Prob( x2;ndof)

Statistics

Lent Term 2015
Prof. Mark Thomson

C\ 01 L L T I
@]
© n=10
C —
&~ 0.08 n=20 -
X -
g n=60
© 0.06 =
0.04 H =
0.02 7
0 4 AN Loy
0 20 40 60 80 100 120
x2

Lecture 3 : Fitting and Hypothesis testing

Prof. M.A. Thomson

Lent 2015

67

Lecture

3: Fitting and Hypothesis Testing

The 2 test, Likelihood functions, Fitting, Binned maximum

likelihood, Unbinned maximum likelihood

Prof. M.A. Thomson

Lent 2015

68



Introduction

* Given some data (event counts, distributions) and a particular theoretical model
= are the data consistent with the model:
* hypothesis testing
» goodness of fit
= in the context of the model, what are our best estimates of its parameters:
= fitting
* In both cases, need a measure of consistency of data with our model

* Start with a discussion of )(2
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The Chi-Squared Statistic

* Suppose we measure a parameter, x + ¢, which a theorist says should have
the value u

* Within this simple model, we can write down the prior probability of obtaining
the value x += 0 given the prediction

1 2
P(data; prediction) = exp { — M }

V2ro 20?2
* To express the consistency of the data, ask the Caed DR
question “if the model is correct what is the ?04 3 ]
probability of obtaining result at least far as far B ]
from the prediction as the observed value” T sl ]

* This is simply the fraction of the area under the
Gaussian with |x — | > |xops — U]

* e.g. if 1.50 from the prediction: | 13 9%

* Only care about degree of consistency, not whether
we are on the +ve or —ve side, so equivalently want

the probability | 5
P(}Cz > ngs) where | X" =

. . L. . 2 . .
* For Gaussian distributed variables, X~ , forms the basis of our consistency test
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* The probability distribution for, XZ, can be obtained easily from the ID distribution
dy?>  (x—u)  \x?
P(x*)d(x?) = G(x)dx and =2 =2
(x7)d(x?) = G(x) ] 2 S

P( 2) 2 1 o { XZ } Factor of two from
=X exXpy —— _
R Uy B
1 1 X2
Py = ) ten] K ]

o
2

-

Prob(x; u,6)
o
H
o
(o]

o
w

Prob( x2;1 dof)
o
()]

|

o
[N}

0.1 02f
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The Chi-Squared Statistic in higher dimensions

* So far, this isn’ t particularly useful...
* But now extend this to two dimensions (ignoring correlations for the moment,
although we now know how to include them)

1 (=) 00— m)?
P(x,y):zﬂo_xo_yexp{—il 52 - cFyzy

* Lines of equal probability are equivalent to lines of equal Xz

_ (- )® | =)’
o? o}
""" ox '='1'_ * What if | measure {xo,yo}
Oy T 2 ] * How consistent is this with expected
: ] values ?
* ANSWER: the probability of obtaining
smaller probability then observed
"j.e. integratg 2D P?F over region
B where ¥~ >y
${x0, Y0} obs
.
X=X
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* It is worth seeing how this works mathematically...
* First transform error ellipse into circular contours

(o} = {2y}

X =

oy

P(Xx; Xy)dxxdxy = P(x,y)dxdy

G2 ()’
y

2
Oy

* Therefore 1
P(xe, 2y) = Eem{—i [+ 2] }
T af :_..-"} 502 ] ] al T Z
i ::- ‘.‘:‘ y - i I ‘n. 7
LT I
2F ] .,": -
a ¢ {x0.0) S e Pav
-4 N 4 b e
P R A PRRFRRTIC) I Ll A .
4 2%, 0 2 4 4 2 0 > 4
X-X Xy
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* Only interested in “radius” i.e. x°
= so transform {xx,xy} = {x,cp}
with 00y = X000
P(x,0)6x80 = P(Xx,Xy)0XxSXy
= XP(Xxs 2y)0269
P(x)ox = 27xP(Xx;Xy)0X
P
P(x) = xexp (—7>
* Therefore, probability distribution in chi-squared:
1 2
P(x*sn=2) = =exp (—%) S(x*) =2x6x

2

* For two Gaussian distributed variables, we now have an expression for the
chi-squared probability distribution !

Problem: Show that:

2 1 21 ’
P(xin=3) = —(x")2exp|(—7-

2n 2

%) and

P(x*n) o (x°)

(1-2) ( x?
2 exp 7

)
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* For any number of variables (degrees of freedom) can now obtain

P(X* > Xobs) = / PO m)dy’
obs

* Already done for you, e.g. tables or more convenient TMath::Prob(Xz,n)
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Properties of chi-squared

* For n degrees of freedom (x*) =n
Proof: o JxPP(xBn)d(x?)
(%) = <Z%2> I N T
=] w2 2
n (x,_“,)z _ f%z(lz) 2 e 2 2%(1%
— AN oV - — 2
a i=1< o} > f(xz)%e_%Zxdx
2
i=1 fx"_le_%zdx
5 —
2\
* F;rl;)r;fc.iegrees of freedom Var(x*) =2n o fx”He_%dx
. - x — —XZ
Var(x®) = (°x") - (*)° [xr—le™ T dx
= n<%i4>+”(”_1)_n2 = In+3/ln—1
= 3n4n’—n—n’ = (n+2)n

~ Var(x®) = (x)—(x*)?
: = 4+ 2n—n*=2n
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Var(x?) =2n

Pramy o 01 T T T T T
o e} [
o o i n=10
E C. | n=20 -
%L %G 0.08
5 g n =60
2 © 0.06 .
(2 o -
- /
- /
0.02 / .
/ \
0 0 LA | o 1 Lt ]
0 2 4 6 8 10 0 20 40 60 80 100 120
x> X2
* For large n; the distribution tends to a Gaussian (large ~ 40)
Useful for quick estimates...
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Example

* Suppose we have an absolute prediction for a distribution, e.g. a differential
cross section and we can account perfectly for experimental effects
(efficiency, background, bin-bin migration)

* Measure number of events in bins of cosf, n; , and compare to predictionl;

* If prediction is correct, expect the observed number of events in a given bin to
to follow a Poisson distribution of mean L;

* If the expectations in all bins are sufficiently large, the Poisson distribution
can be approximated as a Gaussian with mean U; and variance [;

* In this limit can use chi-squared for consistency with hypothesis

5 (”i _ 'ul.)z Expected fluctuations
X = —‘/ around mean
Wi

* For N bins, have N independent (approximately) Gaussian distributed variables
* Overall consistency of data with prediction assessed using

=Y

* If hypothesis (prediction) is correct expect

(x%) =n Var(x?) =2n
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o
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Events/0.1
N
3

-
[$2]
o

T

100 F
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» Quick estimates:

~8.2/6.30 =130

1
N
[$)]
o

Events/0.
N
8

-
(8]
o

100

o [2=39

coso

~19.1/6.30 =3.00

» But N =20, not very large, these estimates only give an indication of the agreement.
= Correct numbers (integral of expected y?2 distribution)  TMath::Prob(x2,20)

P(x?>28.2;N =20) =10.4% P(x*>>39.1;N =20)=0.6%

Perfectly consistent: 10 % probability A bit dodgy: only 1 % probability
of getting a > worse than observed of getting a > worse than observed
value by chance value by chance
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= What about a very small value of chi-squared, e.g.

250 T T T

= Expected (¥?2) =20

* Observed value is much smaller

« P(x? >3.3;N =20) =99.999 %

« P(y% < 3.3;N =20) = 0.00001

= Conclude 1/1000000 chance of getting

-—
o
=
(2]
-
c
o
>
L

3 such a small value: highly suspicious...
of x-=3.3 E = What could be wrong:

s . L 1 * Errors not estimated correctly
% 0.5 0 0.5 1 .
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Log-Likelihood

* The chi-squared-n distribution is just a re-expression of a Gaussian for N-variables
* If the expected numbers of events are low, have to base consistency of data and
prediction on Poisson statistics

: ] = For the ith bin: .
d ] W e Hi
I | Pi(nis ) = ———
n;

» Therefore the joint probability of obtaining
exactly the observed {n;}, i.e. the likelihood L

ni —L;
L:HP":HM
I

; n,-!
coso

= Convenient to take the natural logarithm (hence log-likelihood)

i p—Hi -
e Poisson
InL = Zln ('u’—) ™ distributed
i

n; ! variables

Events/0.1

* The likelihood is often very small. It is the probability of obtaining exactly the
observed numbers of events in each bin

= For above distribution [ =2 x 10710 (InL=-22.4)
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* What constitutes a good value of log-likelihood ?

= i.e. for the distribution shown, does InL = —22.4 imply good agreement ?
* There is no simple answer to this question
* Unlike for the chi-squared distribution, there is no general analytic form

* One practical way of a?‘ssessin”g the consistency, $'F‘§:;—;0L,;’gk‘rf§'thg‘#;;ﬁ%;mz(,;
is to generate many “toy MC" distributions ot texpected - hist>GetBinCortent(l;
according to expected distributions i L nObs = £>Poieson(axpacted;

Double_t prob = TMath::Poissonl(nObs,expected);
LogLikelihood += log(prob);

_80.08 'B"('il —~, I T T
= [ ba s [ ]
o [ Agreement EI i 1
006 XJO'B: ]
I= ]
L %’0.6_— 7]
0.041 a | ]
0.4_- T
002k [ ]
I 0.2r 7]
) — AR A 0' 1 /AP RPN P
-50 -40 -30 -20 -10 O 50 40 -30 -20 -10 O

InL InL

* Hence have obtain expected InL distribution for particular problem
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Relationship between chi-squared and likelihood

* For Gaussian distributed variables

2 1 [ (x— w)?
L) = e Tlew] 5 |
H 2 o}
2
X
_InL. = 2~
In 2+k
x> = —2InL+x

Chi-squared x ' is InL for Gaussian distributed variables

Prof. M.A. Thomson Lent 2015

Chi-Squared Fitting: Gaussian Errors

83

* Given some data and a prediction which depends on a set of parameters, we want
to determine our best estimate for the parameters.

* Construct the probability: P(data' {x})
’ l

* Best estimate is the set of parameters that maximises P(data; {Xi})

Simple Example:

* Two measurements of a quantity, X, using different methods
=x;+to0; =5.11+0.5 x=x2x0,=6.0+£0.3
(assume independent Gaussian errors)
= What is our best estimate of the true value of X ?

1 1[(x1—2x)?  (x—x)? 22
P(data; = —— =Ae 2
(data;x) 2ﬂ’_o_lo_zexp{ 2{ P + = e
2
X
P = %
! 2

» Maximum probability corresponds to minimum chi-squared
= For Gaussian distributed variables: fitting = minimising chi-squared
* Here require dxz

dx

0

Prof. M.A. Thomson Lent 2015

84



Prof. M.A. Thomson

0
2 2
dx (og) o,
S TE)
2t
X= 1 12
L+L
of o3

= Which is the formula we found previously for averaging two measurements

* Note: chi-squared is a quadratic function of the parameter x
= Taylor expansion about minimum with

v ST
d2x2 1 1 d3X2 L
— L 2 =4 — i A
. (0_12 + 0_22) and ™ 0 sk b
1 d2x2
. 20 =y — 2 2
glves % ('x ‘x) XO + 2' d.x2 ('x ‘x) X2+1 -
0
2 2 (x—x)2 2
X X X
P(x)xe T =e 2e 20 0, [ ;
i 5.10.5 6.0:0.3
2 2 -1 B L ——

therefore 0-2:(1l_d’51 ) 915””;””5I5””é”|65

X . X .

2 dxz X=X X
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Goodness of Fit
= Started with two measurements of a quantity,
x=x1+0;=51x£0.5 x=x2:|:0'2:6.0:|:0.3
= Best estimate of the true value of x, is that which maximises the likelihood, i.e
minimises chi-squared, giving a chi-squared at the minimum of
2

X0

(1 —%)* (-3’
7+ 2
0j G;
= What is the probability that our data are consistent with a common mean?
i.e. how do we interpret this chi-squared minimum
» Expanding and substituting for x

2 2
2 x1 x5 1 1
= 242 25+
R O N
2 2 = X1 — X
(x1 —x2)” _ (A¥) with 12 22
of+0; 0%, Opy = Of T 03

* Here the minimum chi-squared corresponds is distributed as chi-squared for
a single Gaussian measurement, i.e. 1 degree of freedom

In general, the fitted minimum chi-squared is distributed as chi-squared for
(number of measurements — number of fitted parameters) degrees of freedom

Lent 2015
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Example: Straight line fitting

b

* Given a set of points {x;,y; - 0;} y=mx+c
find the best fit straight line and
the uncertainties + ;
2y o (i —mxi—c)?
* First define the chi-squared: X~ = Z 5
4 loF
i=0 i
* Minimise chi-squared with respect to the 2 parameters describing the model
Lﬁ:i_zxiwf—c):o Ny Hlimmizo)
om = o; de = O;
n .2 n ) n . noq n
_ x5 X; X;Vi — Xi o _ . Vi
I:,'> mp) —+c) — = mp) —+¢) —& =
z;() 0-[2 1;0 Gl'z z;() 0-12 i=0 612 i=0 612 i=0 612
::> S2 Sx m Sxy Where the sums are represented by
Sy S c/ Sy Sy Z % etc
i=1"i
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* For the errors first make Taylor expansion around the minimum chi-squared:
azxz 1 azxz 1 32)(2

2 — 2 A LA N2 )24
4 (m,c)—)( (m’c)+2' om2 (m m) +2y om?2 (C C) +22!amac

(since the function is quadratic there are no other terms)

which gives an elliptical contours
* In terms of the inverse error matrix

x> = x'M x| with x=<m_T)

(m—m) (C—E)2

cC—¢C
* Hence 1% 1% 2.2
M—l _ 2 85712 2 dmdc M_l . 10 X
1922 19%° ( )lj_ia oa.:
2 dmdc 2 9c2 a;odj
-1 _ S22 Sx
* Here M - ( Sy S )
Sx2S_S% _S_x sz meGc 63
* Giving p= = i

Prof. M.A. Thomson Lent 2015 88



R

A -

* Suppose we want to calculate the error on y as a function of x based on

our fit: Jy
2 —_
O, 0,0,
@ - wn(, 3 ) ()
meGc GC ay

= o2x*+2px0,,0, +G> Je

\S}

* It is worth noting that the correlation coefficient is proportional to Z %
hence one could fit after making the transformation x’' = x — x !
/
such that Z% —0
and the uncertailnties on the new intercept and gradient become uncorrelated
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Binned Maximum Likelihood Fits

* So far only considered chi-squared fitting (i.e. assumes Gaussian errors)
* In particle physics often dealing with low numbers of events and need to
account for the Poisson nature of the data
* In general can write down the joint probability
P(data; parameters) = P({x;};{a;}
= e.g. if we predict a distribution should follow
a first order polynomial
u; = aycos 0;+agp :
= and measure events in bins of c0s 0, 2f

= define likelihood based on Poisson statistics
i o= Mi
e

L=T]r=]]"5—

i I’li!

Events/0.1 ~—

» best estimates of parameters, defined by maximum likelihood or, equivalently,
the minimum of -log-likelihood

‘Ltf/lie_”i
D?:—lnL:Z—ln LA :ZIH(n,-!)—i—,ui—niln/.L,-

i n,-!
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* Maximising the likelihood corresponds to solving the set of linear equations

A

=0
8a,-

* To estimate the errors on the parameters, expand —InL, about its minimum
1 _L,0°Z 1 _ 9°Y 3
L = «f(az)ﬁLz, (a; —a;) 8_61%+2_!i7éj(ai_ai)(aj )8a8aj+0(( a)’)

* Unlike the case of Gaussian errors, the
PYL

a3 70

* hence the resulting likelihood surface will not have a quadratic form

* For the moment, restrict the discussion to a single variable

1 R
—InL=.%2=%2(a)+ = (a—a)* +0((a—1a)*)
2! da?
_ 292%
L = e_"g — e_g(a) X e_%(a a) a2 X e 0((61 a) )
Gaussian Higher Order
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* If resulting likelihood distribution is “sufficiently Gaussian” could assign an
estimate of the error on our measurement as: 5 2.2\ !
(%)
* This is OK in the Gaussian limit, but in general it is not very useful
* Usually adopt a Gaussian inspired procedure...
* For Gaussian distributed variables, have a parabolic chi-squared curve which gives

a Gaussian likelihood 12 %2,
_ A . _ min

L=Lye 2 with Lg=e 2
N>< 8 : T T 1 T T 1 T T T 7T : 1 08 : L LR A E 'LO L C A B R :
6 ] 06 - ]
i ) i i ]
L X ™4 ] L 4 ]
s N 04 - Lye ]
2 Koot . 0.2 - " 3

anin : LO ¢
0 i I 1 I 1 1 L n L L I L n n n 1 n 1 1 1 ] 0 L 1 n 1 1 1 I 1 L L L n n 1 I I N

3 4 5 6 7 3 4 5 6 7
X

X
* “1 sigma errors” defined the points where X2 — %2 +1
* Or, EQUIVALENTLY, where the Relative Likelihood compared to the maximum
likelihood decreases by e_1/2
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Example

e.g. assume a form U; = a(l — COS 9i)

- T T T R o e B L B T
o I L ;
B 1
€ 3r N -InL+2.0
[} L : J
> :
I 251 -
24F O\ dnl#05 -
-InL,
'E P PR L1 gl 'l 2 FEAT TN AT TS NS T S AT N N S A S
-1 -0. . Y2 o6 08 1 12 14
coso a

* Not unreasonable to use estimate of “1 sigma” uncertainty as the values:
—InL — —InL+0.5
Similarly for the “2 sigma” uncertainty:
—InL — —InL+2

* At these points, have probabilities of 6_1/2 and e? relative to maximum
* BUT: no guarantee that 68 % of PDF lies within +-1¢

Interpretation requires some care — a dark art (see later)

Prof. M.A. Thomson Lent 2015

Binned Maximum Likelihood: Goodness of Fit

93

* Safest way is to generate toy MC experiments, perform the fit, and thus obtain
the expected InL distribution

* However, there is an invaluable trick
= For Poisson errors, we minimised the function

L =—InL=-Y) In ‘u’ In(n;!) + i — n;In
Yin (A5 ) = Ein

= Free to add a constant to this — doesn’ t affect the result

» Here the data are fixed and we vary the expectation

= Add the InL of observing n; given an expectation of n, Likeﬂ:’“‘ ratio
wie e B L(n; W)

Y- = —Yn (l ) 1n( ) :—ln[—

Z . Z L(I’li;l’l,‘)

= Zlnni!+ui —niIny; —Inn;! —n; +n;Inn;
i

= Zlvli—ni-i-l’tilrlE
i

i

2 _q1n:

i

|
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* In the limit where the U; are “not too small, in region of best fit n’;“’ is small
2_ 1n T
Zz = Zw-l—mln [1+ <L”“)]
i Hi Hi
u? — pin; ni— i\ mi(ni—p\° ni— i\
- g, () () o f, ()
i Hi U 2 Mi Hi
- Zuiz—ﬂini‘i‘niz—ﬂini i (m—m)z
i i 2 U
_ Z (ni — wi)? i (ni_.ui>2
i Hi 2 Hi
_ Z(n’ i) <1_£>
; Hi 2
1« (i — )2  For Poisson distributed :
~ 5 Z T i variables 67 = y; :
- o S T T
2 = A% with A= Hmk)
2 L(l’ll’;l’li)
* Hence —2InA is distributed as 2 in the limit of “large” n
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* This is a very useful trick.
* When fitting a histogram with Poisson errors
ALWAYS
» Perform a maximum likelihood, not a chi-squared fit
= Use the likelihood ratio
—2InA = Zu, —n,'—l—niln%
NOTE ; ’
= Best fit parameters determined by
d[—2InA ni \ ou;
g — Z _t ﬂ =0 ,I.L,-({ai})
da; : Ui ) da;
= At the best fit point -2InA\. tends to a chi-squared distribution for n-m d.o.f.
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Unbinned Maximum Likelihood Fits

* For some applications, binning data results in a loss of precision
» e.g. sparse data and a rapidly varying prediction

it~ 1 tt R

* In other cases there is simply no need to bin data: unbinned maximum likelihood
NOTE: this is a “shape-only”fit: normalisation doesn’t enter

* Suppose we can construct the predicted PDF for the data as a function of
the parameter of interest

» e.g. make N measurements of decay time, {t,-} , and want to estimate lifetime T
* Write down NORMALISED PDF
P(t) = %e_%

* We can now write down the likelihood of obtaining our set of data
I 4
L{r}) =T]ze
i

* Obtain lifetime by maximising likelihood (or equivalently InL)
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InL = _Zﬁ +Int + Since we now know what we are doing,
T T it is immediately obvious that the
dlnL Yiti N error is not symmetric
or 2 d3InL
= T = ! Y1 a3 7 0
= U
N i
i.e. the expected, but not * The likelihood function is
entirely obvious result ~ 4
* For the error estimate take the —‘T
second derivative l | c_ Oy
0’InL —32t-+ﬁ 0+ 2 /
a2 et g2 l _
_ _N >
- 72 T
5 — <_ 921nL)_1 - Usual to quote with asymmetric
’ 012 errors, e.g.
N _ 1 .0+0.6
N =104
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Another Example

* Forward-Backward asymmetry at LEP _ / W
* Expected angular distribution of form e > < 9\
e+
f(x) o< (1422 + 3Ax) x =cos6 4

- But measured angular distribution depends on efficiency £(x)

F(0)e)
- /\M
- a1

-1 +1 1

+ However €(x) is not known (at least not precisely)

* But it is known to be symmetric

« Sufficient to construct an unbinned maximum likelihood fit
* First write down the PDF in terms of the unknown efficiency

P(x) o< f(x)&(x) o €(x)(1 +x* + Ax)
* For unbinned maximum likelihood fit PDF must be normalised

+1
A_mwmw=1

>
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* Since S(X) is symmetric normalisation gives

+1
/ (14+xH)e(x)dx =1 i.e. independent of 4
1—

* Hence the normalised PDF is of the form
P(x) = ke(x)(1+x% + 2Ax)

* For the N observed values {xi} the log-likelihood function becomes:
3
InL = Zln K+Ing(x;)+1In (1 +xF + é_lei)
i

dlnL 3 X;
=)

 For a maximum = =0
0A 4 1 +xi2 + %Axi

i

* Which can be solved (preferably minimised by MINUIT) despite the fact we
don’ t know the precise form of the PDF
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Extended Maximum Likelihood Fits

* Unbinned maximum likelihood uses only shape information

* In the extended maximum likelihood fit include normalisation

* Suppose you observe n events with x; and expect a total of [l with PDF
which is a function of some parameter you wish to measure P(x)

L({x:}) = ><HP x) PR

Poisson Unbinned ML

InL=—-u+nlny —Inn! +ZlnP X;)

* Just for fun... suppose our PDF is binned with an expectatlon of [.L]/,LL in each bin
InL = —pu+nlnhpy—Inn!+ ln—
Hormni Z u P(x)

= —p+nlny—Inn! —Zlny+21nuj

= —u—lnn!+ZInuj ! X
i

« if there are n;j events observed in each bin

InL = —p—Inp!+Y njlny;
J
Prof. M.A. Thomson Lent 2015 101

InL = —p—Inn!+) njlny;

J

= Y pj—Inn!+Y njlnpy;
J J For a given data set

_uju ! /thlSlsaconstant
= Zln J -

= —In ‘
Ljn;
& J . :
~ L ey
Binned Poisson i Can you see where
Likelihood i this comes from ? i

Hence our previous expression for “Binned Maximum likelihood”
is just an Extended Maximum Likelihood fit with a binned PDF
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Fitting Summary

* Have covered main fitting/goodness of fit issues:
= definition of chi-squared
» chi-squared fitting
= definition of likelihood functions and relation to chi-squared
» likelihood fitting techniques
* Next time we will consider more carefully the interpretation
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Appendix The Error Function

* For a single variable the Chi-Squared Probability

1 —u)?
x—H

* Change variable X = pe

1 +Xo xz
r <) - [Peal L)
W <m) ="z | P\~ [
* Change variable again t2 = X2/2 and integrate over positive values only

V2 (% 2
P(x*<x5) = \/—E/O e~ Tdy

2 /v,
= ﬁ/ e dt
0

= erf(%) 1 Error function
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* The probability of obtaining a value of Xz > Xg by chance is:

2 x/V2
P(*>x5) = 1——=

Complement of the
Error Function

-
T

erfe( "QL/@)

]
o
IS

]
o
N

0-...1...|...|...|...
0 2 4 6 8 ;0

X

* This is nothing more than a different way of expressing a 1D Gaussian distribution
(or more correctly its two-sided integral)
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