistency of data with prediction assessed using   

!  If hypothesis (prediction) is correct expect 
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"  Quick estimates:   

"  But Ν =20, not very large, these estimates only give an indication of the agreement.    
"  Correct numbers (integral of expected χ2 distribution) TMath::Prob(χ2,20)  

Perfectly consistent: 10 % probability 
of getting a χ2 worse than observed  
value by chance 

A bit dodgy: only 1 % probability 
of getting a χ2 worse than observed  
value by chance 
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"  What about a very small value of chi-squared, e.g. 

"  Expected  

"  Observed value is much smaller 

"   

"   
"  Conclude 1/1000000 chance of getting  
      such a small value: highly suspicious… 
"  What could be wrong: 

•  Errors not estimated correctly 
•  … 
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Log-Likelihood 
!  The chi-squared-n distribution is just a re-expression of a Gaussian for N-variables 
!  If the expected numbers of events are low, have to base consistency of data and 
         prediction on Poisson statistics 

"  For the ith bin: 

"  Therefore the joint probability of obtaining  
     exactly the observed        , i.e. the likelihood  

Poisson  
distributed 
variables 

!  The likelihood is often very small. It is the probability of obtaining exactly the 
        observed numbers of events in each bin 

"  Convenient to take the natural logarithm    (hence log-likelihood) 

"  For above distribution  
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"  i.e. for the distribution shown, does                            imply good agreement ?   
!  What constitutes a good value of log-likelihood ?  

!  There is no simple answer to this question 
!  Unlike for the chi-squared distribution, there is no general analytic form 
!  One practical way of assessing the consistency,  
      is to generate many �toy MC� distributions  
      according to expected distributions    

Float_t LogLikelihood = 1.0; 
TRandom2* r = new TRandom2();   
for( Int_t i=1; i<= nbins;  i++){ 
     Float_t expected = hist->GetBinContent(i); 
     Int_t nObs = r->Poisson(expected); 
     Double_t  prob = TMath::PoissonI(nObs,expected); 
     LogLikelihood += log(prob); 
} 

Bad  
Agreement 

Good  
Agreement 

!  Hence have obtain expected lnL distribution for particular problem  
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Relationship between chi-squared and likelihood 
!  For Gaussian distributed variables   

Chi-squared  × ½  is lnL for Gaussian distributed variables  
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Chi-Squared Fitting: Gaussian Errors 
!  Given some data and a prediction which depends on a set of parameters, we want 
       to determine our best estimate for the parameters.   
!  Construct the probability: 

!  Best estimate is the set of parameters that maximises  
Simple Example: 
"  Two measurements of a quantity, x, using different methods  

(assume independent Gaussian errors) 
"  What is our best estimate of the true value of x ?  

"  Maximum probability corresponds to minimum chi-squared 
"  For Gaussian distributed variables: fitting # minimising chi-squared 
"  Here require   
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"  Which is the formula we found previously for averaging two measurements   
"  Note: chi-squared is a quadratic function of the parameter x   

and 

"  Taylor expansion about minimum with   

gives 

therefore 
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Goodness of Fit 
"  Started with two measurements of a quantity, x 

"  Best estimate of the true value of x,  is that which maximises the likelihood, i.e. 
      minimises chi-squared, giving a chi-squared at the minimum of: 

 
"  What is the probability that our data are consistent with a common mean? 
      i.e. how do we interpret this chi-squared minimum  
"  Expanding and substituting for   

with 

"  Here the minimum chi-squared corresponds is distributed as chi-squared for  
    a single Gaussian measurement, i.e. 1 degree of freedom   

  In general, the fitted minimum chi-squared is distributed as chi-squared for 
  (number of measurements – number of fitted parameters) degrees of freedom 
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Example: Straight line fitting 
!  Given a set of points 
     find the best fit straight line and  
     the uncertainties   

!  First define the chi-squared:  

!  Minimise chi-squared with respect to the 2 parameters describing the model  

Where the sums are represented by  

etc. 
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!  For the errors first make Taylor expansion around the minimum chi-squared:  

(since the function is quadratic there are no other terms) 
which gives an elliptical contours  

!  In terms of the inverse error matrix  

with 

!  Hence  

!  Here  

!  Giving  
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!  Suppose we want to calculate the error on y as a function of x based on 
     our fit: 

!  It is worth noting that the correlation coefficient is proportional to            ,  
     hence one could fit after making the transformation                     
     such that  
 
     and the uncertainties on the new intercept and gradient become uncorrelated    
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Binned Maximum Likelihood Fits 
!  So far only considered chi-squared fitting (i.e. assumes Gaussian errors) 
!  In particle physics often dealing with low numbers of events and need to 
        account for the Poisson nature of the data  
!  In general can write down the joint probability 

"  e.g. if we predict a distribution should follow  
     a first order polynomial  

"  and measure events in bins of  
"  define likelihood based on Poisson statistics  

"  best estimates of parameters, defined by maximum likelihood or, equivalently, 
       the minimum of -log-likelihood  
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!  Maximising the likelihood corresponds to solving the set of linear equations 

!  To estimate the errors on the parameters, expand –lnL, about its minimum 

!  Unlike the case of Gaussian errors, the  

"  hence the resulting likelihood surface will not have a quadratic form   
!  For the moment, restrict the discussion to a single variable  

Gaussian Higher Order 
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!  If resulting likelihood distribution is �sufficiently Gaussian� could assign an 
      estimate of the error on our measurement as: 

!  This is OK in the Gaussian limit, but in general it is not very useful 
!  Usually adopt a Gaussian inspired procedure… 
!  For Gaussian distributed variables, have a parabolic chi-squared curve which gives 
     a Gaussian likelihood 

with 

!  �1 sigma errors� defined the points where 
!  Or, EQUIVALENTLY,  where the Relative Likelihood compared to the maximum 
      likelihood decreases by  
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e.g. assume a form  

!  Not unreasonable to use estimate of �1 sigma� uncertainty as the values: 

Similarly for the �2 sigma� uncertainty: 

!  At these points, have probabilities of                and             relative to maximum 
!  BUT:  no guarantee that 68 % of PDF lies within   

Interpretation requires some care – a dark art (see later) 

Example 
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Binned Maximum Likelihood: Goodness of Fit 
!  Safest way is to generate toy MC experiments, perform the fit, and thus obtain  
      the expected lnL distribution  
!  However, there is an invaluable trick 

"   For Poisson errors, we minimised the function 

 
"   Free to add a constant to this – doesn�t affect the result 
"   Here the data are fixed and we vary the expectation 
"   Add the lnL of observing ni given an expectation of ni  Likelihood ratio 
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!  In the limit where the        are �not too small, in region of best fit               is small  

For Poisson distributed  
   variables 

with  

with   

!  Hence                   is distributed as         in the limit of �large� n  
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!  This is a very useful trick. 
!  When fitting a histogram with Poisson errors  

ALWAYS 
"  Perform a maximum likelihood, not a chi-squared fit 
"  Use the likelihood ratio 

NOTE 

"  Best fit parameters determined by 

  
 
"  At the best fit point -2lnλ  tends to a chi-squared distribution for n-m d.o.f.  
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Unbinned Maximum Likelihood Fits 
!  For some applications, binning data results in a loss of precision 

"  e.g. sparse data and a rapidly varying prediction 

!  In other cases there is simply no need to bin data: unbinned maximum likelihood 
NOTE: this is a �shape-only�fit: normalisation doesn�t enter 
!  Suppose we can construct the predicted PDF for the data as a function of 
      the parameter of interest 

"  e.g. make N measurements of decay time,          , and want to estimate lifetime 
•  Write down NORMALISED PDF 

•  We can now write down the likelihood of obtaining our set of data 

•  Obtain lifetime by maximising likelihood (or equivalently lnL) 
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i.e. the expected, but not  
      entirely obvious result 

•  For the error estimate take the  
     second  derivative  

•  Since we now know what we are doing, 
    it is immediately obvious that the 
    error is not symmetric  

•  The likelihood function is 

•  Usual to quote with asymmetric 
     errors, e.g. 
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Another Example 
µ– 

e+ 
e– 

µ+ 

-1 +1

!  Forward-Backward asymmetry at LEP 
•  Expected angular distribution of form 

•  But measured angular distribution depends on efficiency 

-1 +1
•  However             is not known (at least not precisely) 
•  But it is known to be symmetric  
•  Sufficient to construct an unbinned maximum likelihood fit 
•  First write down the PDF in terms of the unknown efficiency 

•  For unbinned maximum likelihood fit PDF must be normalised 
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•  Since            is symmetric normalisation gives 

i.e. independent of A 

•  Hence the normalised PDF is of the form  

•  For the N observed values            the log-likelihood function becomes:   

•  Which can be solved (preferably minimised by MINUIT) despite the fact we 
     don�t know  the precise form of the PDF 

•  For a maximum  
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Extended Maximum Likelihood Fits 
!  Unbinned maximum likelihood uses only shape information 
!  In the extended maximum likelihood fit include normalisation 
!  Suppose you observe      events with        and expect a total of        with PDF 
      which is a function of some parameter you wish to measure   

Poisson Unbinned ML 

!  Just for fun… suppose our PDF is binned with an expectation of             in each bin  

•  if there are         events observed in each bin   
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Binned Poisson 
Likelihood 

Can you see where 
this comes from ? 

Hence our previous expression for �Binned Maximum likelihood�  
is just an Extended  Maximum Likelihood fit with a binned PDF 

For a given data set  
this is a constant 
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Fitting Summary 
!  Have covered main fitting/goodness of fit issues: 

"  definition of chi-squared 
"  chi-squared fitting 
"  definition of likelihood functions and relation to chi-squared 
"  likelihood fitting techniques 

!  Next time we will consider more carefully the interpretation   
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Appendix The Error Function 
!   For a single variable the Chi-Squared Probability   

!  Change variable again                         and integrate over positive values only    

!   Change variable   

Error function 
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!  The probability of obtaining a value of                     by chance is:  

Complement of the 
Error Function 

!  This is nothing more than a different way of expressing a 1D Gaussian distribution 
      (or more correctly its two-sided integral)    


