Particle Physics Major Option Exam, January 2008

SOLUTIONS

Question 1

Part i) Draw the lowest order Standard Model Feynman diagrams for the process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$and the additional diagram(s) for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$. Discuss the relative importance of the different diagrams at $\sqrt{s}=m_{\mathrm{Z}}$.

For $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$have three possible s-channel diagrams:

For $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$have three possible t -channel diagrams:

At $\sqrt{s}=m_{\mathrm{Z}}$, the s-channel Z diagram dominates, although the $t-$ channel $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$ diagram is important for small electron scattering angles (i.e. small q^{2}). The Higgs diagrams are negligible due to smallness of electron mass (i.e. Higgs-electron coupling).
(26 October 2012)

Part ii) The forward-backward asymmetry is defined as $A_{\mathrm{FB}}=\left(\sigma_{\mathrm{F}}-\sigma_{\mathrm{B}}\right) /\left(\sigma_{\mathrm{F}}+\sigma_{\mathrm{B}}\right)$, where $\sigma_{\mathrm{F}}=\sigma(\cos \theta>0)$ and $\sigma_{\mathrm{B}}=\sigma(\cos \theta<0)$. Explain: a) why A_{FB} for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$is different from that for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$and b) why for centre-of-mass energies in the range $\sqrt{s}=m_{\mathrm{Z}} \pm \Gamma_{\mathrm{Z}}, A_{\mathrm{FB}}$ for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$depends strongly on \sqrt{s}.
a) For electrons $A_{F B}$ has a large contribution from the s-channel photon exchange diagram which results in a large asymmetry, i.e. many more electrons produced in the forward direction.
b) Away from resonance interference with the γ exchange diagram leads to a strong energy-dependence.

Part iii) The matrix elements for the process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mu^{+} \mu^{-}$at $\sqrt{s}=m_{\mathrm{Z}}$ are:

$$
\begin{aligned}
\left|M_{R R}\right|^{2} & =\kappa\left(c_{R}^{\mathrm{e}}\right)^{2}\left(c_{R}^{\mu}\right)^{2}(1+\cos \theta)^{2}, & & \left|M_{L L}\right|^{2}=\kappa\left(c_{L}^{\mathrm{e}}\right)^{2}\left(c_{L}^{\mu}\right)^{2}(1+\cos \theta)^{2}, \\
\text { and }\left|M_{R L}\right|^{2} & =\kappa\left(c_{R}^{e}\right)^{2}\left(c_{L}^{\mu}\right)^{2}(1-\cos \theta)^{2}, & & \left|M_{L R}\right|^{2}=\kappa\left(c_{L}^{\mathrm{e}}\right)^{2}\left(c_{R}^{\mu}\right)^{2}(1-\cos \theta)^{2},
\end{aligned}
$$

where $\kappa=g_{\mathrm{Z}}^{4} m_{\mathrm{Z}}^{2} / \Gamma_{\mathrm{Z}}^{2}$, and $g_{\mathrm{Z}} c_{L}$ and $g_{\mathrm{Z}} c_{R}$ are the coupling strengths of the Z to left- and right-handed particles. Draw diagrams indicating the helicities of the initial- and final-state particles for the matrix elements $M_{R R}$ and $M_{R L}$ and explain clearly why only four of the possible sixteen helicity combinations give non-zero matrix elements.

For the RR combination we have:

For the RL combination we have:

(26 October 2012)

The interaction is of the form $\frac{1}{2} \gamma^{\mu}\left(c_{\mathrm{V}}-\gamma^{5} c_{\mathrm{A}}\right)$ and for any combination of vector/axial-vector couplings the chiral nature of the interaction and the fact that chiral states correspond to helicity states for ultra-relativistic particles only certain helicity combinations contribute. For example:

$$
\begin{aligned}
\left(1-\gamma^{5}\right) \gamma^{\mu}\left(1-\gamma^{5}\right) & =\left(1-\gamma^{5}\right)\left(1+\gamma^{5}\right) \gamma^{\mu} \\
& =\left(1-\gamma^{5} \gamma^{5}\right) \gamma^{\mu}=0
\end{aligned}
$$

Part iv) For unpolarised electrons and positrons, the differential cross section for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mu^{+} \mu^{-}$can be written in the form $d \sigma / d \Omega=A\left(1+\cos ^{2} \theta\right)+B \cos \theta$. Using $\left.\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=\left.\frac{1}{64 \pi^{2} s}\langle | M\right|^{2}\right\rangle$, find expressions for A and B in terms of the Z couplings to left- and right-handed particles and show that

$$
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mu^{+} \mu^{-}\right)=\frac{g_{\mathrm{Z}}^{4}}{48 \pi \Gamma_{\mathrm{Z}}^{2}}\left[\left(c_{R}^{\mathrm{e}}\right)^{2}+\left(c_{L}^{\mathrm{e}}\right)^{2}\right]\left[\left(c_{R}^{\mu}\right)^{2}+\left(c_{L}^{\mu}\right)^{2}\right]
$$

Assuming lepton universality, $c_{L}^{\mathrm{e}}=c_{L}^{\mu}=c_{L}$ and $c_{R}^{\mathrm{e}}=c_{R}^{\mu}=c_{R}$, use the measurement of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mu^{+} \mu^{-}\right)=2.00 \times 10^{-37} \mathrm{~m}^{2}$ to obtain a value for $c_{R}^{2}+c_{L}^{2}$.

Starting from

$$
\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left.\frac{1}{64 \pi^{2} s}\langle | M\right|^{2}\right\rangle
$$

Summing over all possible diagrams and averaging over four possible initial states.

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{1}{4} \frac{1}{64 \pi^{2} s}\left(\left|M_{R R}\right|^{2}+\left|M_{L R}\right|^{2}+\left|M_{R L}\right|^{2}+\left|M_{L L}\right|^{2}\right)
$$

Using the matrix elements given:

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}= & \frac{1}{256 \pi^{2} m_{\mathrm{Z}}^{2}}\left(\left|M_{R R}\right|^{2}+\left|M_{L R}\right|^{2}+\left|M_{R L}\right|^{2}+\left|M_{L L}\right|^{2}\right) \\
= & \frac{g_{\mathrm{Z}}^{4} m_{\mathrm{Z}}^{2}}{256 \pi^{2} m_{\mathrm{Z}}^{2} \Gamma_{\mathrm{Z}}^{2}}\left\{\left(\left(c_{R}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}+\left(c_{R}^{e}\right)^{2}\left(c_{L}^{\mu}\right)^{2}+\left(c_{L}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}+\left(c_{L}^{e}\right)^{2}\left(c_{L}^{\mu}\right)^{2}\right)\left(1+\cos ^{2} \theta\right)\right. \\
& \left.+\left(2\left(c_{R}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}-2\left(c_{R}^{e}\right)^{2}\left(c_{L}^{\mu}\right)^{2}-2\left(c_{L}^{e}\right)^{2}\left(c_{R}^{\mu}\right)^{2}+2\left(c_{L}^{e}\right)^{2}\left(c_{L}^{\mu}\right)^{2}\right) \cos \theta\right\} \\
= & A\left(1+\cos ^{2} \theta\right)+B \cos \theta,
\end{aligned}
$$

with

$$
\begin{aligned}
A & =\frac{g_{\mathrm{Z}}^{4}}{256 \pi^{2} \Gamma_{\mathrm{Z}}^{2}}\left[\left(c_{R}^{e}\right)^{2}+\left(c_{L}^{e}\right)^{2}\right]\left[\left(c_{R}^{\mu}\right)^{2}+\left(c_{L}^{\mu}\right)^{2}\right] \\
B & =\frac{2 g_{\mathrm{Z}}^{4}}{256 \pi^{2} \Gamma_{\mathrm{Z}}^{2}}\left[\left(c_{L}^{e}\right)^{2}-\left(c_{R}^{e}\right)^{2}\right]\left[\left(c_{L}^{\mu}\right)^{2}-\left(c_{R}^{\mu}\right)^{2}\right]
\end{aligned}
$$

To obtain total cross-section integrate over solid angle

$$
\begin{aligned}
\sigma & =\int A\left(1+\cos ^{2} \theta\right)+B \cos \theta \mathrm{~d} \Omega \\
& =2 \pi \int_{-1}^{+1} A\left(1+\cos ^{2} \theta\right)+B \cos \theta \mathrm{~d}(\cos \theta) \\
& =2 \pi A\left[x+\frac{x^{3}}{3}\right]_{-1}^{+1} \\
& =\frac{16}{3} \pi A \\
& =\frac{16}{3} \pi \frac{g_{\mathrm{Z}}^{4}}{256 \pi^{2} \Gamma_{\mathbf{Z}}^{2}}\left[\left(c_{R}^{e}\right)^{2}+\left(c_{L}^{e}\right)^{2}\right]\left[\left(c_{R}^{\mu}\right)^{2}+\left(c_{L}^{\mu}\right)^{2}\right] \\
& =\frac{g_{\mathbf{Z}}^{4}}{48 \pi \Gamma_{\mathbf{Z}}^{2}}\left[\left(c_{R}^{e}\right)^{2}+\left(c_{L}^{e}\right)^{2}\right]\left[\left(c_{R}^{\mu}\right)^{2}+\left(c_{L}^{\mu}\right)^{2}\right]
\end{aligned}
$$

With lepton universality and converting cross section to natural units

$$
\begin{aligned}
\sigma & =\frac{g_{\mathrm{Z}}^{4}}{48 \pi \Gamma_{\mathrm{Z}}^{2}}\left(c_{R}^{2}+c_{L}^{2}\right)^{2} \\
\left(c_{R}^{2}+c_{L}^{2}\right)^{2} & =\frac{48 \pi \Gamma_{\mathrm{Z}}^{2}}{g_{\mathrm{Z}}^{4}} \frac{2.00 \times 10^{-37}}{\left(0.197 \times 10^{-15}\right)^{2}} \\
& =0.0152 \\
c_{R}^{2}+c_{L}^{2} & =0.123
\end{aligned}
$$

Part v) For the process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mu^{+} \mu^{-}$obtain an expression for A_{FB} in terms of c_{L} and c_{R}. Taking $A_{\mathrm{FB}}=0.017$ and the result you obtained for $c_{R}^{2}+c_{L}^{2}$, determine values for $\left|c_{L}\right|$ and $\left|c_{R}\right|$.

$$
\begin{aligned}
\sigma_{F} & =2 \pi \int_{0}^{1} A\left(1+\cos ^{2} \theta\right)+B \cos \theta \mathrm{~d}(\cos \theta) \\
& =2 \pi\left[A x+A \frac{x^{3}}{3}+B \frac{x^{2}}{2}\right]_{0}^{+1} \\
& =2 \pi\left(\frac{4}{3} A+\frac{1}{2} B\right) \\
\text { similarly } \quad \sigma_{B} & =2 \pi\left(\frac{4}{3} A-\frac{1}{2} B\right) \\
A_{F B} & =\frac{\sigma_{F}-\sigma_{B}}{\sigma_{F}+\sigma_{B}}=\frac{3 B}{8 A} \\
& =\frac{3}{8} \frac{\left(c_{L}^{2}-c_{R}^{2}\right)^{2}}{\left(c_{L}^{2}+c_{R}^{2}\right)^{2}}
\end{aligned}
$$

(26 October 2012)

Using the the measured value of 0.017 and $c_{R}^{2}+c_{L}^{2}=0.123$ gives

$$
\begin{aligned}
\left(c_{L}^{2}-c_{R}^{2}\right)^{2} & =0.0007 \\
c_{L}^{2}-c_{R}^{2} & = \pm 0.026
\end{aligned}
$$

Two possible solutions, $\left|c_{L}\right|=0.27$ and $\left|c_{R}\right|=0.22$ or $\left|c_{L}\right|=0.22$ and $\left|c_{R}\right|=0.27$. Full marks given for either solution.

Part vi) Discuss briefly how $\left|c_{L}\right|$ and $\left|c_{R}\right|$ are determined for the different lepton flavours when universality is not assumed.

By measuring asymmetries/cross-sections for electrons can determine couplings to electrons, i.e. measure \mathcal{A}_{e}. Using this the other cross section and asymmetry measurements give \mathcal{A}_{μ}. Can also use $A_{L R}$ to get \mathcal{A}_{e}.

Question 2

Part i) Draw Feynman diagrams for the possible $\bar{\nu}_{\mu}$ charged-current weak interactions with the constituents of the proton assuming that the only $\mathrm{u}, \mathrm{d}, \overline{\mathrm{u}}$, and $\overline{\mathrm{d}}$ are present.

The diagrams involving a down or anti-up quark are forbidden by charge conservation (i.e. wrong type of W involved).

Part ii) The differential cross sections for the charged-current weak interactions of high energy $\bar{\nu}_{\mu}$ with quarks/anti-quarks are:

$$
\frac{\mathrm{d} \sigma_{\overline{\overline{\mathrm{q}}}}}{\mathrm{~d} \Omega^{*}}=\frac{G_{\mathrm{F}}^{2} \hat{s}}{16 \pi^{2}}\left(1+\cos \theta^{*}\right)^{2}, \quad \text { and } \quad \frac{\mathrm{d} \sigma_{\overline{\overline{\mathrm{q}}}}}{\mathrm{~d} \Omega^{*}}=\frac{G_{\mathrm{F}}^{2} \hat{s}}{4 \pi^{2}}
$$

where θ^{*} is the polar angle of the final-state μ^{+}in the centre-of-mass frame. Explain the angular dependences of these cross sections.

Part iii) In $\bar{\nu}_{\mu}$ deep-inelastic scattering, y is defined as $y \equiv\left(p_{2} \cdot q\right) / p_{2} \cdot p_{1}$, where p_{1} and p_{2} are the respective four-momenta of the $\bar{\nu}_{\mu}$ and the struck quark, and q is the four momentum of the virtual W-boson. Neglecting particle masses, show that

$$
y=\frac{1}{2}\left(1-\cos \theta^{*}\right), \quad \frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} \mathrm{q}}}{\mathrm{~d} y}=\frac{G_{\mathrm{F}}^{2} \hat{s}}{\pi}(1-y)^{2}, \quad \text { and } \quad \frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} \overline{\mathrm{q}}}}{\mathrm{~d} y}=\frac{G_{\mathrm{F}}^{2} \hat{s}}{\pi},
$$

(26 October 2012)
where \hat{s} is the centre-of-mass energy of the neutrino-quark system.
Working in the centre-of-mass frame and neglecting particle masses, $p_{1}=(E, 0,0, E)$, $p_{2}=(E, 0,0,-E)$ and $p_{3}=\left(E, E \sin \theta^{*}, 0, E \cos \theta^{*}\right)$

$$
\begin{aligned}
y & =\frac{p_{2} \cdot q}{p_{2} \cdot p_{1}} \\
& =\frac{p_{2} \cdot\left(p_{1}-p_{3}\right)}{2 E^{2}} \\
& =\frac{p_{2} \cdot\left(0,0,0, E\left(1-\cos \theta^{*}\right)\right)}{2 E^{2}} \\
& =\frac{1}{2}\left(1-\cos \theta^{*}\right)
\end{aligned}
$$

To calculate differential cross sections in terms of y, start from

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} y}=\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega^{*}} \frac{\mathrm{~d} \Omega^{*}}{\mathrm{~d} y}
$$

No azimuthal dependence, so integrate of ϕ

$$
\frac{\mathrm{d} \Omega^{*}}{\mathrm{~d} y}=2 \pi \sin \theta^{*} \frac{\mathrm{~d} \theta^{*}}{\mathrm{~d} y}
$$

Using $y=\frac{1}{2}\left(1-\cos \theta^{*}\right)$

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} \theta^{*}} & =\frac{1}{2} \sin \theta^{*} \\
\text { gives } \frac{\mathrm{d} \Omega^{*}}{\mathrm{~d} y} & =4 \pi
\end{aligned}
$$

From which it immediately follows that

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} \bar{q}}}{\mathrm{~d} y} & =\frac{G_{\mathrm{F}}^{2} \hat{s}}{\pi}, \\
\text { and } \quad \frac{\mathrm{d} \sigma_{\overline{\bar{q}}}}{\mathrm{~d} y} & =\frac{G_{\mathrm{F}}^{2} \hat{s}}{4 \pi}\left(1+\cos \theta^{*}\right)^{2} \\
\frac{\mathrm{~d} \sigma_{\bar{\nu} \mathrm{q}}}{\mathrm{~d} y} & =\frac{G_{\mathrm{F}}^{2} \hat{s}}{\pi}(1-y)^{2} .
\end{aligned}
$$

Part iv) Many neutrino experiments employ detectors made of iron which contains an equal number of neutrons and protons. By considering the $\bar{\nu}_{\mu}$ interactions with protons and neutrons in terms of the parton distribution functions for the proton, $u(x), d(x), \bar{u}(x)$ and $\bar{d}(x)$, show that

$$
\frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} N}}{\mathrm{~d} y} \equiv \frac{1}{2}\left(\frac{\mathrm{~d} \sigma_{\bar{\nu}_{\mu} \mathrm{n}}}{\mathrm{~d} y}+\frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} \mathrm{p}}}{\mathrm{~d} y}\right)=\frac{G_{\mathrm{F}}^{2}}{2 \pi} s\left[f_{\overline{\mathrm{q}}}+(1-y)^{2} f_{\mathrm{q}}\right],
$$

(26 October 2012)
where s is the centre-of-mass energy of the neutrino-nucleon system, and f_{q} and $f_{\overline{\mathrm{q}}}$ are the fractions of the momentum of the nucleon carried by the quarks and anti-quarks respectively.

For anti-neutrino proton scattering we have

$$
\frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} \mathrm{P}}}{\mathrm{~d} y}=\frac{G_{\mathrm{F}}^{2}}{\pi} \hat{s}(1-y)^{2}(u(x) \mathrm{d} x+\bar{d}(x) \mathrm{d} x)
$$

Using $\hat{s}=x s$

$$
\frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} \mathrm{p}}}{\mathrm{~d} y}=\frac{G_{\mathrm{F}}^{2}}{\pi} s(1-y)^{2}(x u(x) \mathrm{d} x+x \bar{d}(x) \mathrm{d} x)
$$

Similarly for anti-neutrino neutron scattering

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} \mathrm{n}}}{\mathrm{~d} y}=\frac{G_{\mathrm{F}}^{2}}{\pi} s(1-y)^{2}\left(x u_{n}(x) \mathrm{d} x+x \bar{d}_{n}(x) \mathrm{d} x\right) \\
& \frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} \mathrm{n}}}{\mathrm{~d} y}=\frac{G_{\mathrm{F}}^{2}}{\pi} s(1-y)^{2}(x d(x) \mathrm{d} x+x \bar{u}(x) \mathrm{d} x)
\end{aligned}
$$

Giving

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} N}}{\mathrm{~d} y} \equiv \frac{1}{2}\left(\frac{\mathrm{~d} \sigma_{\bar{\nu}_{\mu} \mathrm{n}}}{\mathrm{~d} y}+\frac{\mathrm{d} \sigma_{\bar{\nu}_{\mu} \mathrm{p}}}{\mathrm{~d} y}\right) & =\frac{G_{\mathrm{F}}^{2}}{2 \pi} s \int_{0}^{1} x(u+d)(1-y)^{2}+x(\bar{u}+\bar{d}) \mathrm{d} x \\
& =\frac{G_{\mathrm{F}}^{2}}{2 \pi} s\left(f_{q}(1-y)^{2}+f_{\overline{\mathrm{q}}}\right)
\end{aligned}
$$

Part v)For a beam of $100 \mathrm{GeV} \bar{\nu}_{\mu}$, the total $\bar{\nu}_{\mu}$ charged-current deep-inelastic nucleon cross section is measured to be

$$
\sigma_{\bar{\nu}_{\mu} N}=\frac{1}{2}\left(\sigma_{\bar{\nu}_{\mu} \mathrm{p}}+\sigma_{\bar{\nu}_{\mu} \mathrm{n}}\right)=3.4 \times 10^{-41} \mathrm{~m}^{2}
$$

and the mean value of y is measured to be 0.34. Use these results to determine f_{q} and $f_{\overline{\mathrm{q}}}$.
Integrating the above expression

$$
\begin{aligned}
\sigma & =\frac{G_{\mathrm{F}}^{2}}{2 \pi} s \int_{0}^{1}\left(f_{q}(1-y)^{2}+f_{\overline{\mathrm{q}}}\right) \mathrm{d} y \\
& =\frac{G_{\mathrm{F}}^{2}}{2 \pi} s\left(f_{\overline{\mathrm{q}}}+\frac{1}{3} f_{q}\right)
\end{aligned}
$$

In terms of the laboratory frame neutrino energy $s=2 m_{N} E_{\nu}$ so

$$
\sigma=\frac{G_{\mathrm{F}}^{2}}{\pi} m_{N} E_{\nu}\left(f_{\overline{\mathrm{q}}}+\frac{1}{3} f_{q}\right)
$$

Using the values given find

$$
\begin{aligned}
\left(f_{\overline{\mathrm{q}}}+\frac{1}{3} f_{q}\right) & =\frac{\pi}{0.94 \times 100 G_{\mathrm{F}}^{2}} \frac{3.4 \times 10^{-41}}{\left(0.197 \times 10^{-15}\right)^{2}} \\
& =0.215
\end{aligned}
$$

(26 October 2012)

The mean value of y is given by:

$$
\begin{aligned}
\bar{y} & =\frac{\int y f_{\overline{\mathrm{q}}}+y(1-y)^{2} f_{q} \mathrm{~d} y}{\int f_{\overline{\mathrm{q}}}+y(1-y)^{2} f_{q}} \\
& =\frac{\frac{1}{2} f_{\overline{\mathrm{q}}}+\frac{1}{12} f_{q}}{f_{\overline{\mathrm{q}}}+\frac{1}{3} f_{q}}
\end{aligned}
$$

The denominator can be obtained from $\left(f_{\overline{\mathrm{q}}}+\frac{1}{3} f_{q}\right)=0.215$ obtained from the cross section:

$$
\frac{1}{2} f_{\overline{\mathrm{q}}}+\frac{1}{12} f_{q}=0.34 \times 0.215
$$

Combining this with the expression from the cross section and solving the simultaneous equation gives $f_{q}=0.41$ and $f_{\bar{q}}=0.08$.

Question 3

Write brief notes on three of the following:
(a) Electron-proton elastic scattering;
(b) The proton wave-function. You should include a discussion of the reasons for the symmetries of the different parts of the wave-function;
(c) The differences in the methods for detecting for $\bar{\nu}_{\mathrm{e}}$ from nuclear reactors, ν_{e} from the sun, and atmospheric ν_{μ}. You should include a brief discussion of relevant energy thresholds for the different reactions;
(d) CP violation in the Standard Model.

Answers in the form of a logically ordered bullet-pointed list are acceptable. Diagrams and simple calculations should be included where appropriate.

a) Electro-proton elastic scattering

The main points are:

- Elastic - proton remains intact
- Virtual photon interacts with proton as a whole (i.e. coherently)
- Only one independent variable - scattering angle fully determines kinematics, i.e. ($x=1$)
- Rutherford scattering is non-relativistic recoilless limit
- Mott scattering electron relativistic, no recoil.
- Both Mott and Rutherford scattering purely electric interaction
- Charge distribution described by form factor
(26 October 2012)
- Form factor is FT of charge distribution
- At relativistic energies with proton recoil Rosenbluth formula
- Both electric term and magnetic term
- Experimentally Ge and Gm show that magnetic and electric distributions are the same using anomalous magnetic moment of
- Proton has rms radius of 1 fm
- Discussion of experimental measurement at low energy
- High energy measure GM
- Due to form factor elastic scattering cross-section falls away rapidly with q^{2}.

b) The proton wave-function.

- Baryon wave-functions have flavour, colour, spin, and space parts
- Overall anti-symmetric (fermions)
- Space part symmetric ($\mathrm{L}=0$)
- Colour confinement requires quarks be in a colour singlet state
- Colour singlet $=\frac{1}{\sqrt{6}}(r g b-r b g+g b r-g r b+b r g-b g r)$ is anti-symmetric under particle exchange
- Thus, flavour x spin is symmetric
- Spin and isospin are $\mathrm{SU}(2)$ symmetries
- Combine two particles in $\operatorname{SU}(2)$ (either spin or isospin) to symmetric triplet and anti-sym singlet
- Combination of three particles gives 4 symmetric states and two mixed symmetry states.
- Mixed sym states are either symmetric or anti-symmetric under interchange of particles $1 i-$ i 2 , but no overall symmetry
- symmetric spin states correspond to spin=3/2 i.e. Delta etc
- spin-half wave-function is linear combination of $\operatorname{MS}($ spin $) x M S(f l a v o u r) ~ a n d ~$ MA(spin)xMA(flavour)
(26 October 2012)

c) Neutrino Detection

- Reactor/solar neutrinos $\sim 1 \mathrm{MeV}$ (nuclear physics)
- Atmospheric neutrinos $\sim 1 \mathrm{GeV}$
- CC or NC interactions
- CC interactions with atomic electrons or nuclei
- High CC thresholds for reactions with atomic electrons ($\mathrm{E}_{\mathrm{¿}} 11 \mathrm{GeV}$ for numu) - extra marks for derivation
- Lower CC thresholds for interactions with nucleons - extra marks for derivation
- Solar neutrinos:

Cerenkov radiation to detect elastic scattering of electrons
Radiochemical experiments
SNO uses D20 to simultaneously detect CC, ES, and NC reactions (extra marks for brief discussion)

- Reactor neutrinos:

Reactors produce large flux of $\bar{\nu}_{\mathrm{e}}$
detector via inverse β-reaction $\bar{\nu}_{\mathrm{e}}+\mathrm{p} \rightarrow \mathrm{e}^{+}+\mathrm{n}$
Low energy so large background, use coincidence in time of annihilation photons and photon from neutron capture

Mention K2K or CHOOZ

- Atmospheric neutrinos

High energy so easier to detect muon/electron
Cerenkov rings in Super-Kamiokande

d) CP Violation in the SM

- Universe is matter dominated - no evidence of regions of anti-matter (lack of annihilation photons at matter-anti-matter boundary)
- To obtain small excess of anti-matter require CP violation at level of $10^{9}+1$ baryons to every 10^{9} anti-baryons in early universe.
- Describe parity.
- Describe charge conjugation.
- Assuming CPT, CP violation implies violation of T.
- In SM two place where CP arises: PMNS matrix and CKM matrix.
- CKM and PMNS matrices are unitary.
- For three generations can have a complex phase which gives CP violation
- Not possible for two generations.
- CP violation observed in kaon system
- Describe main features of CP violation in kaons

CP eigenstates
CP even decays to $\pi \pi$ and CP odd decays to $\pi \pi \pi$
CP states roughly correspond to KS and KL
At long distance have pure KL beam
But KL observed to decay to $\pi \pi$ at level of 0.1%
explained by CP violation in mixing

- CP violation enters in box diagrams because $V_{i j} \neq V_{i j}^{*}$
- CP violation in SM not sufficient to explain baryon dominated universe
(26 October 2012)

