

Michaelmas Term 2009 Prof Mark Thomson

Handout 5 : Electron-Proton Elastic Scattering

Prof. M.A. Thomson

Michaelmas 2009

148

Electron-Proton Scattering

obtain the matrix element for $e^-\mu^- \rightarrow e^-\mu^-$ (Appendix I)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{e^4}{8\pi^2 s} \frac{\left[1 + \frac{1}{4}(1 + \cos\theta)^2\right]}{(1 - \cos\theta)^2}$$

•The factor $1 + \frac{1}{4}(1 + \cos \theta)^2$ reflects helicity (really chiral) structure of QED •Of the 16 possible helicity combinations only 4 are non-zero:

•The cross section calculated above is appropriate for the scattering of two

(where both electron and muon masses can be neglected). In this case

spin half Dirac (i.e. point-like) particles in the ultra-relativistic limit

Prof. M.A. Thomson

Michaelmas 2009

Probing the Structure of the Proton

 \star In $e^{-}p \rightarrow e^{-}p$ scattering the nature of the interaction of the virtual photon with the proton depends strongly on wavelength

- At very low electron energies $\lambda \gg r_p$: the scattering is equivalent to that from a "point-like" spin-less object
- + At low electron energies $~\lambda \sim r_p~$: the scattering is equivalent to that from a extended charged object
- + At high electron energies $\lambda < r_p$: the wavelength is sufficiently short to resolve sub-structure. Scattering from constituent quarks
- At very high electron energies $~\lambda \ll r_p~$: the proton appears to be a sea of quarks and gluons.

Rutherford Scattering Revisited

Prof. M.A. Thomson

Michaelmas 2009

•Consider all four possible electron currents, i.e. Helicities $R \rightarrow R$, $L \rightarrow L$, $L \rightarrow R$, $R \rightarrow L$

$$\underbrace{\mathbf{e}}_{\mathbf{a}\uparrow} \underbrace{\mathbf{e}}_{\mathbf{a}\uparrow} \left(p_{3} \right) \boldsymbol{\gamma}^{\mu} u_{\uparrow}(p_{1}) = \left(E + m_{e} \right) \left[(\alpha^{2} + 1)c, 2\alpha s, -2i\alpha s, 2\alpha c \right]$$
(4)

$$\underbrace{\mathbf{e}}_{\mathbf{\mu}} = \overline{u}_{\downarrow}(p_3) \boldsymbol{\gamma}^{\mu} u_{\downarrow}(p_1) = (E + m_e) \left[(\alpha^2 + 1)c, 2\alpha s, -2i\alpha s, 2\alpha c \right]$$
(5)

$$\underbrace{\mathbf{e}}_{\mu\uparrow} = \overline{u}_{\uparrow}(p_3) \gamma^{\mu} u_{\downarrow}(p_1) = (E + m_e) \left[(1 - \alpha^2) s, 0, 0, 0 \right]$$
(6)

$$e^{-} \overline{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = (E+m_e)\left[(\alpha^2-1)s, 0, 0, 0\right]$$
(7)

-In the relativistic limit ($\alpha = 1$), i.e. $E \gg m$

(6) and (7) are identically zero; only $R \rightarrow R$ and $L \rightarrow L$ combinations non-zero •In the non-relativistic limit, $|\vec{p}| \ll E$ we have $\alpha = 0$

$$\overline{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = \overline{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = (2m_e)[c,0,0,0]$$

$$\overline{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = -\overline{u}_{\downarrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = (2m_e)[s,0,0,0]$$

All four electron helicity combinations have non-zero Matrix Element

•The initial and final state proton spinors (assuming no recoil) are:

$$u_{1}(0) = \sqrt{2M_{p}} \begin{pmatrix} 1\\ 0\\ 0 \\ 0 \end{pmatrix} \qquad u_{1}(0) = \sqrt{2M_{p}} \begin{pmatrix} 0\\ 1\\ 0 \\ 0 \end{pmatrix} \qquad \text{Solutions of Dirac equation for a particle at rest}$$

giving the proton currents: $j_{p\uparrow\uparrow} = j_{p\downarrow\downarrow} = 2M_{p} (1,0,0,0)$
 $j_{p\uparrow\downarrow} = j_{p\downarrow\uparrow} = 0$
•The spin-averaged ME summing over the 8 allowed helicity states
 $\langle |M_{fi}^{2}| \rangle = \frac{1}{4} \frac{e^{4}}{q^{4}} (16M_{p}^{2}m_{e}^{2})(4c^{2} + 4s^{2}) = \frac{16M_{p}^{2}m_{e}^{2}e^{4}}{q^{4}}$
where $q^{2} = (p_{1} - p_{3})^{2} = (0, \vec{p}_{1} - \vec{p}_{3})^{2} = -4|\vec{p}|^{2}\sin^{2}(\theta/2)$
 $\langle |M_{fi}^{2}| \rangle = \frac{M_{p}^{2}m_{e}^{2}e^{4}}{|\vec{p}|^{4}\sin^{4}(\theta/2)}$
Note: in this limit all angular dependence is in the propagator
• The formula for the differential cross-section in the lab. frame was derived in handout 1:
 $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^{2}} \left(\frac{1}{M+E_{1}-E_{1}\cos\theta}\right)^{2} |M_{fi}|^{2}$ (8)

Prof. M.A. Thomson

Michaelmas 2009

•Here the electron is non-relativistic so $E \sim m_e \ll M_p$ and we can neglect E_1 in the denominator of equation (8)

$$\Rightarrow \frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 M_p^2} |M_{fi}|^2 = \frac{m_e^2 e^4}{64\pi^2 |\vec{p}|^4 \sin^4(\theta/2)}$$

$$\cdot \text{Writing } e^2 = 4\pi\alpha \text{ and the kinetic energy of the electron as } E_K = p^2/2m_e$$

$$\Rightarrow \left[\left(\frac{d\sigma}{d\Omega} \right)_{\text{Rutherford}} = \frac{\alpha^2}{16E_K^2 \sin^4 \theta/2} \right]$$

$$(9)$$

★ This is the normal expression for the Rutherford cross section. It could have been derived by considering the scattering of a non-relativistic particle in the static Coulomb potential of the proton $V(\vec{r})$, without any consideration of the interaction due to the intrinsic magnetic moments of the electron or proton. From this we can conclude, that in this non-relativistic limit only the interaction between the electric charges of the particles matters.

The Mott Scattering Cross Section

- For Rutherford scattering we are in the limit where the target recoil is neglected and the scattered particle is non-relativistic $E_K \ll m_e$
- The limit where the target recoil is neglected and the scattered particle is relativistic (i.e. just neglect the electron mass) is called Mott Scattering
- In this limit the electron currents, equations (4) and (6), become:

$$\overline{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\uparrow}(p_1) = 2E[c,s,-is,c] \qquad \overline{u}_{\uparrow}(p_3)\gamma^{\mu}u_{\downarrow}(p_1) = E[0,0,0,0]$$
Relativistic \Longrightarrow Electron "helicity conserved"

• It is then straightforward to obtain the result:

- ★ NOTE: we could have derived this expression from scattering of electrons in a static potential from a fixed point in space $V(\vec{r})$. The interaction is **ELECTRIC** rather than magnetic (spin-spin) in nature.
- ★ Still haven't taken into account the charge distribution of the proton.....

Michaelmas 2009

158

Form Factors

•Consider the scattering of an electron in the static potential due to an extended charge distribution. •The potential at \vec{r} from the centre is given by: $V(\vec{r}) = \int \frac{Q\rho(\vec{r}')}{4\pi |\vec{r} - \vec{r}'|} d^3 \vec{r}' \quad \text{with } \int \rho(\vec{r}) d^3 \vec{r} = 1$ •In first order perturbation theory the matrix element is given by: $M_{fi} = \langle \psi_f | V(\vec{r}) | \psi_i \rangle = \int e^{-i\vec{p}_3.\vec{r}} V(\vec{r}) e^{i\vec{p}_1.\vec{r}} d^3 \vec{r}$ $= \int \int e^{i\vec{q}.\vec{r}} \frac{Q\rho(\vec{r}')}{4\pi |\vec{r} - \vec{r}'|} d^3 \vec{r}' d^3 \vec{r} = \int \int e^{i\vec{q}.\vec{r}'} \frac{Q\rho(\vec{r}')}{4\pi |\vec{r} - \vec{r}'|} d^3 \vec{r}' d^3 \vec{r}$ •Fix \vec{r}' and integrate over $d^3 \vec{r}$ with substitution $\vec{R} = \vec{r} - \vec{r}'$ $M_{fi} = \int e^{i\vec{q}.\vec{R}} \frac{Q}{4\pi |\vec{R}|} d^3 \vec{R} \int \rho(\vec{r}') e^{i\vec{q}.\vec{r}'} d^3 \vec{r}' = (M_{fi})_{point} F(\vec{q}^2)$ *The resulting matrix element is equivalent to the matrix element for scattering from a point source multiplied by the form factor $F(\vec{q}^2) = \int \rho(\vec{r}) e^{i\vec{q}.\vec{r}'} d^3 \vec{r}$

$$\begin{pmatrix} d\sigma \\ d\Omega \end{pmatrix}_{Mott} \rightarrow \frac{\alpha^2}{4E^2 \sin^4 \theta/2} \cos^2 \frac{\theta}{2} |F(\vec{q}^2)|^2$$
There is nothing mysterious about form factors – similar to diffraction of plane waves in optics.
The finite size of the scattering centre introduces a phase difference between plane waves "scattered from different points in space". If wavelength is long compared to size all waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves "scattered from different points in space". If wavelength is long compared to size all waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves "scattered from different points in space". If wavelength is long compared to size all waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves "scattered from different points in space". If wavelength is long compared to size all waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves "scattered from different points in space". If wavelength is long compared to size all waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre introduces a phase difference between plane waves in phase and $F(\vec{q}^2) = 1$
The finite size of the scattering centre intering centre intering centre intering centre i

Point-like Electron-Proton Elastic Scattering

Prof. M.A. Thomson

Michaelmas 2009

•Substituting these scalar products in Eqn. (11) gives

$$\langle |M_{fi}|^2 \rangle = \frac{8e^4}{(p_1 - p_3)^4} M E_1 E_3 \left[(E_1 - E_3)(1 - \cos\theta) + M(1 + \cos\theta) \right]$$

= $\frac{8e^4}{(p_1 - p_3)^4} 2M E_1 E_3 \left[(E_1 - E_3) \sin^2(\theta/2) + M \cos^2(\theta/2) \right]$ (12)

• Now obtain expressions for $q^4 = (p_1 - p_3)^4$ and $(E_1 - E_3)$ $q^2 = (p_1 - p_3)^2 = p_1^2 + p_3^2 - 2p_1 \cdot p_3 = -2E_1E_3(1 - \cos\theta)$ (13)

$$= -4E_1E_3\sin^2\theta/2 \tag{14}$$

NOTE:
$$q^2 < 0$$
 Space-like

For
$$(E_1 - E_3)$$
 start from
 $q \cdot p_2 = (p_1 - p_3) \cdot p_2 = M(E_1 - E_3)$
and use $(q + p_2)^2 = p_4^2$
 $q^2 + p_2^2 + 2q \cdot p_2 = p_4^2$
 $q^2 + M^2 + 2q \cdot p_2 = M^2$
 $\rightarrow q \cdot p_2 = -q^2/2$

Prof. M.A. Thomson

Michaelmas 2009

162

•Hence the energy transferred to the proton:

$$E_1 - E_3 = -\frac{q^2}{2M}$$
(15)

Because q^2 is always negative $E_1 - E_3 > 0$ and the scattered electron is always lower in energy than the incoming electron

•Combining equations (11), (13) and (14):

$$\langle |M_{fi}|^2 \rangle = \frac{8e^4}{16E_1^2 E_3^2 \sin^4 \theta/2} 2M E_1 E_3 \left[M \cos^2 \theta/2 - \frac{q^2}{2M} \sin^2 \theta/2 \right]$$
$$= \frac{M^2 e^4}{E_1 E_3 \sin^4 \theta/2} \left[\cos^2 \theta/2 - \frac{q^2}{2M^2} \sin^2 \theta/2 \right]$$

•For $E \gg m_e$ we have (see handout 1)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{E_3}{ME_1}\right)^2 |M_{fi}|^2 \qquad \qquad \alpha = \frac{e^2}{4\pi} \approx \frac{1}{137}$$

Interpretation

0

So far have derived the differential cross-section for e⁻p → e⁻p elastic scattering assuming point-like Dirac spin ½ particles. How should we interpret the equation?

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4 \theta/2} \frac{E_3}{E_1} \left(\cos^2 \theta/2 - \frac{q^2}{2M^2} \sin^2 \theta/2 \right)$$

•Compare with $\left(\frac{d\sigma}{d\Omega} \right)_{Mott} = \frac{\alpha^2}{4E^2 \sin^4 \theta/2} \cos^2 \frac{\theta}{2}$
the important thing to note about the Mott cross-section is that it is equivalent to scattering of spin ½ electrons in a fixed electro-static potential. Here the term E_3/E_1 is due to the proton recoil.
 $\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4 \theta/2} \frac{E_3}{E_1} \left(\cos^2 \theta/2 - \frac{q^2}{2M^2} \sin^2 \theta/2 \right)$
•the new term: $\propto \sin^2 \frac{\theta}{2}$ \longleftrightarrow Magnetic interaction : due to the spin-spin interaction

•The above differential cross-section depends on a single parameter. For an electron scattering angle θ , both q^2 and the energy, E_3 , are fixed by kinematics

Michaelmas 2009

•Equating (13) and (15)

$$-2M(E_1 - E_3) = -2E_1E_3(1 - \cos\theta)$$

 $\Rightarrow \quad \frac{E_3}{E_1} = \frac{M}{M + E_1(1 - \cos\theta)}$
•Substituting back into (13):
 $\Rightarrow \quad q^2 = -\frac{2ME_1^2(1 - \cos\theta)}{M + E_1(1 - \cos\theta)}$

e.g. $e^-p \rightarrow e^-p$ at E_{beam} = 529.5 MeV, look at scattered electrons at θ = 75°

For elastic scattering expect:

$$E_{3} = \frac{ME_{1}}{M + E_{1}(1 - \cos \theta)}$$

$$E_{3} = \frac{938 \times 529}{938 + 529(1 - \cos 75^{\circ})} = 373 \text{ MeV}$$
The energy identifies the scatter as elastic.
Also know squared four-momentum transfer

$$|q^{2}| = \frac{2 \times 938 \times 529^{2}(1 - \cos 75^{\circ})}{938 + 529(1 - \cos 75^{\circ})} = 294 \text{ MeV}^{2}$$
Solution of the state of the

Prof. M.A. Thomson

Elastic Scattering from a Finite Size Proton

- ★ In general the finite size of the proton can be accounted for by introducing two structure functions. One related to the charge distribution in the proton, $G_E(q^2)$ and the other related to the distribution of the magnetic moment of the proton, $G_M(q^2)$
 - It can be shown that equation (16) generalizes to the ROSENBLUTH FORMULA.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4 \theta/2} \frac{E_3}{E_1} \left(\frac{G_E^2 + \tau G_M^2}{(1+\tau)} \cos^2 \frac{\theta}{2} + 2\tau G_M^2 \sin^2 \frac{\theta}{2} \right)$$

with the Lorentz Invariant quantity:

$$\tau = -\frac{q^2}{4M^2} > 0$$

• Unlike our previous discussion of form factors, here the form factors are a function of q^2 rather than \vec{q}^2 and cannot simply be considered in terms of the FT of the charge and magnetic moment distributions.

But
$$q^2 = (E_1 - E_3)^2 - \dot{q}^2$$
 and from eq (15) obtain
 $\rightarrow -\vec{q}^2 = q^2 \left[1 - \left(\frac{q}{2M}\right)^2\right]$
So for $\frac{q^2}{4M^2} \ll 1$ we have $q^2 \approx -\vec{q}^2$ and $G(q^2) \approx G(\vec{q}^2)$

Prof. M.A. Thomson

Michaelmas 2009

166

•Hence in the limit $q^2/4M^2 \ll 1$ we can interpret the structure functions in terms of the Fourier transforms of the charge and magnetic moment distributions

$$G_E(q^2) \approx G_E(\vec{q}^2) = \int e^{i\vec{q}.\vec{r}} \rho(\vec{r}) \mathrm{d}^3 \vec{r}$$
$$G_M(q^2) \approx G_M(\vec{q}^2) = \int e^{i\vec{q}.\vec{r}} \mu(\vec{r}) \mathrm{d}^3 \vec{r}$$

•Note in deriving the Rosenbluth formula we assumed that the proton was a spin-half Dirac particle, i.e.

$$\vec{\mu} = \frac{e}{M}\vec{S}$$

•However, the experimentally measured value of the proton magnetic moment is larger than expected for a point-like Dirac particle:

$$\vec{\mu} = 2.79 \frac{e}{M} \vec{S}$$

So for the proton expect

$$G_E(0) = \int \rho(\vec{r}) d^3 \vec{r} = 1$$
 $G_M(0) = \int \mu(\vec{r}) d^3 \vec{r} = \mu_p = +2.79$

• Of course the anomalous magnetic moment of the proton is already evidence that it is not point-like !

Measuring $G_E(q^2)$ and $G_M(q^2)$

Higher Energy Electron-Proton Scattering

★Use electron beam from SLAC LINAC: 5 < E_{beam} < 20 GeV

★ Taking FT find spatial charge and magnetic moment distribution

$$ho(r) pprox
ho_0 e^{-r/a}$$

 $a \approx 0.24 \text{ fm}$

with

•Corresponds to a rms charge radius

 $r_{rms} \approx 0.8 \text{ fm}$

- ★ Although suggestive, does not imply proton is composite !
- Note: so far have only considered ELASTIC scattering; Inelastic scattering is the subject of next handout

(Try Question 11)

R.C.Walker et al., Phys. Rev. D49 (1994) 5671 A.F.Sill et al., Phys. Rev. D48 (1993) 29

Summary: Elastic Scattering

•Take ME for $e^+e^- \rightarrow \mu^+\mu^-$ (page 143) and apply crossing symmetry:

$$\langle |M_{fi}|^2 \rangle = 2e^4 \frac{(p_1 \cdot p_3)^2 + (p_1 \cdot p_4)^2}{(p_1 \cdot p_2)^2} \qquad \Longrightarrow \qquad \langle |M_{fi}|^2 \rangle = 2e^4 \frac{(p_1' \cdot p_4')^2 + (p_1' \cdot p_2')^2}{(p_1' \cdot p_3')^2} \tag{1}$$

Prof. M.A. Thomson