An Introduction to Modern Particle Physics

Mark Thomson University of Cambridge

Science Summer School: 30th July - 1st August 2007

Course Synopsis

★ Introduction : Particles and Forces - what are the fundamental particles - what is a force *****The Electromagnetic Interaction - QED and e⁺e⁻ annihilation - the Large Electron-Positron collider *****The Crazy world of the Strong Interaction - QCD, colour and gluons - the quarks ★The Weak interaction - W bosons - Neutrinos and Neutrino Oscillations - The MINOS Experiment ***** The Standard Model (what we know) and beyond - Electroweak Unification - the Z boson - the Higgs Boson

- Dark matter and supersymmetry
- Unanswered questions

The particle world is rather simple :

***** There are 12 fundamental particles

Electron	(e ⁻)	Muon	(μ⁻)	Tau	(τ¯)
Electron Neutrin	ο (ν _e)	Muon Neutrino	(ν _μ)	Tau Neutrino	(ν _τ)
Up Quark	(u)	Charm Quark	(c)	Top Quark	(t)
Down Quark	(d)	Strange Quark	(d)	Bottom Quark	(b)

***** + Anti-matter equivalents of all particles

* and 4 fundamental	Strong	Weak	
TUICES	Electromagnetic	Gravity	

Feynman Diagrams

e

*****Particle interactions represented by FEYNMAN diagrams

e.g. two electrons "scattering" – repelling each other by exchanging a VIRTUAL photon

e

Time

ON THE LEFT

The initial state: i.e. particles before the interaction, here e⁻ + e⁻

ON THE RIGHT

The final state: i.e. particles after the interaction, here e⁻ + e⁻

IN THE MIDDLE

"Whatever happened in between." Here one e⁻ emitted a photon and the other absorbed it, giving a transfer of momentum i.e. FORCE.

Recall we don't know which e⁻ emitted/absorbed the γ. Feynman diagrams represent the sum over all time orderings

QED

*Quantum electrodynamics (QED) is the theory of the interaction of light (photons) with electrons +

- ★We have seen how particles can attract/repel via the exchange of a force carrying Gauge boson
- ***** Now need to discuss how the gauge bosons **COUPLE** to

The nature of the FORCE is determined by the interaction between the photon and the electron INTERACTION VERTEX

The basic strength of the interaction is given by the coupling constant α , related to the "probability of emitting a photon".

QED Vertices

*****PHOTONS couple to ALL charged particles with the same intrinsic strength :

CHARGED LEPTONS: (but not NEUTRINOS)

<u>NOTE</u>: the electromagnetic interaction <u>does not</u> change flavour : e.g. an electron emitting a photon does not turn into a muon

The Propagator

FOR COMPLETENESS.....

- *In addition to coupling strength interaction probability depends on energy of intermediate photon
 - "it is easier to emit a low energy/momentum VIRTUAL photon"
- Mathematically called the propagator fairly easy to derive from QM

Annihilation

Electron-Positron Annihilation

- ★Electrons/positrons are relatively easy to accelerate to high energies
- *All of the energy of the collision is converted into the energy of the photon
- *That energy can then create a particle anti-particle pair provided:
 - they are charged (need to interact with a photon)
 - energy > 2 mc² (need sufficient energy to make the two new particles)

LEP : the Large Electron Positron Collider

*The world's largest electron positron collider ran from 1989-2000 at CERN

- ***26 km circumference**
- ★Accelerated e⁻ and e⁺ to 99.99999999 % c
- ★Built to study Z and W bosons (we'll come back to this)
- ★e⁻ and e⁺ brought into collision at 4 places around the ring
- ***4 large detectors:**
 - ♦ ALEPH
 - DELPHI
 - ♦ L3
 - OPAL
- ***1600 physicists**

The LEP ring

*Approximately 100 m below the surface

★4 bunches of counter-rotating e⁺ and e⁻

*e⁺ and e⁻ accelerated using RF cavities, "steered" using super-conducting magnets

*e⁺ and e⁻ collide at 4 interaction
points

QED at e⁺e⁻ Colliders

Two possible basic QED interactions:

*By observing and identifying the particles produced in the collisions obtain information on the underlying physics !

Particle Detection

- *The particles produced interactions are observed and identified in large multi-purpose detectors
- *****All have same basic geometry

*Need to detect particles as they cross the detector volume

The OPAL Experiment

*Many different layers of "sub-detectors"

*<u>4 main categories</u>

*****Tracking Chambers

charged particles

★ECAL

electrons/photons

+HCAL

hadrons

*****MUON chambers

• muons

Tracking Chambers

- Charged particles ionize gas
- +ve ions and liberated electrons drift in electric field
- Charge collected on sense wires and produces an electrical signal
- NOTE: track bends in the magnetic field – curvature ⇒ particle momentum

Electromagnetic Calorimeter (ECAL)

- ECAL: 11705 Pb-Glass blocks (10x10x30 cm³)
- When an e^{\pm}/γ enters block it produces a e^{\pm}/γ cascade

 light detected using photo-multiplier tubes

e⁺ **e**⁻ → **e**⁺ **e**⁻

Side view

End view

Particle Identification

•Different particles leave characteristic signals in the different "sub-detectors" – making particle identification possible

$e^+e^- \rightarrow \mu^+\mu^-$

Side view

End view

What about ?

- ***** a single electron and a single muon
- ★ BUT can't be simple $e^+e^- \rightarrow e^+\mu^-!$ (WHY?)
- **★ QED doesn't change flavour**
 - produces particle/anti-particle pairs
- ★ Conservation of momentum implies some "invisible particle" also produced
- ***** WAIT FOR DISCUSSION OF W-BOSONS

Interaction Cross-Section

- ★We have seen how we identify different type of particles but what can we measure ?
- *****The most basic quantity is the CROSS-SECTION for a particular interaction
- ***** Related to event rate
- ★ CROSS-SECTION → "how likely is a certain process to happen"
- ★ The cross-section, ♂, for a process can be calculated using Quantum Mechanics
- **★** Here we will concentrate on the meaning

Example:

 Suppose we have a single e⁻ crossing a region of area, A, in which there is one e⁺ - what is the probability that they will annihilate and a μ⁻ μ⁺ will be produced via

Geometrical picture of σ

Area A

What is the probability the e⁺e⁻ will have annihilated after the e⁻ passes through this region ?

- Picture the situation end on.
- The probability of interaction is given by the cross-section/Area : σ/A
- The interaction cross-section can be considered as an "imaginary" area drawn around the e⁺ such that if the e⁻ passes through this area they will annhiliate.

Probability of interaction

Tests of QED

e.g. measure cross-sections by counting number of e⁺e⁻ → μ⁺μ⁻ events (computers do the work !)

Perfect agree with **QED** prediction !

$$\sigma = \frac{\pi \alpha^2}{3E^2}$$

<u>NOTE:</u> cross-section proportional to α^2

Running Coupling

* α specifies the strength of the interaction between an electron and a photon
* BUT α isn't constant !

*an electron travelling through the vacuum is surrounding by a cloud of virtual electron/positron pairs

*As a result the strength of the electromagnetic interaction increases (slightly) with energy

*****At low energies:

 $\alpha = 1/137$

*At LEP: α = 1/128

Summary

• The electromagnetic interaction is due to the exchange of a VIRTUAL photon:

• In QED the interaction between a charged particle and a photon is parameterised by the coupling strength, $\alpha_{\rm e^+}$

- α is not constant, it "runs", increasing with energy
- In many ways the theory of the strong interaction, QCD, is very similar to QED.....

Rogues Gallery : I

What is this event ?

+Feynman Diagram ?

Rogues Gallery II

What is this event? Run:event 15012: 833 Ctrk(N= 4 Sump= .0) Ecal(N= 14 SumE=198.0) Ebeam 103.17 Vtx (-5.97.-1.17.*****) Heal(N= 0 SumE= .0) Muon(N= 0) 0

+Feynman Diagram ?

Rogues Gallery : III

What is this event ?

+Feynman Diagram ?