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Course Synopsis 
   Lecture     1: The basics  
                            Introduction, Probability distribution functions, Binomial 
                            distributions, Poisson distribution  
   Lecture     2: Treatment of Gaussian Errors 
                            The central limit theorem, Gaussian errors, Error  
                             propagation, Combination of measurements, Multi- 
                             dimensional Gaussian errors, Error Matrix    
   Lecture     3:  Fitting and Hypothesis Testing 
                             The χ2 test, Likelihood functions, Fitting, Binned maximum  
                               likelihood, Unbinned maximum likelihood 
   Lecture     4:  The Dark Arts 
                             Bayesian Inference, Credible Intervals  
                             The Frequentist approach, Confidence Intervals 
                             Systematic Uncertainties   
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Parameter Estimation Revisited  
!  Let�s consider more carefully the maximum likelihood method 

 for simplicity consider a single parameter  
!   Construct the likelihood that our data are consistent with the model, i.e.   
        the probability that the model would give the observed data 

!  We have then (very reasonably) taken the value of       which maximises  
         the likelihood as our best estimate of the parameter  
!  With less justification we then took our error estimate from   

!  Does this really make sense ? 
!  What we really want to calculate is the posterior PDF for the parameter  
       given the data, i.e.   

Can not justify this – in general it is not the case 

�assumed� 
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Conditional Probabilities and Bayes� Theory  
!  A nice example of conditional probability (from L. Lyons) 

"  In the general population, the probability of a randomly selected woman  
      being pregnant is 2% 

"  But 
!  Correct treatment of conditional probabilities requires Bayes� theorem 

"  Probability of A and B can be expressed in terms of conditional probabilities 

!  Here the prior probability of selecting a woman is   

   and the prior probability of selecting a pregnant person is    
i.e. half population are women 

i.e. 1 % of  population are pregnant 

Sanity 
restored… 
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!  Apply Bayes� theory to our the measurement of a parameter x 
"  We determine                      , i.e. the likelihood function 

"  We want                      , i.e. the PDF for x in the light of the data  
"  Bayes� theory gives:  

the likelihood function, i.e. what we measure 
the posterior PDF for x, i.e. in the light of the data 
prior probability of the data. Since this doesn�t depend on  
 x it is essentially a normalisation constant 
prior probability of  x,  i.e. encompassing our knowledge of 
x before the measurement 

!  Bayes� theory tells us how to modify our knowledge of  x in the light of new data 

Bayes� theory is the formal basis of Statistical Inference  
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 Applying Bayes� Theorem  
!  Bayes� theory provides an unambiguous prescription for going from 

!  But you need to provide the PRIOR PROBABILITY 
!  This is fine if you have an objective prior, e.g. a previous measurement 

"  If we now make a new measurement, i.e. determine the likelihood function 

"  Bayes� theory then gives 

Where      and      are the usual 
mean and variance for combining  
two measurements 

"  For this to be a (normalised) PDF can infer (although it isn�t of any interest):  
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The Problem with Applying Bayes� Theorem  
!  The problem arises when there is no objective prior 
!  For example, in a hypothetical background free search for a Z�, observe 
       no events  

"  No problem in calculating the likelihood function (a conditional probability) 
Poisson prob. for observing 0 

"  What is the best estimate of x and the 90 % �confidence level upper limit� ? 
"  Depends on the choice of prior probability: 

"  What to do about the prior ? 

  x is the true number of expected events 

"  i.e. how do we express our knowledge (none) of x prior to the measurement  
!  In general there is no objective answer, always putting in some extra information 

"  i.e. a subjective bias 
"  could argue that a flat prior, i.e. P(x) = constant, is objective  
"  but why not choose a prior that is flat in ln x ? 
"  for some limits/measurements (e.g. a mass) a flat prior in ln x is more natural 
"  the arbitrariness in the choice of prior is a problem for the Bayesian approach 
"  it can make a big difference…    
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Choice of Prior, example I 

Poisson prob. for observing 0 
!  See no events… 

Prior flat prior in x :  Prior flat prior in lnx :  

!  The Conclusions are very different. Compare regions containing 90 % of probability  

"  In this case, the choice of prior is important 
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!  Suppose we measure the W-boson mass:  
Choice of Prior, example II 

!  We want  

"  Here the choice of prior is NOT important 
"  The data are �strong enough� to overcome our prior assumptions (subjective bias) 
"  Here, can interpret the measurement as a Gaussian PDF for m 

"  Again consider two priors 
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Choice of Prior, example III 
#  An example (apparently due to Newton), e.g. see CERN Yellow Report 2000-005 

!  Suppose you are in the Tower of London facing execution. 
!  The Queen arrives carrying a small bag and says  
     �This bag contains 5 balls; the balls are either white or black. If you correctly 
       guess the number of black balls, I will spare your life and set you free.�� 
!  The Queen is in a good mood and continues  
     �To give you a better chance, you can take one of the balls from the bag.�� 

It�s BLACK 
!  The Queen points her pistol at you   
                     �Time to choose, sucker…�� 
!  What do you guess to maximise your chance of survival  ? 
!  Use statistical inference to analyse the problem.  

"  Let n be the number of black balls in the bag. 
"  The data are �that you picked out a black ball� 
"  Can calculate  
     e.g. if there were two black balls chance of picking out a black ball from the 
               five in the bag was 2/5. 
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!  But we want  
!  Answer depends on choice of Prior  

!  Could assume flat Prior  
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!  Could assume balls drawn randomly from a large bag containing equal nos.  B & W  
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!  Oh dear… answer depends on Prior (unknown) assumptions  

Prof. M.A. Thomson Lent 2015 118 

!  So what do we learn from this ?   
                        (apart something about the role of the Monarchy in a modern democracy)  

"  Whilst we know how to apply Bayesian statistical inference, we have  
             insufficient data, i.e. we don�t know the prior 
"  Unless the data are �strong�, i.e. override the information in the reasonable  
     range of prior probabilities, we cannot expect to know 

"  Applies equally to our experiment where we saw zero events and wanted to 
    arrive at a PDF for the expected mean number of events…  

Don�t have enough information to answer this question 
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Bayesian Credible Intervals 

!  Could then integrate PDF to contain 95 % of probability. Can then define the 
      �95 % Credible Interval*:  mH < 186 GeV�� 

*This is not what is done. 

!  To do this need to go from                         , i.e. from                , to 
"  requires �subjective� choice of prior probability 

!  Hence Bayesian Credible Intervals necessarily include some additional input 
      beyond the data alone… 

!  Ideally, (I) would like to work with probabilities, i.e. a PDF which encompasses all 
      our knowledge of a particular parameter, e.g.   
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Bayesian Credible Intervals - example 
!  Trying to estimate a selection efficiency using MC events. All N events pass cuts.  

"   what statement can we make about the efficiency? 
!  Binomial distribution… 

!  Apply Bayes� theorem: 
Prior 

Constant 
!  Choose prior, e.g.  

!  Normalise  
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! Integrate                                              to find region containing 90% of probability  

90 % Credible Interval: 

(with a flat prior probability) 
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Likelihood Ordering 
!  Note, 90 % credible interval is not uniquely defined  

"  more than one interval contains 90 % probability, e.g. 

90 % Credible Interval: 
!  Natural, to choose the interval such that all points in the excluded region are 
      lower in likelihood than those in the credible interval : likelihood ordering 
!  Credible intervals provide an intuitive way of interpreting data, but:  

"  Rarely used in Particle Physics as a way of presenting data 
"  Because they represent the �data� and �prior� combined 
"  NOTE: all information from the experiment is in the likelihood   
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C.I. vs C.L. 
!  From data obtain 
!  Bayes� theorem provides the mathematical framework for statistical inference 
!  To go from                                                 requires a (usually) subjective choice 
         of Prior probability  
!  For �weak� data, the choice of Prior can drive the interpretation of the data 
!  Credible intervals are a useful way of interpreting data, but are generally not  
      used in Particle Physics as a way of presenting the conclusions of an experiment. 
!  Particle Physics to use Frequentist �Confidence limits� which are not  
                                 [and do not form a mathematically consistent basis for  
                                   statistical inference] 
                           !  Finally, never forget that credible intervals (or confidence limits) are an  
       interpretation of the data 

The experimental result is the likelihood function     

A Few words on Systematic Uncertainties 
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!  Systematic Uncertainties are often associated with an internal unknown bias, e.g. 
"  How well do you know your calibration 
"  How well does MC model the data, e.g. jet fragmentation parameters 

!  Parametric Uncertainties associated with uncertain parameters 
"  How does the uncertainty on the Higgs mass impact the interpretation of a 
      a measurement 

!  No over-riding principle – just some general guidelines 
"  Once a result is published, systematic errors will be treated as if they are  
      Gaussian 
 
"  Some systematic errors are Gaussian: e.g. energy scale determined  
     from data e.g.                     to determine electron energy scale  
"  Others are not: e.g. impact of different jet hadronisation models, where one 
      might compare PYTHIA with HERWIG – here one obtains a single estimate  
      of the scale of the uncertainties  
"  Theoretical uncertainties: e.g. missing HO corrections. Again these are  
      estimates – should not be treated as Gaussian (although they are) 

x = a ± b (stat.) ± c (syst.)

Z! e+e�

!  Systematic dominated measurements 
"  Beware – if there is a single dominating systematic error and it is inherently 
       non-Gaussian, this is a problem  



Estimating Systematic Uncertainties 
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!  No rules – just guidelines 
"  Remember syst. errors will be treated as Gaussian, so try to evaluate them on  
     this basis, e.g. suppose use 3 alternative MC jet fragmentation models and 
     result changes by +Δ1, +Δ2 and –Δ3 (where Δ2 is the largest):  

  i) take largest shift as systematic error estimate: Δ2  ?  
        ii) assume error distributed uniformly in “box” of width 2Δ2 giving an rms 
               of  2Δ2 /√12 ? 

 
"  Cut variation is evil (i.e. vary cuts and see how results change) 

•  at best, introduces statistical noise 
•  at worst, hides away lack of understanding of some data - MC discrepancy  

  
 
"  Wherever possible use data driven estimates, energy scales, control samples, 
     etc.  
    
"  Remember that you are estimating the scale of a possible systematic bias 
 

understand the origin of the discrepancy 

Incorporating Systematics into Fits 
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!  Two commonly used approaches 
"  Error matrix – with (correlated) systematic uncertainties 
"  Nuisance parameters  

!  Nuisance parameter example: 
"  Suppose we are looking at WW decays and count numbers of events in three 
      different decay channels  qqqq, qqlv and lvlv 
"  Want to measure cross section and hadronic branching fractions accounting  
     for common luminosity uncertainty 
          i) build physics model  

Nexp

qqqq

(�
WW

, B
qq

,L) =
�

WW

"L B2

qq

 ii) build likelihood function  

�2

(�
WW

, B
qq

,L) = �2 ln L =
(Nexp

qqqq

� Nobs

qqqq

)

2

Nexp

qqqq

+
(Nexp

qqlv

� Nobs

qqlv

)

2

Nexp

qqlv

+
(Nexp

lvlv

� Nobs

lvlv

)

2

Nexp

lvlv

 iii) add penalty term for nuisance parameters, here integrated lumi. Known 
        to be L0 with uncertainty σL   

�2

(�
WW

, B
qq

,L) = �2 ln L =
(Nexp

qqqq

� Nobs

qqqq

)

2

Nexp

qqqq

+
(Nexp

qqlv

� Nobs

qqlv

)

2

Nexp

qqlv

+
(Nexp

lvlv

� Nobs

lvlv

)

2

Nexp

lvlv

+
(L �L

0

)

2

�2

L



Incorporating Systematics into Fits 
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!  Let’s consider this more closely 

 
"  We are now fitting 3 parameters 

•   the number of degrees of freedom has not changed, since we have added one 
      parameter, but also one additional “data point”   

"  Of the 3 parameters, we are “not interested” in the fitted value of the lumi. 
"  The penalty term constrains the luminosity to be consistent with the  
     externally measured value 
"  The presence of the nuisance parameters will flatten the fitted likelihood  
      surface – increasing the uncertainties on the fitted parameters  
"  Also have some measure of the tension in the fit 

•   if the data pull the nuisance parameter away from the expected value, could 
      indicate a problem 
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That’s All Folks 
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